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ABSTRACT
Background. Urban forests help in mitigating carbon emissions; however, their
associations with landscape patterns are unclear. Understanding the associations would
help us to evaluate urban forest ecological services and favor urban forest management
via landscape regulations.We usedHarbin, capital city of the northernmost province in
China, as an example and hypothesized that the urban forests had different landscape
metrics among different forest types, administrative districts, and urban–rural gradi-
ents, and these differences were closely associated with forest carbon sequestration in
the biomass and soils.
Methods.We extracted the urban forest tree coverage area on the basis of 2GF-1 remote
sensing images and object-oriented based classification method. The analysis of forest
landscape patterns and estimation of carbon storage were based on tree coverage data
and 199 plots. We also examined the relationships between forest landscape metrics
and carbon storage on the basis of forest types, administrative districts, ring roads, and
history of urban settlements by using statistical methods.
Results. The small patches covering an area of less than 0.5 ha accounted for 72.6% of
all patches (average patch size, 0.31 ha). The mean patch size (AREA_MN) and largest
patch index (LPI) were the highest in the landscape and relaxation forest and Songbei
District. The landscape shape index (LSI) and number of patches linearly decreased
along rural-urban gradients (p < 0.05). The tree biomass carbon storage varied from
less than 10 thousand tons in the urban center (first ring road region and 100-year
regions) to more than 100 thousand tons in the rural regions (fourth ring road and
newly urbanized regions). In the same urban–rural gradients, soil carbon storage varied
from less than five thousand tons in the urban centers to 73–103 thousand tons in
the rural regions. The association analysis indicated that the total forest area was the
key factor that regulates total carbon storage in trees and soils. However, in the case
of carbon density (ton ha−1), AREA_MN was strongly associated with tree biomass
carbon, and soil carbon density was negatively related to LSI (p < 0.01) and AREA_MN
(p < 0.05), but positively related to LPI (p < 0.05).
Discussion. The urban forests weremore fragmented inHarbin than in other provincial
cities in Northeastern China, as shown by the smaller patch size, more complex patch
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shape, and larger patch density. The decrease in LSI along the rural-urban gradients
may contribute to the forest carbon sequestrations in downtown regions, particularly
underground soil carbon accumulation, and the increasing patch size may benefit tree
carbon sequestration. Our findings help us to understand how forest landscape metrics
are associated with carbon storage function. These findings related to urban forest
design may maximize forest carbon sequestration services and facilitate in precisely
estimating the forest carbon sink.

Subjects Ecology, Forestry, Spatial and Geographic Information Science
Keywords Carbon sinks function, Landscape metrics, GF1 images

INTRODUCTION
The value of urban forests in mitigating carbon emissions has received considerable interest
among scientists and urban planners (Zhao et al., 2010; Setala et al., 2013) because of
accelerated urbanization and ecological and environmental problems worldwide (Maruotti,
2008;Mccarthy, Best & Betts, 2010; Zhao et al., 2015; Zhao & Wentz, 2016). The carbon sink
function of urban forests inmany cities such asMiami-Dade andGainesville, USA (Escobedo
et al., 2010); Hangzhou, China (Zhao et al., 2010); and Chuncheon, Kangleung, and Seoul,
Middle Korea (Jo, 2002) have been assessed for offsetting regional carbon emissions. Even
though researchers worldwide have estimated the storage and sequestration of carbon
in urban forests (Liu & Li, 2012; Nowak et al., 2013; Zhang et al., 2015), less attention
has been paid to the relationship between the landscape pattern and carbon storage
functions in urban forests (Ren et al., 2013). In general, urban regions have limited space
for urban forests, and the landscape patterns of urban forests could strongly modify forest
ecological services, such as species diversity conservation (Zhang et al., 2017b) and cooling
island effects (Ren et al., 2013). To date, associations between carbon sinks and landscape
patterns have not been well-defined, and untangling the associations is essential to precisely
evaluate ecological services of urban forests (Ren et al., 2013; Zhang et al., 2017b; Ren et al.,
2018;Wang et al., 2018).

Quantification of forest landscape metrics is useful for understanding the structure and
configuration of the urban forest landscape (Uuemaa, Mander & Marja, 2013). Possible
indices include area-related parameters, such as the total area for green infrastructure (TA),
number of forest patches (NP), and mean patch size (AREA_MN); forest shape features,
such as perimeters of patch and perimeter-area ratio (PARA); patch aggregation features,
such as landscape shape index (LSI), largest patch index (LPI), and distance between
patches (Liu et al., 2009; Gounaridis, Zaimes & Koukoulas, 2014). These indices yield a lot
of information and can be quantified easily by using ArcGIS and Fragstats software; they
have been used as indicators in many studies on land use changes, habitat alterations,
and landscape regulating functions under both urban and natural conditions (Uuemaa,
Mander & Marja, 2013; Ren et al., 2013; Zhang et al., 2017b). Associations between
urbanization intensity (urban–rural gradients) and ecological services, such as carbon
storage capacity, have been used to understand urbanization and green infrastructure
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service interactions (Zhang et al., 2015; Lv et al., 2016) without considering forest landscape
patterns. Clarification of the relationships between urban forest landscape characteristics
and carbon storage may be helpful in understanding how urbanization affects carbon
storage in trees and soils and finding possible indicators for evaluations of urban forest
carbon sink functions; the possible parameters include urbanization intensity, landscape
metrics, and tree size and forest community attributes, etc. (Wang et al., 2005;Wang et al.,
2011; Zhang et al., 2017b).

Currently, China is in a period of rapid urbanization, and there is a general hope for
good environmental security from urban green vegetation, such as forests (Mu, Sun & Zhu,
2004; Wang, 2009; Liang et al., 2014; He et al., 2017; Zheng et al., 2017; Wang et al., 2018).
In China, the urban forests can easily be classified into different types on the basis of their
location and functions, such as roadside forest distributed on both sides of roads; affiliation
forest in different units of universities, schools, and institutes; landscape and relaxation
forest in gardens and parks; and ecological public welfare forest for the prevention of soil
erosion, floods, etc. (He et al., 2004). The division of different administrative districts in
the same city facilitates possible management by public and private units (Liu, Li & Guo,
2007), including urban vegetation. Moreover, ring-road development and the history of
urban settlements indicating urban–rural gradients are typical ways for understanding the
urbanization effects (Xiao et al., 2016a). Studies that combine forest types, administrative
districts, and urban–rural gradients, together with suitable landscape metrics, may favor
the quantification of urban forest landscape features and their associations with forest
ecological processes (Liu et al., 2009; Ren et al., 2013) and provide possible strategies for
forest city design during the fast urbanization process in China (Zhang et al., 2017b).

Harbin, a typical provincial capital city in Northeastern China, has been checked for
urbanization effects on urban tree species diversity and possible associations with bird
species alternations (Xiao et al., 2016a), tree species configuration problems in urban
afforestation (Xiao et al., 2016b), and best tree species for improving urban forest soils
(Lu et al., 2016; Wang et al., 2017) and soil glomalin and mycorrhizal features (Zhong et
al., 2016; Cui & Mu, 2016). However, whole carbon storage at city scale, especially soil
organic carbon (SOC), and the relationships with landscape pattern characteristics are still
unknown (Ying, Li & Fan, 2009; Lv et al., 2016).

In this paper, we used Harbin, the northernmost province capital city in China, as an
example and hypothesized that urban forests have largely different landscape metrics on
the basis of the forest type, administrative district, and urban–rural gradients, and these
differences are closely associated with forest carbon sequestration in the biomass and soils.
The following questions have been answered in this paper: (1) How large are the variations
in the characteristics of urban forest landscapes in Harbin City? What are the differences
in forest types, administrative districts, and urban–rural gradients? (2) How large are the
differences in urban forest biomass and underground soils? Which landscape metrics are
most significantly associated with these carbon sequestration differences? (3) Is there any
management suggestions from the view of landscape configurations for promoting carbon
storage in urban forests?What type of landscape-related suggestions for the exact evaluation
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Figure 1 Location of the study area showing Harbin City in northeastern China, and the distribution
of sampling plots at different forest type, administrative districts and urban-rural gradients of different
ring roads and history of urban settlements in Harbin.

Full-size DOI: 10.7717/peerj.5825/fig-1

of urban forest carbon storage could be derived? The solutions will favor landscape-carbon
sequestration sciences and help to define a suitable strategy for urban afforestation and
management.

MATERIALS & METHODS
Study area
The study area is located in the urban area of Harbin City (45◦45′N, 126◦38′E; Fig. 1), the
capital of Heilongjiang Province in Northeastern China. The average elevation of Harbin
City is 151 m above sea level. The municipal district covers an area of 10,198 km2. The total
area within the fourth ring road is about 600 km2, and the built-up area within the fourth
ring road is 345.3 km2. Until 2014, 4.7million people lived in the downtown area, according
to the Statistical Yearbook of Harbin (http://www.harbin.gov.cn/col/col39/index.html).
The mean temperatures in January and July are −17.6 ◦C (0.3 ◦F) and 23.1 ◦C (73.6 ◦F),
according to the climate data from 1981 to 2010 (http://data.cma.cn/site/index.html). The
annual precipitation is 524 mm (20.6 in). The frost-free period lasts 140 days, while the
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ice period lasts 190 days (Zhang et al., 2011). The most prevalent soil across Harbin is the
black soil (Luvic Phaeozem, FAO) (Chang, 2015).
The main region in Harbin City is composed of five administrative districts. The main

forest types are roadside forest (RF), ecological public welfare forest (EF), landscape
and relaxation forest (LF), and affiliated forest (AF), according their location, ecological
function, and management objectives (He et al., 2004). Long-term records (up to 1900s)
on the urbanization process in Harbin are available. The urban land in Harbin was only
12 km2 in 1907, and it had increased ca. 30-fold to 333 km2 in 2014 (Fig. 1). The urban
population in Harbin increased 18-fold from 0.54 million in 1946 to 9.87 million in 2014
(Yi et al., 2006). The expansion of ring roads is also a good substitute for urban–rural
gradients in Harbin (Huang et al., 2010). These features made Harbin City a good example
for the study of urbanization effects on urban forest landscape characteristics and their
associations with carbon storage capacity.

Image processing and tree coverage interpretation
Twomultispectral GF-1 images with a resolution of 2m× 2m (China Center for Resources
Satellite Data and Application; CRESDA) acquired on September 26, 2014, were used for
the forest coverage extraction. Image preprocessing procedures included radiometric
correction, FLAASH atmospheric correction, ortho-rectification, and image fusion and
clipping. We extracted the urban forest coverage by using the object-oriented based
classification method, according to texture information, spectral information, and spatial
attributes of remote sensing images. The attribute assignment and manual modifications
were performed with ArcGIS map (Esri, version 10.0; Redlands, CA, USA).

We used per pixel (Wentz & Zhao, 2015) and object-based (Li et al., 2015) validation
methods to evaluate the accuracy of urban forest tree coverage extraction. Per pixel
methods are used to check whether an individual pixel is classified correctly (Wentz &
Zhao, 2015). The overall accuracy of the tree coverage extraction was 97.67%, with a miss
factor of 0.06 and detection rate and quality percentage of 94.21%. Object-based accuracy
assessment was performed using manually digitalized results from Google Earth satellite
images (resolution, 0.59 m) as reference data (Li et al., 2015). We randomly selected 100
plots (500 m × 500 m) to compare the discrepancies between the classified results and
reference maps. Figure 2 shows the scatter plot of tree coverage between classification
results and corresponding reference data (Google Earth image). It is evident that these
scattered points are distributed near the 45◦ line and r2 is more than 0.99. The results for
forest tree coverage in Harbin City are presented in Fig. 3.

Analysis of landscape metrics
The analysis of forest landscape characteristics was based on four forest types (He et al.,
2004), five administrative districts, four ring roads, and seven periods of urban settlements
(Chen et al., 2005; Zhang et al., 2015) and performed using Fragstats (v4.2.589; Fig. 3). The
landscapemetrics were selected according to their ecological meanings and referenced from
Liu et al. (2009) and Gao & Yu (2014). Seven indices (Table SA1) were finally selected. The
area and edge indices were total area (TA), number of patches (NP), largest patch index
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Figure 2 Precision validation for tree cover data of urban forests in Harbin City using Google Earth
images with a resolution of 0.59 m.

Full-size DOI: 10.7717/peerj.5825/fig-2

(LPI), and mean patch area (AREA_MN); shape index was area-weighted perimeter-area
ratio (PARA_AM); and aggregation indices were landscape shape index (LSI) and mean
Euclidean nearest-neighbor distance (ENN_MN).

The relationships between patch perimeter and patch area are the bases for most shape
indices, and the Euclidean nearest-neighbor distance (ENN) is the simplest measure of
patch context. We also analyzed the frequency distribution of four indices at patch level,
namely, patch area, patch perimeter, perimeter-area ratio (PARA), and ENN. The spatial
scale for analysis was 2 m, the same as the GF-1 image resolution, and the eight-neighbor
patch rule was used.

Field study and estimation of carbon storage
The field study was conducted between August and September 2014. During the field study,
we recorded the location of each plot (by using GPS), tree species composition, diameter
at breast height (DBH; 1.3 m), basal area (1.3 m, at breast height), and height (measured
using a Laster tree height meter, Nikon forestry PRO550 Nikon, Japan) of trees with a
diameter greater than 1 cm. The soil samples (0–20 cm) were collected at the same time
by using a 100 cm3 cutting ring (four cutting rings per plot; M&Y Instrument Technology
Co. Ltd., Shanghai, China). A fixed volume of intact soil (400 cm3) was stored in a cloth
soil bag and air-dried in a dry ventilated room to constant weight for laboratory analysis.

The sampling plots were allocated according to forest coverage in different forest types,
administrative districts, ring roads, and history of urban settlements (Fig. 1). Plot allocation
is listed in Table 1. The estimation of total carbon storagewas the random sampling statistics
of carbon storage density (carbon stocks per tree cover) of different forest types, ring roads,
administrative districts, and history of urban settlements (Lv et al., 2016) and their tree
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Figure 3 Spatial distribution of urban forests in Harbin City derived fromGF1 images (2 m resolu-
tion).

Full-size DOI: 10.7717/peerj.5825/fig-3
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Table 1 Trees and soils carbon storage for different forest types, administrative districts, urban-rural gradients (ring roads and history of ur-
ban settlements) in Harbin City.

Urban forests
classification

No. of
plots

Area of the
region km2

Carbon storage
(thousand tons)

C storage
density (tons ha−1)

Tree Soil Total Tree biomass Soil

Different forest types and regions
AF 58 12a 68.9 63.7 132.6 51.4 (6.4) 47.5 (3.4)
RF 42 9a 72.6 56.2 128.8 71.6 (10.6) 55.4 (3.1)
LF 62 10a 60.9 66.3 127.2 62.9 (8.6) 68.5 (5.5)

Forest types

EF 36 6a 100.0 32.7 132.7 155.0 (12.2) 50.7 (3.6)
Daoli 34 90 18.5 26.1 44.6 46.2 (8.3) 65.2 (6.8)
Daowai 30 96 52.7 29.8 82.5 100.0 (1.9) 56.5 (4.3)
Nangang 49 92 51.5 38.0 89.5 77.5 (8.3) 57.2 (3.9)
Songbei 34 143 64.8 43.3 108.1 66.1 (8.4) 44.1 (4.1)

Administrative districts

Xiangfang 50 167 144.8 74.2 219.0 104.0 (13.3) 53.3 (3.4)

Urban-rural gradients
First ring 16 11 4.8 4.8 9.6 68.8 (13.8) 69.1 (4.9)
Second ring 32 48 22.7 21.0 43.7 60.8 (8.1) 56.1 (5.7)
Third ring 77 205 105.1 102.8 207.9 56.1 (5.8) 54.9 (3.4)

Ring roads

Fourth ring 74 328 178.1 83.4 261.5 108.1 (1.2) 50.6 (3.0)
100-yr 7 12 3.8 5.2 9.0 50.3 (16.5) 69.4 (6.3)
80-yr 10 13 5.4 4.2 9.6 78.7 (15.8) 60.6 (9.0)
70-yr 28 32 19.7 19.5 39.2 62.6 (9.2) 62.0 (5.1)
50-yr 27 62 34.8 25.7 60.5 68.4 (14.9) 50.6 (5.2)
10-yr 44 138 82.4 75.8 158.2 59.6 (9.8) 54.8 (3.3)
0-yr 51 92 25.0 23.0 48.0 55.2 (8.2) 50.7 (5.0)

History of urban settlements

unsettled 32 242 188.0 62.2 250.2 161.8 (13.4) 53.5 (3.9)

Sum 199 302–359 211–219 521–575

Notes.
AF, affiliated forest; RF, roadside forest; LF, landscape and relaxation forest; EF, ecological public welfare forest; 100-yr, urban area constructed before 1906; 80-yr, ur-
ban area constructed between 1933 and 1907; 70-yr, urban area constructed between 1945 and 1934; 50-yr, urban area constructed between 1962 and 1946; 10-yr, urban area
constructed between 2005 and 1963; 0-yr, urban area constructed during 2006 and 2014; unsettlement, rural land.
The numbers in brackets are standard errors.

aTree coverage area.

coverage area shown in Fig. 3.

Carbonstorage=
j∑

i=1

CDi×TCi (1)

where CDi is the ith carbon storage density of different forest types, ring roads,
administrative districts, and history of urban settlements, and TC i is the ith urban forest
tree coverage area of these urban forest classifications.

The dryweight biomass of the trees was estimated using tree biomass allometric growth
equations obtained from published literature and root-to-shoot ratio of 0.26 when below-
ground biomass equations were absent (Table SA2). Total tree dryweight biomass was
converted to total stored carbon by multiplying by 0.5. The biomass carbon storage density
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Figure 4 Frequency distribution of urban forests patch area (A), perimeter (B), perimeter-area ratio
(C), and Euclidean nearest neighbor distance (D) in Harbin City.

Full-size DOI: 10.7717/peerj.5825/fig-4

(kg C × m−2) was estimated using total tree biomass carbon in each plot, divided by the
plot area.

The SOC content was determined using the heated dichromate/titration method (Bao,
2000; Wang et al., 2011). SOC density in each plot was the product of SOC content, soil
bulk density, and sampling soil depth (20 cm in this study).

Statistical analysis
The landscape patterns of the urban forests were characterized by the frequency distribution
of different metrics of pooled whole-city data. For finding the changes at urban–rural
gradients in ring road development and history of urban build-up, linear regression was
used for detecting steady changes during urbanization processes.

Pearson’s correlation, linear and stepwise regression analyses, smoothing analysis, and
bivariate normal distribution were performed using SPSS (version 19.0, 2010, IBM, USA)
and JMP (SAS, version 10; Chicago, IL, USA), respectively, to understand the associations
between landscape characteristics and carbon stocks. All tables and Figs. 2, 4 and 5 were
created with MS Excel 2010 (14.0.4760.1000; Microsoft, Redmond, WA, USA); Figs. 1 and
3 depicted using ArcGIS 10.0; Fig. 6 depicted using JMP 10.0.
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Figure 5 Changes of landscape shape index (LSI) and number of patches (NP) of urban forests along
urban-rural gradients (ring roads or history of settlements) in Harbin City.

Full-size DOI: 10.7717/peerj.5825/fig-5

Figure 6 Associations between different landscape metrics and soil-C density, biomass-C density, soil-
C storage as well as biomass-C storage.Note: The line in the figure is the smoothed line of the raw data.
The ellipse in the figure is the bivariate normal distribution of the raw data. The triangle is the LF data,
which is much larger than others in Area-MN, and without LF, area-MN had good linear relations with
various carbon parameters. The different colors of the labels in the figure showed that the data originated
from administrative districts, forest types, urban history and ringroad development regions.

Full-size DOI: 10.7717/peerj.5825/fig-6

RESULTS
Spatial distribution and patch characteristics of urban forests
The spatial distribution of urban forests in Harbin was highly uneven (Fig. 3). The large
patches mainly belonged to LF, and RF was mainly a long rectangular strip. AF was mainly
aggregated in the central urban regions, whereas EF was mainly located in the outer rural
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region of Harbin City (Figs. 1 and 3). With respect to urban–rural gradients, large patches
were mainly distributed in the third ring road region, forest patches in the second ring road
region were mainly aggregated in the south area, and north regions of the second ring road
had little forest cover. The urban forest in the oldest central urban regions was mainly AF.
The urban forests in the newest urbanized regions, such as the north side of Songhua River,
were mainly EF. In different administrative districts, most patches in Songbei District were
aggregated along Songhua River, and most patches in Xiangfang and Daowai Districts were
aggregated in the forest botanical garden and Tianhengshan Park. In summary, the forest
patches in all administrative districts were aggregated in several separate areas and most
areas were treeless.

The forest patches in Harbin were highly fragmented. Small patches covering an area of
less than 0.5 ha and patches covering an area of 0.5 to 1 ha accounted for 72.6% and 19.4%
of all patches, respectively. Large patches covering an area of more than 1 ha accounted
for only 8% of all patches (Fig. 4A). The average patch size was 0.31 ha. Patches with a
perimeter of <500 m accounted for 80.2% and patches with a perimeter of more than
1,000 m accounted for only 6.9% of all patches (Fig. 4B). The average perimeter of the
patches was 388 m. Patches with PARA of more than 0.8 and less than 0.01 accounted for
only 7.7% of all patches. More than 90% of the patches had PARA of 0.1 to 0.8, of which
42.6% had PARA from 0.2 to 0.4 (Fig. 4C); the average PARA value was 3251. Most patches
(59.62%) were less than 32 m away from the nearest neighboring patches, and only less
than 1% of the patches were isolated and more than 512 m away from other patches. ENN
of the remaining patches ranged from 32 m to 512 m and they accounted for 39.99% of all
patches (Fig. 4D); the average ENN value was 43 m.

Urban forest carbon: forest types, administrative districts, and urban–
rural gradients
The total carbon storage in the different forest types was almost equal, ranging from 127
to 133 thousand tons (Table 1). The tree carbon storage density was the highest in EF, and
soil carbon storage density was the highest in LF.

The peak value for total carbon storage was detected in Xiangfang District (219 thousand
tons), which was 4.9-fold higher than the lowest value in Daoli District. The peak value for
tree biomass carbon density was observed in Xiangfang District (104 tons ha−1), whereas
the peak value for soil carbon density was detected in Daoli District (65 tons ha−1; Table 1).

With respect to urban–rural changes, a general pattern of linear decrease from the urban
center to rural regions was found with respect to soil carbon density, whereas no steady
changes in tree biomass carbon density were found (Table 1). Carbon storage in the first
and second ring roads accounted only for less than 10% of the total carbon storage in
Harbin, and the highest carbon storage was detected in the fourth ring road (262 thousand
tons). With respect to different history of urban settlements, the peak value for total carbon
storage was in the unsettled region (250 thousand tons), which was 28-fold higher than
the lowest value in the 100-year history region (nine thousand tons). The peak value for
tree carbon density was also in the unsettled region, whereas soil carbon density increased
along with the history of urban settlements. The peak value for soil carbon density was
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Table 2 Landscape metrics of different types, administrative districts, and urban-rural gradients (ring roads and history of settlements) of ur-
ban forests in Harbin City.

Urban forests classification TA (ha) NP LPI (%) AREA_MN
(ha)

PARA_AM LSI ENN_MN
(m)

Different forest types and regions
AF 1,226 5,631 0.69 0.22 1,394 121.99 41.63
RF 942 4,327 0.41 0.22 1,752 134.38 32.42
LF 959 488 3.59 1.97 559 43.28 64.57

Forest types

EF 620 1,463 0.28 0.42 1,165 72.47 68.89
Daoli 364 1,477 5.78 0.25 1,385 65.98 46.70
Daowai 474 1,435 2.96 0.33 1,116 60.70 62.54
Nangang 614 2,803 3.99 0.22 1,420 87.67 38.57
Songbei 981 2,315 13.75 0.42 1,151 89.74 40.59

Administrative districts

Xiangfang 1,309 4,038 8.89 0.32 1,216 109.62 41.15

Urban-rural gradients
First ring 60 372 21.55 0.16 1,582 30.55 42.12
Second ring 299 2,001 5.65 0.15 1,620 69.65 40.19
Third ring 1,827 5,224 7.39 0.35 1,121 119.38 38.20

Ring road regions

Fourth ring 1,561 4,392 1.65 0.36 1,278 125.93 52.78
100-yr 75 311 15.44 0.24 1,242 26.93 89.64
80-yr 69 482 3.99 0.14 1,725 35.67 49.00
70-yr 315 1,404 18.86 0.22 1,385 61.27 43.60
50-yr 508 2,418 3.47 0.21 1,468 82.57 44.93
10-yr 1,382 3,858 4.36 0.36 1,100 101.71 43.31
0-yr 453 2,008 4.12 0.23 1,407 74.77 85.30

History of urban settlements

unsettled 1,169 3,067 1.44 0.38 1,196 102.02 74.16

Notes.
AF, affiliated forest; RF, roadside forest; LF, landscape and relaxation forest; EF, ecological public welfare forest; 100-yr, urban area constructed before 1906; 80-yr, ur-
ban area constructed between 1933 and 1907; 70-yr, urban area constructed between 1945 and 1934; 50-yr, urban area constructed between 1962 and 1946; 10-yr, urban area
constructed between 2005 and 1963; 0-yr, urban area constructed during 2006 and 2014; unsettlement, rural land; TA, total area; NP, number of patches; LPI, largest patch
index; AREA_MN, mean patch area; PARA_AM, Area mean Perimeter-Area Ratio Distribution; LSI, Landscape Shape Index; ENN_MN, Mean Euclidean Nearest Neighbor
Distance Distribution.

in the 100-year region (soil carbon density = 0.15 × (year of settlement history) + 50,
R2
= 0.70, p <0.05, according to our previous study (Lv et al., 2016).

Landscape metrics: forest types, administrative districts, and urban–
rural gradients
AF comprised the largest proportion of all forest types, with a TA of about 2 times that of
EF. The TAs of LF and RF were almost equal. LF had a low level of fragmentation, with
the largest LPI (3.59%). The patch size (AREA_MN, 1.97 ha) in LF were 5–12-fold and
5–9-fold higher than that in the other forest types, and the lowest PARA_AM (559) and
LSI (43.28) in LF were only half of those in the other forest types. EF had the lowest LPI
(0.28%) and the highest ENN_MN (68.89 m); AF and RF had a high level of fragmentation,
and they had the lowest AREA_MN (0.22 ha) and higher PARA_AM and LSI than the
other forest types (Table 2).
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The highest TA of urban forests (1,309 ha) and NP (4,038) in Xiangfang District were
3.6-fold higher than the lowest TA in Daoli District and 2.8-fold higher than the lowest NP
in Daowai District. The largest LPI (13.75%) and AREA_MN (0.42 ha) in Songbei District
were 4.6-fold higher than the lowest LPI in Daowai District and 1.9-fold higher than the
lowest AREA_MN in Nangang District. The peak value of ENN_MN (62.54 m) in Daowai
District was 1.6-fold higher than that of the lowest value in Nangang District (38.57 m;
Table 2).

The TA of the suburb urban regions (third and fourth ring roads; 3,388 ha) was 9-fold
higher than that of the central urban regions (first and second ring roads; 359 ha). The
mean patch size (<0.16 ha) in the central urban area was half of that in the suburb area,
and PARA_AM in the central urban area was higher than that in the suburban regions
(Table 2). The dispersion of patches (LSI) linearly decreased from the fourth ring road
region to the first ring road region (LSI = −33.587 × ring road + 170.35, R2

= 0.93,
p= 0.034; Fig. 5A).

The NP and LSI linearly decreased from the 0-year history region (rural region) to the
100-year region (urban center) (LSI=−0.6093× history+ 95.299, R2

= 0.7196, p= 0.033;
NP = −27.158 × history + 3,150, R2

= 0.6642, p = 0.048; Figs. 5B and 5C). The younger
history regions like the 10-year region had the highest TA (1,382 ha), NP (3,858), and
AREA_MN (0.36 ha), and they were 20-fold and 2.6-fold higher than the lowest TA (69
ha) and AREA_MN (0.14 ha) in the 80-year region and 12-fold higher than the lowest NP
(311) in the 100-year region (Table 2).

Associations between forest carbon traits and landscape metrics
As shown in Table 3 and Fig. 6, Pearson’s correlation analysis, smoothing analysis, and
bivariate normal distribution were used to show the associations between the carbon
parameters and landscape metrics. The total tree and soil carbon storage values were
positively correlated with TA, NP, AREA_MN, and LSI (p < 0.01). Of these 4 indices, peak
coefficients were found in TA with tree biomass carbon (0.986) and soil carbon (0.806).
The biomass and soil carbon density showed different associations with landscape metrics.
When the LF data (outside the bivariate normal distribution ellipse) was excluded, the
biomass carbon density was positively correlated with AREA_MN (p < 0.05, Table 3,
Fig. 6), whereas no marked associations were found with the other indices (p > 0.05). The
soil carbon density was negatively correlated with TA, NP, AREA_MN, and LSI (Table 3,
Fig. 6) and positively correlated with LPI (p < 0.05, Table 3, Fig. 6). The highest association
was found with LPI. No marked relationship was found between soil carbon density and
PARA_AM (p > 0.05, Table 3, Fig. 6).

The stepwise regression analysis showed that both tree carbon storage and soil carbon
storage were mainly associated with TA, whereas other factors such as ENN-MN and
AREA-MNwere included in the regressionmodel (Table 4).When the standard coefficients
were compared, the contribution of TA to carbon storage was 3.5–8.1-fold higher than that
of EN-MN or AREA-MN. The stepwise regression analysis showed that the soil carbon
storage density was mainly associated with LSI (soil carbon storage density=−0.158× LSI
+ 69.316, r2= 0.51, Table 4), whereas tree carbon storage density was associated with LPI
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Table 3 Pearson correlation analysis between landscape metrics and biomass and soil carbon storage (thousand tons) of urban forests in
Harbin City.Number of sample size= 20.

Items Pearson
correlation

TA (ha) NP LPI (%) AREA_MN
(ha)

PARA_AM LSI ENN_MN
(m)

Tree C 0.986** 0.782** −0.388 0.608** −0.505* 0.769** −0.238
Storage (ton)

Soil C 0.806** 0.609** −0.422 0.716** −0.370 0.687** 0.026
Tree C 0.196 0.043 −0.353 0.533* −0.154 0.180 0.276

Density (ton ha−1)
Soil C −0.518* −0.644** 0.466* −0.503* −0.060 −0.713** 0.182

Notes.
*0.05 significant level.
**0.01 significant level.
TA, total area; NP, number of patches; LPI, largest patch index; AREA_MN, mean patch area; PARA_AM, Area mean Perimeter-Area Ratio Distribution; LSI, Landscape
Shape Index; ENN_MN, Mean Euclidean Nearest Neighbor Distance Distribution.

Table 4 Stepwise regression between forest carbon parameters and landscape metrics. Stepwise Criteria: Probability-of-F-to-enter≤ 0.200,
Probability-of-F-to-remove≥ 0.300.

Response variables Parameters Unstandardized coeff. Standardized coeff. t -value Sig. R2

B Std. error Beta

Density
SOC density (Constant) 69.316 3.183 21.780 0.000 0.508

LSI −0.158 0.037 −0.713 −4.312 0.000
Biomass-C density (Constant) 90.092 10.161 8.866 0.000 0.125

LPI −1.848 1.153 −0.353 −1.603 0.126
Storage
Biomass-C storage (Constant) −4.702 2.847 −1.651 0.117 0.708

TA 0.009 0.001 0.870 6.414 0.000
ENN_MN 0.081 0.044 0.249 1.838 0.084

SOC storage (Constant) −0.051 0.150 −0.342 0.736 0.986
TA 0.005 0.000 0.959 32.050 0.000
AREA_MN 0.849 0.215 0.118 3.956 0.001

(tree carbon storage density = −1.848 × LPI + 90.902, r2= 0.125, Table 4). These data
showed that the carbon density was regulated to a greater extent by patch configuration
and aggregation/dispersion than storage (Table 4).

DISCUSSIONS
By 2050, there will be six billion urban dwellers (Mccarthy, Best & Betts, 2010).
Urbanization, togetherwith climate change, has become the biggest environmental problem
worldwide, resulting in increased carbon emissions (Maruotti, 2008;Mccarthy, Best & Betts,
2010) and urban heat island effects (Zhao et al., 2015; Zhao & Wentz, 2016). Urbanization
also affects landscape fragmentation and configuration and diversity of forests (Su et al.,
2012) and significantly influences the structure, process, and ecological functions of urban
vegetation ecosystems (Yin et al., 2009), including carbon storage function (Zhang et al.,
2015; Lv et al., 2016). Urban forest landscape changes along urban–rural gradients are not
well-defined, although many ecological functions, such as heat island, biodiversity, tree
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size, and community features, have been discussed (Larondelle & Haase, 2013; Lv et al.,
2016; Xiao et al., 2016a; Zhang et al., 2017b). Our study has supplemented information
on forest landscape metrics and carbon storage in different forest types, administrative
districts, and urban–rural gradients (in terms of ring road and settlement history) for better
understanding of landscape characteristics under urbanization effects to provide suitable
management measures targeted at different regions. The importance of our findings will
be discussed below, together with reference comparisons, management suggestions, and
future urban forest evaluations.

Landscape fragmentation of urban forests in Harbin City:
quantification and comparison
On basis of the overall trend for landscape fragmentation worldwide, fragmentation of
the urban forest has been observed to be severe (Liu & Zhang, 2012; Gong et al., 2013). We
used Harbin City as an example and quantified and compared landscape characteristics
of urban forests in cities localized and worldwide. The mean patch size at city scale was
0.31 ha in Harbin, which was 29.8% of the forest patch size in Changchun (Zhang, 2015)
and was low when compared with Shenyang (0.22–1.04 ha) (Liu et al., 2009). However,
patch density (PD) and mean perimeter-area ratio (PARA) in Harbin, which reached up
to 3.18 patches ha−1 and 3,251, respectively, were both more than three-fold higher than
those in Changchun (Zhang, 2015) and high when compared with Shenyang (PD and
PARA ranged from 0.99 to 2.87 patches ha−1 and 887 to 4,109, respectively) (Liu et al.,
2009). These landscape characteristics all indicated a much higher fragmentation level of
the urban forests in Harbin than in the localized cities in Northeastern China.

Worldwide urbanization has resulted in broad forest fragmentation. In Puerto Rico,
forests became more fragmented between 1991 and 2000; the mean patch size decreased
and edge to area ratio increased, the dynamics of forest fragmentation were synchronized
with the urban sprawl, and the peak forest fragmentation shifted towards the rural areas
(Gao & Yu, 2014). In Atlanta, Georgia, forests displayed a fragmentation trend from 1974
to 2005, and this fragmentation trend adversely affected habitat integrity (Miller, 2012).
The fragmentation trends caused by urbanization have formed the current spatial structure
of urban forests in Atlanta, Georgia (Miller, 2012), as in the urban forests in Harbin. The
dispersion of patches in terms of LSI and number of patches (NP) decreased along the
rural–urban gradients (Fig. 5), showing that forests in the rural regions ofHarbinweremore
dispersed and had more patches than those in the central urban regions. Spatial–temporal
gradient analysis of urban green spaces in Jinan also showed that the LSI of residential
green space decreased along the rural–urban gradients, and together with other indices,
affected urbanization (Kong & Nakagoshi, 2006).

Urban forest fragmentation was induced and influenced by many factors, such as
urban building density (Liu & Zhang, 2012); deforestation and reforestation processes
during urban sprawl (Gao & Yu, 2014); socioeconomic factors such as urban structure
change, industry-related economic boom, increase in migrant resident population;
and increased income of city residents (Gong et al., 2013); economically driven intense
anthropogenic activities; and the absence of a sustainable environmental management and
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conservation strategy (Gounaridis, Zaimes & Koukoulas, 2014). The fragmented landscape
may degrade habitat quality; threaten species richness, abundance, and composition
(Iida & Nakashizuka, 1995; Liu et al., 2005); and affect phylogenetic diversity (Matos et al.,
2016). This may be a huge risk to forest management in cities such as Harbin. Harbin has
experienced an exponential economic growth since the 1980s and population boom since
the 1950s (Xiao et al., 2016a), resulting in insufficient greenery services in urban regions.
The largely fragmented forest landscapes and uneven distribution in different regions of
Harbin City require new efforts for urban forest protection, new plantation afforestation,
and sustainable management activities for maximizing urban forest services.

Landscape metrics responsible for carbon variations and high
carbon-oriented managements
Urban forests can provide various ecosystem services and values to a city and its residents,
like the removal of air pollutants (Livesley, McPherson & Calfapietra, 2016), alleviation
of the urban heat island effect (Zhao et al., 2018), and reduction and offset of carbon
emissions (Jim & Chen, 2009; Nowak et al., 2013). These ecological functions are linked to
landscape characteristics based on the common consensus that environmental patterns
strongly influence ecological processes (Turner, 1989; Uuemaa, Mander & Marja, 2013).
Our findings highlighted that carbon storage function and landscape pattern of urban
forests in Harbin are linked and landscape regulation is possible to improve urban
vegetation and soil carbon storage. The carbon storage function of urban forests could
contribute to the alleviation of climate changes (Nowak et al., 2002) and reduction of the
negative effects of fast urbanization (De Jong et al., 2015). The increase of carbon storage at
individual tree and patch scale is possible through tree health promotion, forest structure
adjustment, tree species selection (Nowak et al., 2002), and soil improvement (Jandl et al.,
2007). With respect to landscape pattern, it is important to increase carbon storage through
landscape regulation, which should be an aspect of promoting forest ecological function in
limited urban areas (Ren et al., 2013; Lv et al., 2016).

First, carbon storage in the urban forest trees (and soils) was positively correlated with
NP and AREA_MN (Table 3, Fig. 6), which was consistent with the results reported by
Wang (2012). In a given urban green space, relatively large forest patches with considerable
patch numbers are possible for increasing the urban forest carbon storage in the trees and
soils. The much closer relationship between tree carbon storage and TA (Table 3, Fig. 6)
indicated that an increase in forest cover is the best way to promote carbon storage function,
especially in regions with rather low forest coverage. The increase in total forest coverage
could also lower the degree of landscape fragmentation (Liu & Zhang, 2012) and enhance
the cool island effect of urban forests (Ren et al., 2015).

Second, because of limited green spaces in cities, improvement of carbon storage density
(tons ha−1) through landscape regulations should be more practical and focus on forest
construction, regulation, and functional promotion. For example, we found that the mean
patch size and tree carbon storage density were positively correlated and increasing the
mean patch size may promote tree carbon density in future landscape designs.
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Third, LSI and LPI are two landscape metrics for carbon-oriented landscape regulation.
Our data have shown that LSI and LPI are closely associated with carbon storage at city
and plot density levels (Table 3, Fig. 6). LPI is the percentage of the largest patch in the
landscape, mainly reflecting configuration. LSI mainly reflects the aggregation/dispersion
of patches. Increasing the connectivity and aggregation of patches (decreasing LSI) and
improving the promotion of the largest patch in landscape design may favor urban carbon
sequestration.

Another parameter for facilitating carbon storage is AREA_MN, which was positively
correlated with tree biomass carbon storage after the LF data were excluded (Table 3, Fig. 6).
In future urban forest management, afforestation activities targeted at different regions are
necessary, especially in regions with low AREA_MN such as Nangang District. Even though
tree coverage in Harbin is low, together with other green spaces, green coverage in Harbin
could reach up to 36% of the whole urban landscape (Lv, 2017). Afforestation in existing
grassland, wasteland, and illegal construction land that unites small patches into larger and
regular-shaped patches would increase the mean patch size and ecological services.

China has devoted a large financial budget for the construction of urban forests, and,
by 2020, at least 200 cities will build close-to-nature forests based on the unified design
between cities and the countryside to achieve the title of ‘‘National Forest City’’ (Forestry,
2016). On the basis of our findings, Harbin City still has a long way to go to be one of the
200 cities. The urban forest trees in Harbin cover only 7% of the urban lands, which is
much lower than the lower limits for forest city (build-up region green coverage, 40% at
least). In addition, the uneven distribution of urban forests in the different administrative
districts and urban–rural gradients may hinder the unified design concept and lead to
discrepancies in the ecological functions provided by urban vegetation in different regions.
An increase in tree coverage at city scale is necessary to promote the overall ecological
benefits of urban forests in Harbin, especially the establishment of a series of country,
city, and community parks. These parks could benefit the local people as long as they
open a window or door. Specific designs, such as demolition of illegal structures for tree
planting, replanting trees in vacant lots that surround by buildings (Bajsanski, Stojakovic &
Jovanovic, 2016; Zhao, 2017; Zhao, Wentz & Murray, 2017), and implementation of vertical
greening on roofs, walls, and bridges, may increase the connectivity of urban forests
and have a positive influence on the fragmented landscape (Gao & Yu, 2014). Previous
studies have highlighted that urban greening practices should consider the importance of
biodiversity conservation (Xiao et al., 2016a), removal of pollutants (Escobedo & Nowak,
2009; Mu, Sun & Zhu, 2004), urban microclimate regulations (Wang et al., 2018), urban
heat island mitigation (Zhang et al., 2017a), and urban soil improvement (Cui & Mu,
2016; Wang et al., 2017; Zhou et al., 2017). Our findings strongly suggest that urban forest
carbon sequestration in both aboveground biomass and belowground soil carbon should
be considered for co-improvement of multiple ecological services.

Implications for the urban forest evaluation and uncertainty
The total carbon storage of the urban forest within the forth ring road of Harbin City
was 521 to 575 thousand tons, of which 302 to 359 thousand tons belongs to tree carbon;
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this is more than the above 20 thousand tons estimated by Ying, Li & Fan (2009). These
findings show the large uncertainty in the estimation of urban forest carbon sequestration
(Pouyat, Yesilonis & Nowak, 2006). Previous studies on the estimation of carbon storage in
urban forests always focused on only vegetation biomass carbon and paid less attention to
soil carbon (Nowak et al., 2013; Zhang et al., 2015). Urban soils have robust carbon storage
capacity, both in the areas covered by green vegetation (Liu et al., 2016) and beneath
the impervious surface (Pouyat, Yesilonis & Nowak, 2006; Edmondson et al., 2012; Raciti,
Hutyra & Finzi, 2012). In the future, belowground soil carbon storage should be analyzed,
and both aboveground and belowground carbon inclusion may help in understanding
carbon storage capacity of the whole ecosystem.

The scaling up of tree biomass carbon storage in cities was based on several methods
without considering landscape metrics, such as model-based estimation including UFORE,
CITY green, i-TREE, and InVEST (Nowak et al., 2013); remote sensing image-based
estimation by using carbon storage per pixel and vegetation index, such as NDVI (Myeong,
Nowak & Duggin, 2006); forest inventory-based estimation (Zhang, 2015); and random
sampling statistics for plot carbon storage and tree coverage/forest coverage area at different
land uses (Liu & Li, 2012). In this study, forest type, administrative district, ring road, and
history-related urban–rural gradients of the urban forests largely differed in carbon density,
and approximate scaling-up showed fluctuations in total urban forest carbon storage from
521 to 575 thousand tons (Table 1). The different storage figures were an over simplified
process; it is the product of forest area and corresponding carbon density in tree biomass
and soils. Our findings highlight that, besides forest structure data, the comprehensive
relationships among landscape metrics, urbanization gradients, and forest types could be
included in a more precise evaluation framework. Several aspects should be considered.

First, as shown by the stepwise regression model between carbon storage parameters
and landscape metrics, the possible landscape metrics suggested are LSI and LPI for carbon
density and TA for total carbon storage estimation in tree biomass and soils (Table 4). With
respect to biomass carbon storage, the inclusion of ENN_MN could increase the coefficient
(r2) from 0.65 (TA only) to 0.71 (TA and ENN_MN), whereas the soil carbon storage
model showed that inclusion of AREA_MN increased r2 from 0.97 to 0.99 (Table 4).

Second, urbanization intensity and forest types should be considered in the estimation
model. As shown in Table 1, an approximation of total carbon sequestration based on forest
types, administrative districts, and urban–rural gradients showed 1.2-fold differences in
biomass and 1.1-fold variations in soil (Table 1). Urbanization-induced improvement of
soil carbon has been reported. In our previous study, we found that the urbanization process
(from rural to urban: fourth ring road to first ring road, 0-year region to 100-year region)
led to the accumulation of SOC in Harbin (Lv et al., 2016), and the same findings were
reported in Changchun, China (Zhai et al., 2017). The aggregation and shape complexity of
patches decreased (in terms of LSI increased) along with the rural–urban gradients (Fig. 5),
and the soil carbon storage density was negatively correlated with LSI (Fig. 6). This may
possibly provide an explanation for SOC accumulation from the viewpoint of landscape.
Small and shape-complex patches dispersed in the rural landscapes formed larger LSI and
more easily exchanged substance and energy with the external environment than the big
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and regular-shaped patches aggregated in the urban landscapes, including carbonaceous
compounds, and may contribute to steady and higher carbon storage in central urban
forests. In general, urbanization intensity differences and forest type differences are
strongly associated with landscape variations in the forest.

Third, background urbanization conditions have been proved to be strongly associated
with various ecological functions of urban forests, and their contributions to forest carbon
sequestration need to be included. Building geography, e.g., street orientation (Sanusi
et al., 2016); street canyon features, e.g., building height and distance to measured trees
(Coutts et al., 2016; Morakinyo et al., 2017; Rahman et al., 2017); land use configurations
(building, street, green space, and water); and impervious surface percentage (Zhang et al.,
2017b) have been proven to affect thermal regulation by trees, biodiversity conservation,
and forest structural traits. In this paper, no such data are available, and future studies are
required.

In the future, awell-matched, large dataset including all the above-mentioned parameters
(independent of each other) would facilitate the derivation of a feasible method for scaling-
up of city-level carbon storage density or total storage estimation. For example, landscape
metrics in a fixed-sized area (e.g., 2 km around the field plot) (Zhang et al., 2017b), together
with data on tree size and forest community features, soil carbon density and background
road features, impervious surface features, as well as urban–rural gradients and forest
types, will favor proper model construction for a proper scaling-up method via a statistical
method such as the stepwise regression method used in this study (Table 4). This study has
provided hints on the possible parameters for future consideration.

CONCLUSIONS
The landscape of urban forests in Harbin was highly fragmented when compared with other
local cities, and the fragmentation was different in different forest types, administrative
districts, ring road- and urban history-related urban–rural gradients. The fragmentation
of the landscape was strongly associated with carbon storage functions in trees and soils.
LSI increased along with the urban–rural gradients, and its positive relationship with SOC
indicates that LSI contributes to the underlyingmechanismof urbanization-induced carbon
accumulation in highly urbanized regions. The relationships between carbon storage and
landscape metrics manifested possible ways to improve the urban forest carbon storage,
such as improvement of the whole urban carbon storage by increasing the afforested
area. An increase in the largest patch percentage and patch aggregation could increase
the soil carbon storage per hectare. This study would help to promote carbon-oriented
management practices for urban vegetation and exact evaluation of urban forest carbon
sequestration by including landscape metrics and urbanization intensities.
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