1Genome-wide Identification and Analysis of the CNGC Gene Family in Zea mays
2Lidong Hao', Xiuli Qiao™*
3'College of Agriculture and Hydraulic Engineering, Suihua University, 18 Huanghe
4Road, Suihua, Heilongjiang Province, 152000, PR China
5%College of Food and Pharmaceutical Engineering, Suihua University, 18 Huanghe
6Road, Suihua, Heilongjiang Province, 152000, PR China
7
8*Corresponding author:
9Xiuli Qiao

10Email: shxynxhld@163.com

11

N =


mailto:shxynxhld@163.com

12Abstract

13As one of the non-selective cation channel , the cyclic nucleotide-gated
14channel (CNGC) plays vital roles in plant physiological processes which are
15related to signal pathways, plant development, environment stresses. However,

16genome-wide identification and analysis of the CNGC gene family in maize have not
17yet been conducted. In this study, 12 ZmCNGC genes are detected in maize
18genome, which are unevenly distributed on chromosomes 1, 2, 4, 5, 6, 7 and 8. They
19are classified into four major groups, including group I, II, III, and IV. Prediction of
20cis-acting regulatory elements show that 137 putative cis-elements which related
21to hormones-response, abiotic stress and organ development . Gene
22ontology (GO) analysis demonstrated that most of ZmCNGCs are involved in
23various biological processes including cellular processes, establishment of
24localization, and transmembrane transport. Furthermore, the co-expression network
25analysis of ZmCNGC genes may establish the importance of better understanding
26ZmCNGC transduction pathways in maize. expression profiles of
27ZmCNGC genes are tissue-specific . Our
28results provide valuable information to increase our understanding of the CNGC gene
29family in maize.
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33

34INTRODUCTION

35In the process of organism evolution, complex nutrient
36absorption and transport system includes ion channels, ion pumps and carriers,
37 previously shoween that those system respond to endogenous and

38abiotic stimuli (Saand et al. 2015b). yclic nucleotide-gated channel (CNGC) is

39a Ca**-permeable cation transport channel, which is suggested to one of the

40fundamental mechanism organismsal systems (Nawaz et al. 2014; Yuen &

41Christopher 2013). As a molecular switch, secondary messengers such as cyclic

42nucleotide monophosphates (cNMPs; 3°,5’-cAMP and 3°,5’-cGMP) and

43Ca*/calmodulin (CaM) can regulate CNGCs;; those messengers are activated by
44directing binding of cyclic nucleotides as well as inhibited by binding of

45CaM to the CaM binding domain (Borsics et al. 2007; Defalco et al. 2016; Kaplan et
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46al. 2007; Saand et al. 2015b).

47As CNGCs are key components for plant development, many previous researches

48studies have been were conducted (citations?). With the application of bioinformatics

49tools, the identification of CNGC gene family members in Arabidopsis, rice and other

50plants were carried out. So far, CNGC genes have been identified in many plants, with
5120 for Arabidopsis, 16 for rice, 18 for tomato and 26 in B. oleracea. (Bridges et al.
522005; Chen et al. 2015; Guo et al. 2017; Kakar et al. 2017; Nawaz et al. 2014; Saand
53et al. 2015a; Ward et al. 2009; Zelman et al. 2013; Zelman et al. 2012). Most CNGCs

54have been characterized by genetic methods and found to be related to plant
55physiological and molecular functions, including playing vital roles in multiple
56physiological processes which are involved in signal pathways, plant development,
57and environmenta! stresses. For example, AtCNGC18 is expressed primarily in

58Arabidopsis pollen (Erietsch et al. 2007); phot1 and phot2 increases cytosolic Ca**in

59Arabidopsis leaves (Harada et al. 2003); AtCNGC2 play key roles in stress signaling

60pathways, including changes the cytosolic free Ca*" in Arabidopsis and CNGC4 is
61permeable to both K+ and Na+ and activated by both cGMP and cAMP (Balague
622003; Reddy et al. 2011; Tracy et al. 2008). Meanwhile, the structure of Arabidopsis

63CNGCs have six transmembrane domains with a pore domain, also have a cyclic
64nucleotide-binding domain and CaM-binding domains in the C-terminatus, and these
65domains have diverse functions (Chin et al. 2009; Hua et al. 2003; Kohler & Neuhaus
662000; Talke et al. 2003). For example, Arabidopsis CNGC6, CNGC7, CNGCS8,
67CNGC9, CNGC10 and CNGC16 participate in the pollen development (Gao et al.
682012; KW et al. 2006; Tunc-Ozdemir et al. 2013; Wang et al. 2013); CNGC2,
69CNGC4, CNGCI11 and CNGCI12 are activated in response to pathogenic
70microorganisms (Dodd et al. 2010); and. CNGC6, CNGC10, CNGC19 and CNGC20

71are involved in abiotic stress (Kugler et al. 2009; Mosher et al. 2010).

72In recent years, efforts had been made in studying the CNGC family in plants, but as
73one of the most important food crops and source of industrial materials in the world,
74the maize CNGC gene family was rarely reported. In this study, with the benefit from
75genome-wide sequence information in maize and research information on
76Arabidopsis and rice CNGC families, we conducted genome-wide identification of
77CNGCs in maize through comprehensive bioinformatics analyses. Furthermore,
78comprehensive analyses were conducted including multiple alignments, gene

79structure, conserved motifs of ZmCNGCs, and prediction of cis-acting regulatory
5 3
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80elements, GO analysis, expression profiles of ZmCNGC genes and a co-expression
81network between ZmCNGC and other maize genes. is the first systematic
82study of CNGC genes in maize and will provide the basis for further research on
83ZmCNGC gene family.

84

85MATERIALS AND METHODS

86Identification of CNGC genes in maize genome

87To identify the maize CNGC genes, 20 Arabidopsis and 16 rice CNGC protein

88sequences were obtained from TAIR10 database
89(http://www.arabidopsis.org/index.jsp) and RGAP database
90(http://rice.plantbiology.msu.edu/), respectively. Then, two methods were used to
91search against the maize protein sequences, one buil a Hidden Markov
92Model (HMM) to search against maize protein sequences, use

93local BLASTP method with the e-value set to le-5. After that, the putative non-
94redundant protein sequence of maize CNGC genes were retrieved. To further confirm
95 the ZmCNGC proteins the CNBD domain, those
96putative ZmCNGC protein sequences were summited to SMART (http://smart.embl-
97heidelberg.de/) (Letunic & Bork 2018) and NCBI-CDD

98(https://www.ncbi.nlm.nih.gov/cdd/) (Marchler-Bauer et al. 2017);; genes without the

99CNBD domains or the amino acids size-6t below <200 were removed and the
100ZmCNGC genes were confirmed. The information of chromosome distribution of
101ZmCNGCs and the sequences including DNA sequences, CDS, cDNA, up-stream
1021500bps of ZmCNGC genes were obtained from results of the BLASTN search in the
103Ensembl Plant database (http://plants.ensembl.org/index.html) (Bolser et al. 2016).
104

105Analyses of genes structure, conserved motifs, and cis-acting regulatory elements
106and GO annotation of ZmCNGCs

107The gene structure of ZmCNGC genes were performed by the Gene Structure Display
108Server (GSDS, http://gsds.cbi.pku.edu.cn/) (Hu et al. 2015) using CDS and DNA

109sequences. The conserved motif were using the MEME
110 (http://meme-suite.org/index.html) (Bailey et al. 2015) with the maximum
111number of motif at 9 and optimum wideth of motifs from 6

112to 200 amino acids. The up-stream 1500bps of ZmCNGC genes were used to find cis-

113acting regulatory elements by ‘Signal Scan Search’ programs in the NEW
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114PLACE database (https://sogo.dna.affrc.go.jp/cgi-bin/sogo.cgi?lang=en) (Higo et al.
1151999). The PI (theoretical isoelectric point), MW (molecular weight), and GRAVY of

116ZmCNGCs were predicted by ExPASy (http://web.expasy.org/protparam/) (Artimo et
117al. 2012). And-tThe prediction subcellular location of ZmCNGCs were identified
118using the CELLO v.2.5 (http://cello.Jife.nctu.edu.tw/) package. The gene ontology
119(GO) annotation of ZmCNGC genes were submitted to the Monocots PLAZA 4.0
120(Van Bel et al. 2017) database, then were visualized and plotted by BGI WEGO (Ye et
121al. 2006).

122

123Multiple alignments and phylogenetic analysis
124Multiple  sequences  alignments  were  performed using T-COFFEE

125(http://tcoffee.crg.cat/apps/tcoffee/index.html) (Di__Tommaso et al. 2011) and
126visualized by ESPript (Robert & Gouet 2014). An un-root phylogenetic tree was

127 constructed with 1000 bootstrap replication using MEGA 7 (Kumar et al. 2016) based
128on the full-length protein sequences alignment.

129

130Expression profiles of ZmCNGC genes by RNA-seq datasets and network
131linteraction analysis

132For understanding the expression of ZmCNGC genes in different tissues, two RNA-

133seq datasets of Zea mays obtained from the Expression Atlas datasetsdatabase were

1340obtained (https://www.ebi.ac.uk/gxa/home/) with the accession numbers E-MTAB-
1353826 and E-MTAB-4395. Those data were used to analyze the expression of
136ZmCNGC in 6 different tissues (including ear, embryo, endosperm, pollen, root and
137tassel) and different development stages in embryo, endosperm. and seed,
138respectively. The FPKM values were tsec—to—_calculated for each of the ZmCNGC
139genes. The interaction network was constructed s#-the based on the orthologs between
140maize and Arabidopsis using the AraNet v2 (Lee & Lee 2017) annotations and
141visualized by the Cytoscape v3.4.0 (Shannon et al. 2003).

142

143RESULTS AND DISSCUSSIONS

1441dentification of CNGC genes in Zea mays
145To identify a complete overview of CNGC genes in maize, we firstly used 20

146Arabidopsis and 16 rice CNGC protein sequences to blas_align tBLAST t6_against

147maize protein sequences. After blastBLAST alignment, a total of 18 putative
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148ZmCNGC genes were identified in maize genome. Then, to confirm those 18
149putative ZmCNGC genes, we used the SMART and NCBI CDD to whether
150 the CNGC-specific domains (CNBD and transmembrane). After
151removing redundancy genes, a total of 12 ZmCNGC genes were detected. As shown in
152Table 1, five of them were located in chromosome 5, others were unevenly located in
153chromosomes 1, 2, 4, 6, 7, and 8. The physiological and biochemical properties of
154these 12 ZmCNGC genes listed in Table 1. The protein lengths ranged from
155326 to 745 aa with average of 612-42 aa. The molecular weight of these proteins
156ranged from 38.63 kDa (GRMZM2G129375) to 85.52 kDa (GRMZM2G135651) and
157the pl value ranged from 8.92 (GRMZM2G023037) to 9.75 (GRMZM2G090528).
158Subcellular localization analysis indicated that all of ZmCNGCs localized in the
159plasma membrane except for GRMZM2G066269 which localized in nuclear
160 , this result is consistent with Arabidopsis;; for example, previous studies have
161revealed that CNGCs are majorly localized in the plasma membrane n addition,
162some are distributed in vacuole membrane and nuclear envelope (Borsics et al. 2007;

163Christopher et al. 2007; Yuen & Christopher 2013).

164To further access the existence of ZmCNGCs we identified, all the expressed

165sequence tags (EST) ZmCNGC genes using
166BLASTN program NCBI;: results found only GRMZM?2G066269 showed no
167EST hits, other ZmCNGCs had more than 13 representative ESTs.

168

169Phylogenetic analysis of CNGC genes in maize, Arabidopsis and rice

170To further understanding the evolutionary relationship of CNGCs, an unrooted
17 1neighbor-joining phylogenetic tree was generated based on the full-length protein
172alignments of ZmCNGCs, AtCNGCs and OsCNGCs (Maser et al. 2001; Nawaz et al.

1732014). Thus, 20 from Arabidopsis, 20 from rice, and 12 from maize were used for
174constructing un-rooted phylogenetic tree. As shown in Figure 1, the phylogenetic tree
175clustered the CNGCs into four major groups, including group I, II, III, and IV. Of
176those four groups, group I, IT and III are monophyletic, group IV divided
177into I'Va and IVb. Among them, group I contains three maize CNGC genes
178(GRMZM2G066269, GRMZM2G148118, and GRMZM2G129375), six in
179Arabidopsis and two in rice. Group II contain two maize CNGC genes
180(GRMZM2G077828, GRMZM2G023037), five in Arabidopsis. and three in rice.

181Similarly, group III contains three maize CNGC genes (GRMZM2G090528,

11 6
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182GRMZM2G074317, and GRMZM?2G858887). roup IV embracesd seven in
183rice and seven in Arabidopsis, forming the largest group with four members in
184maize which includ three in IVa (GRMZM2G068904,
185GRMZM2G005791 and GRMZM2G135651) and one in IVb (GRMZM2G141642).
186Based on the phylogenetic tree among ZmCNGCs, AtCNGCs and OsCNGCs, we also
187grouped maize CNGC genes into four sub-groups (Figure 3A).

188

189Multiple alignments, gene structure and conserved motif of ZmCNGCs

190 he CNBD domain structur feature in plant
191CNGCs which contain the PBC and the hinge region (Diller et al. 2001). As shown in

192Figure 2, after aligning the CNBD region of maize CNGCs, the putative PBC and
193hinge domain were also identified, which were consistent with rice CNGCs (Nawaz et
194al. 2014). Results showed that glycine (G), acidic residue glutamate (E) leucine
195(L) and aromatic tryptophan (W) inside the PBCs were 100% conserved. As well
196the aliphatic alanine (A), aromatic phenylalanine (F) and leucines-(L) were the most
197conserved hinge region. Compared to rice and Arabidopsis (Supplemental
198File 2), we found that glycine (G) and leucines (L) were found to be conserved
199100% in CNGCs PBC domains, while aromatic phenylalanine (F) and leucines (L)
200were 100% conserved in the hinge domain. Furthermore, gene structure analysis could
201add better understanding to the gene functions and evolution. As a whole, the number
202o0f exons ranged from 1 to 8 while GRMZM2G077828 was intronless (Figure. 3B). In
203addition, eight putative motifs were characterized and named as motif 1 to motif 8 in
204ZmCNGCs. The relative positions of motif in four groups were found to have
205various patterns (Figure. 3C). The conserved domain of most ZmCNGCs harbor
206motif 1, representing it is the typical ZmCNGC domain.

207

208Prediction of cis-acting regulatory elements and GO analysis of ZmCNGC
209proteins

210 better understand the possible biological processes of these ZmCNGCs

211linvolved, 1.5 kb upstream of ZmCNGC genes genomic sequences were used to

212identify cis-regulatory elements and submitted to NEW PLACE web

213tool. 137 putative cis-elements were found to be

214 ZmCNGC genes and only 12, including

215CACTFTPPCA1, EBOXBNNAPA, DOFCOREZM, MYCCONSENSUSAT,
13 7
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216CAATBOX1, GTGANTGI10, WRKY710S, GT1CONSENSUS,
217ROOTMOTIFTAPOX1, POLLENI1LELAT52, MYBCORE, and
2180SE2ROOTNODULE, were in the promoter region
219of all ZmCNGC genes (Supplemental File 1: Table S1). Additionally, five cis-elements
220were gene-specific, such as ACGTCBOX, TATABOX3, HDZIP2ATATHB2,
221ABREMOTIFAOSOSEM and MRNA3ENDTAH3 were unique to
222GRMZM2G005791, GRMZM2G068904, GRMZM2G074317 and
223GRMZM2G135651, respectively

224Also, some cis-elements were involved in different abiotic/biotic stimuli,

225 such as hormones-response (abscisic acid, auxin, ethylene, etc.), stress-related
226(drought, temperatures, disease, etc.) and development-related (mesophyll specific,
227tissue specific, etc.), indicat that these ZmCNGC genes involved in
228regulating divers stresses responses. Different cis-elements presenting in
229ZmCNGC genes indicated that they may relate to different regulatory networks.
230Furthermore, gene ontology (GO) were used to predict the functions of
231ZmCNGCs by classifying them into categories with three independent ontologies
232including biological process (BP), molecular function (MF), and cellular

233components (CC) (Consortium 2017). As shown in Figure 4, the biological process of

234ZmCNGCs were involved in cellular process establishment of localization and
235transmembrane transport. The molecular function ZmCNGCs participated in
236substrate-specific and transmembrane transporter. Further, cellular component
237analysis revealed the localization of ZmCNGC:s in the cell and membrane.

238

239Co-expression network between ZmCNGC and other maize genes

240To get the detailed information about the interaction relationship between ZmCNGC

241genes and other maize genes, the co-expression network based on the orthology-based

242predictions follow the network in Arabidopsis were constructed. As shown in
243Figure 5, a total of 5 ZmCNGC genes including GRMZM2G068904,
244GRMZM2G077828, GRMZM2G005791, GRMZM2G141642 and

245GRMZM2G858887 with 76 gene pairs of network interactions were identified. GO
246annotations of interact genes also performed (Supplemental File 1: Table
2478S2). Some symbols such as SOS1, BPM2, SKOR and BPM4, which play an essential
248role in regulation of organ development and osmotic stress respon

249The co-expression network analysis of ZmCNGC genes may provide comprehensive
15 8
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250information for understanding ZmCNGC genes transduction pathways in maize.

251

252Expression profiles of ZmCNGC genes in different tissues

253We performed transcriptome sequencing to evaluate tissue-specific expression levels
2540f ZmCNGC genes different tissues based on previous studyies. As shown in
255Figure 6, the expression levels among ZmCNGC genes were tissue-specific
256express . For example, GRMZM2G077828 and GRMZM2G148118 were highly
257expressed in pollen and all IVb sub-group genes (GRMZM5G858887,
258GRMZM2G074317 and GRMZM2G090528) were mainly expressed in embryo, while
259GRMZM2G129375 and GRMZM2G005791 were expressed in
260pollen and embryo, indicted that IVb sub-group genes contribute to maize embryo
261development. We also evaluated some ZmCNGC genes in embryo, endosperm and
262seed expression in some days after pollination. As showed in Figure 6 B, C and D, the
263embryo specific-expression gene GRMZM5G858887 is gradually went up with time,
264and GRMZM2G090528 is highly expression in embryo, endosperm and seed.
265Most researches showed that cyclic nucleotide-gated channels (CNGCs) have been
266related to pollen development and in response to environment stimulus. For example,
267Arabidopsis CNGCI16 is critical for pollen fertility under conditions of heat stress and
268drought stress (Tunc-Ozdemir et al. 2013), and CNGC18 has been shown to function
269in pollen tube tip growth . In rice, OsCNGC13 promotes seed-setting rate by
270facilitating pollen tube growth in stylar tissues (Xu et al. 2017). GRMZM2G148118
271and GRMZM2G077828, two homologous gene of CNGC16 and CNGC18 in our study
272are mainly expressed in pollen, indicated they mainly involved in pollen development.
273Previous study showed that the AtCNGC3 promoter::GUS construct in transgenic
274plants revealed expression throughout plant development mainly in the embryo,
275leaves and roots, the expression level of GRMZMZ2G023037 is consistent with
276AtCNGC3 which highly expressed in plant development except pollen (Kaplan et al.
2772007).

278

279CONCLUSION

280To study the CNGC gene family in the maize, we identified 12 CNGC genes
281distributed in 7 chromosomes which were classified into four major groups. Aligning
282the maize CNGCs and other plants showed that PBC and hinge domain is the most

283conserved in CNBD domain. Also, a total of 137 putative cis-elements were found

17 9
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284and related to hormones response, abiotic stress and organ development. GO analysis
285indicated that most of them are involved in various biological processes, including
286¢cellular process, establishment of localization and transmembrane transport.
287Furthermore, the co-expression network analysis of ZmCNGC genes may provide
288important information for the better understanding ZmCNGC transduction pathways.
289Expression profiles of ZmCNGC genes were tissue-specific expressed and related to
290pollen development. Taken together, our results provide a solid foundation for further
291evolutionary and functional investigations on ZmCNGCs.
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