1Genome-wide Identification and Analysis of the CNGC Gene Family in Zea mays

2Lidong Hao¹, Xiuli Qiao²*

3¹College of Agriculture and Hydraulic Engineering, Suihua University, 18 Huanghe 4Road, Suihua, Heilongjiang Province, 152000, PR China

5²College of Food and Pharmaceutical Engineering, Suihua University, 18 Huanghe 6Road, Suihua, Heilongjiang Province, 152000, PR China

7

8*Corresponding author:

9Xiuli Qiao

10Email: shxynxhld@163.com

11

12Abstract

13As one of the non-selective cation channel gene family, the cyclic nucleotide-gated 14channel (CNGC) gene plays vital roles in plant physiological processes which are 15related to signal pathways, plant development, and environment stresses. However, **16**genome-wide identification and analysis of the *CNGC* gene family in maize have not 17yet been conducted. In this study, 12 *ZmCNGC* genes are detected in the maize 18genome, which are unevenly distributed on chromosomes 1, 2, 4, 5, 6, 7 and 8. They 19are classified into four major groups, including group I, II, III, and IV. Prediction of 20cis-acting regulatory elements show that 137 putative cis-elements which are related 21to hormones-response, abiotic stress-related and organ development-related. Gene 22ontology (GO) analysis demonstrated that most of the ZmCNGCs are involved in 23various biological processes including cellular processes, establishment of 24localization, and transmembrane transport. Furthermore, the co-expression network 25analysis of *ZmCNGC* genes may establish the importance of better understanding 26ZmCNGC transduction pathways in maize. And Additionally, expression profiles of 27ZmCNGC genes are shown to express in a tissue-specific expressed pattern. Our 28results provide valuable information to increase our understanding of the *CNGC* gene 29family in maize.

30

31Subjects: Bioinformatics, Genomics, Plant Science

32Keywords: CNGC, Zea mays, Gene family, Expression profiles

33

34INTRODUCTION

35In the process of organism evolution, itthe forms aformation of complex nutrient 36absorption and transport system—thats includes ion channels, ion pumps and carriers, 37<u>and it has been previously</u> showedn that those system ares respond to endogenous and 38abiotic stimuli (Saand et al. 2015b). <u>CThe cyclic nucleotide-gated channel (CNGC)</u> is 39a Ca²⁺-permeable cation transport channel, which is suggested to behave one of the 40fundamental mechanismins for organismsal systems (Nawaz et al. 2014; Yuen & 41<u>Christopher 2013</u>). As a molecular switch, secondary messengers such as cyclic 42nucleotide monophosphates 3',5'-cAMP 3',5'-cGMP) (cNMPs; and 43Ca²⁺/calmodulin (CaM) can regulate CNGCs₅; those messengers are activated by 44directing binding of cyclic nucleotides as well as arebeing inhibited by binding of 45CaM to the CaM binding domain (Borsics et al. 2007; Defalco et al. 2016; Kaplan et

46al. 2007; Saand et al. 2015b).

47As CNGCs are key components for plant development, many previous researches 48<u>studies have been were conducted (citations?)</u>. With the application of bioinformatics 49tools, the identification of *CNGC* gene family members in *Arabidopsis*, rice and other 50 plants were carried out. So far, *CNGC* genes have been identified in many plants, with 5120 for Arabidopsis, 16 for rice, 18 for tomato and 26 in B. oleracea. (Bridges et al. 522005; Chen et al. 2015; Guo et al. 2017; Kakar et al. 2017; Nawaz et al. 2014; Saand 53et al. 2015a; Ward et al. 2009; Zelman et al. 2013; Zelman et al. 2012). Most CNGCs 54have been characterized by genetic methods and found to be related to plant 55physiological and molecular functions, including playing vital roles in multiple 56physiological processes which are involved in signal pathways, plant development, 57and environmental stresses. For example, *AtCNGC18* is expressed primarily in 58*Arabidopsis* pollen (<u>Frietsch et al. 2007</u>); phot1 and phot2 increases cytosolic Ca²⁺ in 59Arabidopsis leaves (Harada et al. 2003); AtCNGC2 play key roles in stress signaling 60pathways, including changes the cytosolic free Ca²⁺ in *Arabidopsis* and *CNGC4* is 61permeable to both K+ and Na+ and activated by both cGMP and cAMP (Balague 622003; Reddy et al. 2011; Tracy et al. 2008). Meanwhile, the structure of Arabidopsis 63CNGCs have six transmembrane domains with a pore domain, also have a cyclic 64nucleotide-binding domain and CaM-binding domains in the C-terminalus, and these 65domains have diverse functions (Chin et al. 2009; Hua et al. 2003; Köhler & Neuhaus 662000; Talke et al. 2003). For example, Arabidopsis CNGC6, CNGC7, CNGC8, 67CNGC9, CNGC10 and CNGC16 participate in the pollen development (Gao et al. 682012; KW et al. 2006; Tunc-Ozdemir et al. 2013; Wang et al. 2013); CNGC2, 69CNGC4, CNGC11 and CNGC12 are activated in response to pathogenic 70microorganisms (Dodd et al. 2010); and, CNGC6, CNGC10, CNGC19 and CNGC20 71are involved in abiotic stress (Kugler et al. 2009; Mosher et al. 2010).

72In recent years, efforts had been made in studying the CNGC family in plants, but as 73one of the most important food crops and source of industrial materials in the world, 74the maize CNGC gene family was rarely reported. In this study, with the benefit from 75genome-wide sequence information in maize and research information on 76*Arabidopsis* and rice CNGC families, we conducted genome-wide identification of 77CNGCs in maize through comprehensive bioinformatics analyses. Furthermore, 78comprehensive analyses were conducted including multiple alignments, gene 79structure, conserved motifs of ZmCNGCs, and prediction of cis-acting regulatory

80elements, GO analysis, expression profiles of *ZmCNGC* genes and <u>a_co-expression</u> 81network between ZmCNGC and other maize genes. <u>H*This</u> is the first systematically 82study of CNGC genes in maize and will provide the basis for further research on <u>the</u> 83*ZmCNGC* gene family.

84

85MATERIALS AND METHODS

86Identification of *CNGC* genes in maize genome

87To identify the maize CNGC genes, 20 Arabidopsis and 16 rice CNGC protein 88 sequences were obtained from the TAIR10 database 89(http://www.arabidopsis.org/index.jsp) and the **RGAP** database 90(http://rice.plantbiology.msu.edu/), respectively. Then, two methods were used to 91search against the maize protein sequences, one iswas buildt using a Hidden Markov 92Model (HMM) to search against maize protein sequences, and another one is used the 93local BLASTP method with the e-value set to 1e-5. After that, the putative non-94redundant protein sequence of maize *CNGC* genes were retrieved. To further confirm 95whether the ZmCNGC proteins whether have contained the CNBD domain, those 96putative *ZmCNGC* protein sequences were summited to SMART (http://smart.embl-97heidelberg.de/) (Letunic & Bork 2018) and NCBI-CDD 98(https://www.ncbi.nlm.nih.gov/cdd/) (Marchler-Bauer et al. 2017); genes without the 99CNBD domains or the amino acids of a size of below ←200 were removed and the 100ZmCNGC genes were confirmed. The information of chromosome distribution of 101ZmCNGCs and the sequences including DNA sequences, CDS, cDNA, up-stream 1021500bps of *ZmCNGC* genes were obtained from results of the BLASTN search in the 103Ensembl Plant database (http://plants.ensembl.org/index.html) (Bolser et al. 2016).

104

105Analyses of genes structure, conserved motifs, and cis-acting regulatory elements 106and GO annotation of ZmCNGCs

107The gene structure of *ZmCNGC* genes were performed by the Gene Structure Display 108Server (GSDS, http://gsds.cbi.pku.edu.cn/) (Hu et al. 2015) using CDS and DNA 109sequences. The conserved motif domins were identified using the MEME software 110 110 algorithm (http://meme-suite.org/index.html) (Bailey et al. 2015) with the maximum 111 111 111 112 to 200 amino acids. The up-stream 1500bps of *ZmCNGC* genes were used to find cis-113 113 113 2015 Scan Search' programs in the NEW

114PLACE database (https://sogo.dna.affrc.go.jp/cgi-bin/sogo.cgi?lang=en) (Higo et al. 1151999). The PI (theoretical isoelectric point), MW (molecular weight), and GRAVY of 116ZmCNGCs were predicted by ExPASy (http://web.expasy.org/protparam/) (Artimo et 117al. 2012). And tThe prediction subcellular location of ZmCNGCs were identified 118using the CELLO v.2.5 (http://cello.life.nctu.edu.tw/) package. The gene ontology 119(GO) annotation of *ZmCNGC* genes were submitted to the Monocots PLAZA 4.0 120(Van Bel et al. 2017) database, then were visualized and plotted by BGI WEGO (Ye et 121al. 2006).

122

123Multiple alignments and phylogenetic analysis

124Multiple sequences alignments were performed using T-COFFEE 125(http://tcoffee.crg.cat/apps/tcoffee/index.html) (Di Tommaso et al. 2011) and 126visualized by ESPript (Robert & Gouet 2014). An un-root phylogenetic tree was 127constructed with 1000 bootstrap replication using MEGA 7 (Kumar et al. 2016) based 128on the full-length protein sequences alignment.

129

130Expression profiles of *ZmCNGC* genes by RNA-seq datasets and network 131interaction analysis

132For understanding the expression of *ZmCNGC* genes in different tissues, two RNA-133seq datasets of *Zea mays* obtained from the Expression Atlas datasetsdatabase were 134obtained (https://www.ebi.ac.uk/gxa/home/) with the accession numbers E-MTAB-1353826 and E-MTAB-4395. Those data were used to analyze the expression of 136*ZmCNGC* in 6 different tissues (including ear, embryo, endosperm, pollen, root and 137tassel) and different development stages in embryo, endosperm, and seed, 138respectively. The FPKM values were used to _calculated for each of the ZmCNGC 139genes. The interaction network was constructed on the based on the orthologs between 140maize and *Arabidopsis* using the AraNet v2 (Lee & Lee 2017) annotations and 141visualized by the Cytoscape v3.4.0 (Shannon et al. 2003).

142

143RESULTS AND DISSCUSSIONS

144Identification of CNGC genes in Zea mays

145To identify a complete overview of CNGC genes in maize, we firstly used 20
146*Arabidopsis* and 16 rice *CNGC* protein sequences to blas align tBLAST to against
147maize protein sequences. After blastBLAST alignment, a total of 18 putative
5

148*ZmCNGC* genes were identified in the maize genome. Then, to confirm those 18 149putative *ZmCNGC* genes, we used the SMART and NCBI CDD to foundfind whether 150 have they contained the CNGC-specific domains (CNBD and transmembrane). After 151removing redundancy genes, a total of 12 *ZmCNGC* genes were detected. As shown in 152Table 1, five of them were located in chromosome 5, others were unevenly located in 153chromosomes 1, 2, 4, 6, 7, and 8. The physiological and biochemical properties of 154these 12 *ZmCNGC* genes wereare listed in Table 1. The protein lengths ranged from 155326 to 745 aa with average of 612.42 aa. The molecular weight of these proteins 156ranged from 38.63 kDa (GRMZM2G129375) to 85.52 kDa (GRMZM2G135651) and 157the pI value ranged from 8.92 (GRMZM2G023037) to 9.75 (GRMZM2G090528). 158Subcellular localization analysis indicated that all of ZmCNGCs localized in the 159plasma membrane except for GRMZM2G066269 which was localized in the nuclear 160 fraction, this result is consistent with *Arabidopsis*; for example, previous studies have 161revealed that CNGCs are majorly localized in the plasma membrane, i. In addition, 162some are distributed in vacuole membrane and nuclear envelope (Borsics et al. 2007; 163Christopher et al. 2007; Yuen & Christopher 2013).

164To further access the existence of ZmCNGCs we identified, all the expressed 165sequence tags (EST) were blast towhich aligned to ZmCNGC genes using the 166BLASTN program infrom NCBI; results found only GRMZM2G066269 showed no 167EST hits, other ZmCNGCs had more than 13 representative matches to ESTs.

168

169Phylogenetic analysis of CNGC genes in maize, Arabidopsis and rice

170To further understanding the evolutionary relationship of *CNGCs*, an unrooted 171neighbor-joining phylogenetic tree was generated based on the full-length proteins 172alignments of *ZmCNGCs*, *AtCNGCs* and *OsCNGCs* (Maser et al. 2001; Nawaz et al. 1732014). Thus, 20 from *Arabidopsis*, 20 from rice, and 12 from maize were used for 174constructing un-rooted phylogenetic tree. As shown in Figure 1, the phylogenetic tree 175clustered the *CNGCs* into four major groups, including group I, II, III, and IV. Of 176those four groups, group I, II and III are monophyletic, group IV werewas divided 177into subgroups IVa and IVb. Among them, group I contains three maize *CNGC* genes 178(GRMZM2G066269, GRMZM2G148118, and GRMZM2G129375), six in 179*Arabidopsis* and two in rice. Group II containsed two maize CNGC genes 180(GRMZM2G077828, GRMZM2G023037), five in *Arabidopsis*, and three in rice. 181Similarly, group III contains three maize CNGC genes (GRMZM2G090528,

182GRMZM2G074317, and GRMZM2G858887). And gGroup IV embracesd seven in 183rice and seven in *Arabidopsis*, forming the largest GNGC group with four members in 184maize <u>CNGC genes</u> which includinged three in IVa (GRMZM2G068904, 185GRMZM2G005791 and GRMZM2G135651) and one in IVb (GRMZM2G141642). 186Based on the phylogenetic tree among *ZmCNGCs*, *AtCNGCs* and *OsCNGCs*, we also 187grouped maize *CNGC* genes into four sub-groups (Figure 3A).

188

189Multiple alignments, gene structure and conserved motif of ZmCNGCs

190Due to tThe CNBD domain is the geneis a structureural feature element in plant 191CNGCs which contain the PBC and the hinge region (Diller et al. 2001). As shown in 192Figure 2, after aligning the CNBD region of maize CNGCs, the putative PBC and 193hinge domain were also identified, which were consistent with rice CNGCs (Nawaz et 194<u>al.</u> 2014). Results showed that glycine (G), acidic residue glutamate (E) and, leucines 195(L) and aromatic tryptophan (W) inside the PBCs were 100% conserved. As well—as, 196the aliphatic alanine (A), aromatic phenylalanine (F) and leucines (L) were the most 197conserved within thein hinge region. Compared to rice and Arabidopsis (Supplemental 198File 2), we found that glycine (G) and leucines (L) were found to be conserved at 199100% in CNGCs PBC domains, while aromatic phenylalanine (F) and leucines (L) 200were 100% conserved in the hinge domain. Furthermore, gene structure analysis could 201<u>add</u> better understanding <u>to</u> the gene functions and evolution. As a whole, the number 202of exons ranged from 1 to 8 while GRMZM2G077828 was intronless (Figure. 3B). In 203addition, eight putative motifs were characterized and named as motif 1 to motif 8 in 204ZmCNGCs. The relative positions of motif in the four groups were found to have 205various patterns (Figure. 3C). The conserved domain of the most ZmCNGCs harbor 206motif 1, representing it is the typical ZmCNGC domain.

207

208Prediction of cis-acting regulatory elements and GO analysis of ZmCNGC 209proteins

210ForTo better understand the possible biological processes of these ZmCNGCs 211involved, 1.5 kb upstream of ZmCNGC genes genomic sequences were used to 212identify cis-regulatory elements and these were submitted to the NEW PLACE web 213tool. There are 137 different putative cis-elements were found to be presented in at 214least oneassociated with indentified ZmCNGC genes and only 12, including 215CACTFTPPCA1, DOFCOREZM, MYCCONSENSUSAT, EBOXBNNAPA. 13

216CAATBOX1, GTGANTG10, GT1CONSENSUS, WRKY71OS, 217ROOTMOTIFTAPOX1, POLLEN1LELAT52, MYBCORE, and 218OSE2ROOTNODULE, out of them were apparently appeared in the promoter region 219of all *ZmCNGC* genes (Supplemental File 1: Table S1). Additionally, five cis-elements 220were gene-specific, such as ACGTCBOX, TATABOX3, HDZIP2ATATHB2, and __were 221ABREMOTIFAOSOSEM and MRNA3ENDTAH3 unique 222GRMZM2G005791, GRMZM2G068904, GRMZM2G074317 and 223GRMZM2G135651, respectively 5 compared to 4? one missing. 224Also, some cis-elements were involved in different abiotic/biotic stimuli, including

225those such as hormones-response (abscisic acid, auxin, ethylene, etc.), stress-related 226(drought, temperatures, disease, etc.) and development-related (mesophyll specific, 227tissue specific, etc.), indicateding that these *ZmCNGC* genes mightmay be involved in 228regulating diversitye stresses responses. Different cis-elements presenting in 229*ZmCNGC* genes indicated that they may relate to different regulatory networks.

230Furthermore, gene ontology (GO) <u>terms</u> were used to predict the functions of 231ZmCNGCs by classifying them into categories with three independent ontologies 232including <u>those for biological process</u> (BP), molecular function (MF), and cellular 233components (CC) (<u>Consortium 2017</u>). As shown in Figure 4, the biological process of 234ZmCNGCs were involved in cellular process<u>es</u>, <u>for</u> establishment of localization and 235transmembrane transport. The molecular function ZmCNGCs participated in 236substrate-specific and transmembrane transporter. Further, cellular component 237analysis revealed the localization of ZmCNGCs in <u>the</u> cell and membrane.

238

239Co-expression network between ZmCNGC and other maize genes

240To get the detailed information about the interaction relationship between *ZmCNGC* 241genes and other maize genes, the co-expression network based on the orthology-based 242predictions followeding the network in *Arabidopsis* were constructed. As shown in 243Figure 5, a total of 5 *ZmCNGC* genes including GRMZM2G068904, 244GRMZM2G077828, GRMZM2G005791, GRMZM2G141642 and 245GRMZM2G858887 with 76 gene pairs of network interactions were identified. GO 246annotations of interacteding genes were also performed (Supplemental File 1: Table 247S2). Some symbols such as SOS1, BPM2, SKOR and BPM4, which play an essential 248role in regulation of organ development and osmotic stress respondse were shown. 249The co-expression network analysis of *ZmCNGC* genes may provide comprehensive

250information for understanding ZmCNGC genes transduction pathways in maize.

251

252Expression profiles of *ZmCNGC* genes in different tissues

253We performed transcriptome sequencing to evaluate tissue-specific expression levels 254of *ZmCNGC* genes atin different tissues based on previous studyies. As shown in 255Figure 6, the expression levels among *ZmCNGC* genes were tissue-specific in their 256expressedion. For example, *GRMZM2G077828* and *GRMZM2G148118* were highly 257expressed in pollen and all IVb sub-group genes (*GRMZM5G858887*, 258*GRMZM2G074317* and *GRMZM2G090528*) were mainly expressed in embryo, while 259*GRMZM2G129375* and *GRMZM2G005791* were lowly expressed at low levels in 260pollen and embryo, indicted that IVb sub-group genes contribute to maize embryo 261development. We also evaluated some *ZmCNGC* genes in embryo, endosperm and 262seed expression in some days after pollination. As showed in Figure 6 B, C and D, the 263embryo specific-expression gene *GRMZM5G858887* is gradually went up with time, 264and *GRMZM2G090528* is highly expression in embryo, endosperm and seed.

265Most researches showed that cyclic nucleotide-gated channels (CNGCs) have been 266related to pollen development and in response to environment stimulus. For example, 267*Arabidopsis CNGC16* is critical for pollen fertility under conditions of heat stress and 268drought stress (Tunc-Ozdemir et al. 2013), and *CNGC18* has been shown to function 269in pollen tube tip growth . In rice, OsCNGC13 promotes seed-setting rate by 270facilitating pollen tube growth in stylar tissues (Xu et al. 2017). *GRMZM2G148118* 271and *GRMZM2G077828*, two homologous gene of *CNGC16* and *CNGC18* in our study 272are mainly expressed in pollen, indicated they mainly involved in pollen development. 273Previous study showed that the AtCNGC3 promoter::GUS construct in transgenic 274plants revealed expression throughout plant development mainly in the embryo, 275leaves and roots, the expression level of *GRMZM2G023037* is consistent with 276*AtCNGC3* which highly expressed in plant development except pollen (Kaplan et al. 2772007).

278

279CONCLUSION

280To study the CNGC gene family in the maize, we identified 12 *CNGC* genes 281distributed in 7 chromosomes which were classified into four major groups. Aligning 282the maize CNGCs and other plants showed that PBC and hinge domain is the most 283conserved in CNBD domain. Also, a total of 137 putative cis-elements were found 9

284and related to hormones response, abiotic stress and organ development. GO analysis 285indicated that most of them are involved in various biological processes, including 286cellular process, establishment of localization and transmembrane transport. 287Furthermore, the co-expression network analysis of *ZmCNGC* genes may provide 288important information for the better understanding ZmCNGC transduction pathways. 289Expression profiles of *ZmCNGC* genes were tissue-specific expressed and related to 290pollen development. Taken together, our results provide a solid foundation for further 291evolutionary and functional investigations on ZmCNGCs.

292

293ACKNOWLEDGEMENTS

294We extend our gratitude to Dr. Lihe Yu for providing valuable suggestions.

295

296ADDITIONAL INFORMATION AND DECLARATIONS

297Funding

298This work was supported by the Natural Science Foundation of Heilongjiang 299Province, China (B2016010). The funders had no role in study design, data collection 300and analysis, decision to publish, or preparation of the manuscript.

301Grant Disclosures

302The following grant information was disclosed by the authors:

303Natural Science Foundation of Heilongjiang Province, China: B2016010.

304Competing Interests

305The authors declare there are no competing interests.

306Author Contributions

307Lidong Hao performed the experiments, analyzed the data, contributed

308reagents/materials/analysis tools, and wrote the paper, prepared figures and/or tables.

309Xiuli Qiao conceived and designed the experiments, reviewed drafts of the paper.

310Supplemental Information

311Supplemental File 1

312Table S1 Numbers of known stress-related elements in the promoter regions of

313ZmCNGCs

314Table S2 Detail information of Network of ZmCNGC genes with other maize genes

315Supplemental File 2

316Multiple sequences alignments among maize, *Arabidopsis* and rice.

317Supplemental File 3

19 20

318The gene sequences used in this research.

319Data Availability

320The following information was supplied regarding data availability:

321The raw data has been supplied as a Supplemental File 3.

322

323REFERENCES

- 324Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A,
- Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S,
- Mostaguir K, Redaschi N, Rossier G, Xenarios I, and Stockinger H. 2012. ExPASy: SIB
- bioinformatics resource portal. *Nucleic Acids Res* 40:W597-603. 10.1093/nar/gks400
- 328Bailey TL, Johnson J, Grant CE, and Noble WS. 2015. The MEME Suite. *Nucleic Acids Res* 43:W39-329 49. 10.1093/nar/gkv416
- 330Balague C. 2003. HLM1, an Essential Signaling Component in the Hypersensitive Response, Is a
- 331 Member of the Cyclic Nucleotide-Gated Channel Ion Channel Family. *The Plant Cell Online* 15:365-379. 10.1105/tpc.006999
- 333Bolser D, Staines DM, Pritchard E, and Kersey P. 2016. Ensembl Plants: Integrating Tools for
- Visualizing, Mining, and Analyzing Plant Genomics Data. *Methods Mol Biol* 1374:115-140.
- 335 10.1007/978-1-4939-3167-5_6
- 336Borsics T, Webb D, Andemeondzighi C, Staehelin LA, and Christopher DA. 2007. The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane
- and influences numerous growth responses and starch accumulation in Arabidopsis thaliana.
- 339 *Planta* 225:563-573. 10.1007/s00425-006-0372-3
- 340Bridges D, Fraser ME, and Moorhead GB. 2005. Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes. *Bmc Bioinformatics* 6:1-12. 10.1186/1471-2105-6-6
- 342Chen J, Yin H, Gu J, Li L, Liu Z, Jiang X, Zhou H, Wei S, Zhang S, and Wu J. 2015. Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide-
- gated channels gene family in pear (Pyrus bretchneideri Rehd.). *Genomics* 105:39. 10.1016/j.ygeno.2014.11.006
- 346Chin K, Moeder W, and Yoshioka K. 2009. Biological roles of cyclic-nucleotide-gated ion channels in plants: what we know and don't know about this 20 member ion channel family. *Botany-botanique* 87:668-677. 10.1139/B08-147
- 349Christopher DA, Borsics T, Yuen CY, Ullmer W, Andèmeondzighi C, Andres MA, Kang BH, and Staehelin LA. 2007. The cyclic nucleotide gated cation channel AtCNGC10 traffics from the
- ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. *Bmc Plant Biology* 7:48. 10.1186/1471-2229-7-48
- 353Consortium TGO. 2017. Expansion of the Gene Ontology knowledgebase and resources. *Nucleic Acids* 354 *Res* 45:D331-d338. 10.1093/nar/gkw1108
- 355Defalco TA, Marshall CB, Munro K, Kang HG, Moeder W, Ikura M, Snedden WA, and Yoshioka K. 2016. Multiple Calmodulin-Binding Sites Positively and Negatively Regulate Arabidopsis
- 357 CYCLIC NUCLEOTIDE-GATED CHANNEL12. *Plant Cell* 28:1738. 10.1105/tpc.15.00870 358Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, and Notredame
- 359 C. 2011. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. *Nucleic Acids Res* 39:W13-
- 361 17. 10.1093/nar/gkr245
- 362Diller TC, Madhusudan, Xuong NH, and Taylor SS. 2001. Molecular Basis for Regulatory Subunit Diversity in cAMP-Dependent Protein Kinase Crystal Structure of the Type IIbeta Regulatory Subunit. *Structure* 9:73-82. 10.1016/S0969-2126(00)00556-6
- **365**Dodd AN, Kudla J, and Sanders D. 2010. The Language of Calcium Signaling. *Annual Review of Plant Biology* 61:593. 10.1146/annurev-arplant-070109-104628
- 367 Frietsch S, Wang YF, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, and Harper JF. 2007. A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. *Proc Natl Acad Sci U S A* 104:14531-14536. 10.1073/pnas.0701781104
- 370Gao F, Han X, Wu J, Zheng S, Shang Z, Sun D, Zhou R, and Li B. 2012. A heat-activated calciumpermeable channel--Arabidopsis cyclic nucleotide-gated ion channel 6--is involved in heat shock responses. *Plant Journal for Cell & Molecular Biology* 70:1056-1069. 10.1111/j.1365-

- 373 313X.2012.04969.x
- 374Guo S, Zuo Y, Zhang Y, Wu C, Su W, Jin W, Yu H, An Y, and Li Q. 2017. Large-scale transcriptome comparison of sunflower genes responsive to Verticillium dahliae. Bmc Genomics 18:42.
- 376 10.1186/s12864-016-3386-7
- 377Harada A, Sakai T, and Okada K. 2003. Phot1 and phot2 mediate blue light-induced transient increases 378 in cytosolic Ca2+ differently in Arabidopsis leaves. Proc Natl Acad Sci U S A 100:8583-8588.
- 379 10.1073/pnas.1336802100
- 380Higo K, Ugawa Y, Iwamoto M, and Korenaga T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297-300.
- 382Hu B, Jin J, Guo AY, Zhang H, Luo J, and Gao G. 2015. GSDS 2.0: an upgraded gene feature 383 visualization server. Bioinformatics 31:1296-1297. 10.1093/bioinformatics/btu817
- 384Hua BG, Mercier RW, Zielinski RE, and Berkowitz GA. 2003. Functional interaction of calmodulin 385 with a plant cyclic nucleotide gated cation channel. Plant Physiology & Biochemistry 41:945-386 954. 10.1016/j.plaphv.2003.07.006
- 387Köhler C, and Neuhaus G. 2000. Characterisation of calmodulin binding to cyclic nucleotide-gated ion 388 channels from Arabidopsis thaliana. FEBS Lett 471:133-136. 10.1016/S0014-5793(00)01383-389
- 390Kakar KU, Nawaz Z, Kakar K, Ali E, Almoneafy AA, Ullah R, Ren XL, and Shu QY. 2017. 391 Comprehensive genomic analysis of the CNGC gene family in Brassica oleracea: novel insights 392 into synteny, structures, and transcript profiles. Bmc Genomics 18:869. 10.1186/s12864-017-393 4244-y
- 394Kaplan B, Sherman T, and Fromm H. 2007. Cyclic nucleotide-gated channels in plants. FEBS Lett 395 581:2237-2246. 10.1016/j.febslet.2007.02.017
- 396Kugler A, Köhler B, Palme K, Wolff P, and Dietrich P. 2009. Salt-dependent regulation of a CNG 397 channel subfamily in Arabidopsis. Bmc Plant Biology 9:140. 10.1186/1471-2229-9-140
- 398Kumar S, Stecher G, and Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 399 7.0 for Bigger Datasets. Molecular Biology & Evolution 33:1870. 10.1093/molbev/msw054
- 400KW B, D H, JM W, S P, EP N, KD H, D T, and H S. 2006. Integrating Membrane Transport with Male 401 Gametophyte Development and Function through Transcriptomics. Plant Physiol 140:1151. 402 10.1104/pp.105.074708
- 403Lee T, and Lee I. 2017. AraNet: A Network Biology Server for Arabidopsis thaliana and Other Non-404 Model Plant Species. Methods in Molecular Biology 1629:225. 10.1007/978-1-4939-7125-405
- 406Letunic I, and Bork P. 2018. 20 years of the SMART protein domain annotation resource. *Nucleic* Acids Res 46:D493-d496, 10,1093/nar/gkx922
- 408Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, 409 Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z,
- 410 Yamashita RA, Zhang D, Zheng C, Geer LY, and Bryant SH. 2017. CDD/SPARCLE:
- 411 functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 412 45:D200-d203. 10.1093/nar/gkw1129
- 413Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, 414 Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, and Guerinot 415 ML. 2001. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant 416
- Physiol 126:1646-1667. 417Mosher S, Moeder W, Nishimura N, Jikumaru Y, Joo SH, Urquhart W, Klessig DF, Kim SK, Nambara 418 E, and Yoshioka K. 2010. The Lesion-Mimic Mutant cpr22 Shows Alterations in Abscisic 419 Acid Signaling and Abscisic Acid Insensitivity in a Salicylic Acid-Dependent Manner. Plant 420 Physiol 152:1901. 10.1104/pp.109.152603
- 421Nawaz Z, Kakar KU, Saand MA, and Shu QY. 2014. Cyclic nucleotide-gated ion channel gene family 422 in rice, identification, characterization and experimental analysis of expression response to 423 plant hormones, biotic and abiotic stresses. Bmc Genomics 15:1-18. 10.1186/1471-2164-15-424
- 425Reddy AS, Ali GS, Celesnik H, and Day IS. 2011. Coping with stresses: roles of calcium- and 426 calcium/calmodulin-regulated expression. Plant Cell 23:2010-2032. gene 427 10.1105/tpc.111.084988
- 428Robert X, and Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research 42:W320. 10.1093/nar/gku316 429
- 430Saand MA, Xu YP, Li W, Wang JP, and Cai XZ. 2015a. Cyclic nucleotide gated channel gene family in 431 tomato: genome-wide identification and functional analyses in disease resistance. Frontiers in 432

12

Plant Science 6:303. 10.3389/fpls.2015.00303

- 433Saand MA, Xu YP, Munyampundu JP, Li W, Zhang XR, and Cai XZ. 2015b. Phylogeny and evolution
- of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of
- tomato CNGCs. *DNA research*: an international journal for rapid publication of reports on genes and genomes 22:471-483. 10.1093/dnares/dsv029
- 437Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, and Ideker
- T. 2003. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. *Genome Res* 13:2498-2504. 10.1101/gr.1239303
- 440 Talke, Ina N, Blaudez, Damien, Maathuis, Frans JM, Sanders, and Dale. 2003. CNGCs: prime targets of plant cyclic nucleotide signalling? *Trends in Plant Science* 8:286. 10.1016/S1360-1385(03)00099-2
- 443 Tracy FE, Gilliham M, Dodd AN, Webb AAR, and Tester M. 2008. NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. *Plant Cell & Environment* 31:1063. 10.1111/j.1365-3040.2008.01817.x
- 446Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Myers CT, Rato C, Poulsen LR, Mcdowell
 447 S, and Miller G. 2013. A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for
 448 stress tolerance in pollen reproductive development. *Plant Physiol* 161:1010-1020.
 449 10.1104/pp.112.206888
- 450 Van Bel M, Diels T, Vancaester E, Kreft L, Botzki A, Van de Peer Y, Coppens F, and Vandepoele K.
 451 2017. PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. *Nucleic Acids Res.* 10.1093/nar/gkx1002
- 453Wang YF, Munemasa S, Nishimura N, Ren HM, Robert N, Han M, Puzõrjova I, Kollist H, Lee S, and Mori I. 2013. Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells. *Plant Physiol* 163:578. 10.1104/pp.113.225045
- 457Ward JM, Mäser P, and Schroeder JI. 2009. Plant Ion Channels: Gene Families, Physiology, and 458 Functional Genomics Analyses. *Annual Review of Physiology* 71:59. 10.1146/annurev.physiol.010908.163204
- 460Xu Y, Yang J, Wang Y, Wang J, Yu Y, Long Y, Wang Y, Zhang H, Ren Y, Chen J, Wang Y, Zhang X, 461 Guo X, Wu F, Zhu S, Lin Q, Jiang L, Wu C, Wang H, and Wan J. 2017. OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues. *PLoS Genet* 13:e1006906. 10.1371/journal.pgen.1006906
- 464Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, and Wang J. 2006. WEGO: a web tool for plotting GO annotations. *Nucleic Acids Res* 34:W293-297. 10.1093/nar/gkl031
- 467 Yuen CCY, and Christopher DA. 2013. The group IV-A cyclic nucleotide-gated channels, CNGC19 and CNGC20, localize to the vacuole membrane in Arabidopsis thaliana. *AoB Plants* 5:plt012-plt012. 10.1093/aobpla/plt012
- 470Zelman AK, Dawe A, and Berkowitz GA. 2013. Identification of cyclic nucleotide gated channels using regular expressions. *Methods in Molecular Biology* 1016:207. 10.1007/978-1-62703-441-8 14
- 473Zelman AK, Dawe A, Gehring C, and Berkowitz GA. 2012. Evolutionary and Structural Perspectives of Plant Cyclic Nucleotide-Gated Cation Channels. *Frontiers in Plant Science* 3:95. 10.3389/fpls.2012.00095