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Abstract

As one of the non-selective cation channel gene family, the cyclic nucleotide-gated

channel (CNGC)  gene  plays vital  roles in plant physiological processes which are

related to signal pathways, plant development,  and  environment stresses. However,

genome-wide identification and analysis of the CNGC gene family in maize have not

yet  been  conducted.  In  this  study,  12  ZmCNGC genes  are  detected  in  the  maize

genome, which are unevenly distributed on chromosomes 1, 2, 4, 5, 6, 7 and 8. They

are classified into four major groups, including group I, II, III, and IV. Prediction of

cis-acting regulatory elements show that 137 putative cis-elements which are related

to  hormones-response,  abiotic  stress-related and  organ  development-related.  Gene

ontology (GO) analysis  demonstrated that  most of  the  ZmCNGCs are involved in

various  biological  processes  including  cellular  processes,  establishment  of

localization, and transmembrane transport.  Furthermore,  the co-expression network

analysis  of  ZmCNGC genes  may establish the  importance  of  better  understanding

ZmCNGC transduction pathways in maize.  AndAdditionally, expression profiles of

ZmCNGC genes  are  shown  to  express  in  a  tissue-specific  expressedpattern.  Our

results provide valuable information to increase our understanding of the CNGC gene

family in maize.
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INTRODUCTION

In the process of organism evolution,  itthe   forms aformation of complex nutrient

absorption and transport system thats includes ion channels, ion pumps and carriers,

and it has been previously showedn that those system ares respond to endogenous and

abiotic stimuli (Saand et al. 2015b). CThe cyclic nucleotide-gated channel (CNGC) is

a Ca2+-permeable cation transport channel, which is suggested to  behave one of the

fundamental  mechanism ins for organismsal systems (Nawaz et  al.  2014;  Yuen &

Christopher  2013).  As  a  molecular  switch,  secondary  messengers  such  as  cyclic

nucleotide  monophosphates  (cNMPs;  3’,5’-cAMP  and  3’,5’-cGMP)  and

Ca2+/calmodulin  (CaM)  can  regulate  CNGCs,; those  messengers  are  activated  by

directing binding of cyclic nucleotides as well as  arebeing inhibited by binding of

CaM to the CaM binding domain (Borsics et al. 2007; Defalco et al. 2016; Kaplan et
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al. 2007; Saand et al. 2015b). 

As CNGCs are key components for plant  development,  many previous  researches

studies have been were conducted (citations?). With the application of bioinformatics

tools, the identification of CNGC gene family members in Arabidopsis, rice and other

plants were carried out. So far, CNGC genes have been identified in many plants, with

20 for  Arabidopsis, 16 for rice, 18 for tomato and 26 in B. oleracea. (Bridges et al.

2005; Chen et al. 2015; Guo et al. 2017; Kakar et al. 2017; Nawaz et al. 2014; Saand

et al. 2015a; Ward et al. 2009; Zelman et al. 2013; Zelman et al. 2012). Most CNGCs

have  been  characterized  by  genetic  methods  and  found  to  be  related  to  plant

physiological  and  molecular  functions,  including  playing vital  roles  in  multiple

physiological processes which are involved in signal pathways, plant development,

and environmental stresses.  For  example,  AtCNGC18 is  expressed  primarily  in

Arabidopsis pollen (Frietsch et al. 2007); phot1 and phot2 increases cytosolic Ca2+ in

Arabidopsis leaves (Harada et al. 2003); AtCNGC2 play key roles in stress signaling

pathways, including changes the cytosolic free Ca2+ in  Arabidopsis and  CNGC4 is

permeable to both K+ and Na+ and activated by both cGMP and cAMP (Balague

2003; Reddy et al. 2011; Tracy et al. 2008). Meanwhile, the structure of Arabidopsis

CNGCs have six transmembrane domains  with a pore domain,  also have  a  cyclic

nucleotide-binding domain and CaM-binding domains in the C-terminalus, and these

domains have diverse functions (Chin et al. 2009; Hua et al. 2003; Köhler & Neuhaus

2000;  Talke  et  al.  2003).  For  example,  Arabidopsis CNGC6,  CNGC7,  CNGC8,

CNGC9,  CNGC10 and  CNGC16  participate in the pollen development (Gao et  al.

2012;  KW et  al.  2006;  Tunc-Ozdemir  et  al.  2013;  Wang  et  al.  2013);  CNGC2,

CNGC4,  CNGC11 and  CNGC12  are  activated  in  response  to  pathogenic

microorganisms (Dodd et al. 2010); and, CNGC6,  CNGC10,  CNGC19 and CNGC20

are involved in abiotic stress (Kugler et al. 2009; Mosher et al. 2010). 

In recent years, efforts had been made in studying the CNGC family in plants, but as

one of the most important food crops and source of industrial materials in the world,

the maize CNGC gene family was rarely reported. In this study, with the benefit from

genome-wide  sequence  information  in  maize  and  research  information  on

Arabidopsis and rice CNGC families, we conducted genome-wide identification of

CNGCs  in  maize  through  comprehensive  bioinformatics  analyses.  Furthermore,

comprehensive  analyses  were  conducted  including  multiple  alignments,  gene

structure,  conserved  motifs of  ZmCNGCs,  and  prediction  of  cis-acting  regulatory
3
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elements, GO analysis, expression profiles of  ZmCNGC genes and  a  co-expression

network between ZmCNGC and other maize genes.  ItThis is the first systematically

study of CNGC genes in maize and will provide the basis for further research on the

ZmCNGC gene family.

MATERIALS AND METHODS

Identification of CNGC genes in maize genome

To  identify  the  maize CNGC genes,  20  Arabidopsis and  16  rice  CNGC protein

sequences  were  obtained  from the TAIR10  database

(http://www.arabidopsis.org/index.jsp)  and   the  RGAP  database

(http://rice.plantbiology.msu.edu/),  respectively.  Then,  two  methods were  used  to

search against the maize protein sequences, one iswas buildt using a Hidden Markov

Model (HMM) to search against maize protein sequences, and anotherone is used the

local  BLASTP method with  the  e-value  set  to  1e-5.  After  that,  the  putative  non-

redundant protein sequence of maize CNGC genes were retrieved. To further confirm

whether the  ZmCNGC proteins  whether  havecontained the  CNBD  domain,  those

putative ZmCNGC protein sequences were summited to SMART (http://smart.embl-

heidelberg.de/)  (Letunic  &  Bork  2018)  and  NCBI-CDD

(https://www.ncbi.nlm.nih.gov/cdd/) (Marchler-Bauer et al. 2017),; genes without the

CNBD domains or the amino acids  of a  size of below < 200 were removed and the

ZmCNGC genes  were  confirmed.  The  information  of  chromosome distribution  of

ZmCNGCs and the  sequences  including DNA sequences,  CDS, cDNA, up-stream

1500bps of ZmCNGC genes were obtained from results of the BLASTN search in the

Ensembl Plant database (http://plants.ensembl.org/index.html) (Bolser et al. 2016).  

Analyses of genes structure, conserved motifs, and cis-acting regulatory elements

and GO annotation of ZmCNGCs

The gene structure of ZmCNGC genes were performed by the Gene Structure Display

Server  (GSDS,  http://gsds.cbi.pku.edu.cn/)  (Hu et  al.  2015) using  CDS and DNA

sequences. The conserved motif  domins  were identified using the MEME software

algorithn (http://meme-suite.org/index.html) (Bailey et al. 2015) with the maximum

number of motifs obtained set at 9 and the optimum wideth of motifs ranging from 6

to 200 amino acids. The up-stream 1500bps of ZmCNGC genes were used to find cis-

acting  regulatory  elements  by  using  ‘Signal  Scan  Search’ programs  in  the  NEW
4
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PLACE database (https://sogo.dna.affrc.go.jp/cgi-bin/sogo.cgi?lang=en) (Higo et  al.

1999). The PI (theoretical isoelectric point), MW (molecular weight), and GRAVY of

ZmCNGCs were predicted by ExPASy (http://web.expasy.org/protparam/) (Artimo et

al.  2012).  And tThe prediction  subcellular  location  of  ZmCNGCs were  identified

using the CELLO v.2.5 (http://cello.life.nctu.edu.tw/) package. The gene ontology

(GO) annotation of  ZmCNGC genes were submitted to  the  Monocots PLAZA 4.0

(Van Bel et al. 2017) database, then were visualized and plotted by BGI WEGO (Ye et

al. 2006).

Multiple alignments and phylogenetic analysis 

Multiple  sequences  alignments  were  performed  using  T-COFFEE

(http://tcoffee.crg.cat/apps/tcoffee/index.html)  (Di  Tommaso  et  al.  2011)  and

visualized  by  ESPript  (Robert  & Gouet  2014).  An  un-root  phylogenetic  tree  was

constructed with 1000 bootstrap replication using MEGA 7 (Kumar et al. 2016) based

on the full-length protein sequences alignment.

Expression  profiles  of  ZmCNGC genes  by  RNA-seq  datasets  and  network

interaction analysis

For understanding the expression of  ZmCNGC genes in different tissues, two RNA-

seq datasets of  Zea mays obtained from the Expression Atlas  datasetsdatabase were

obtained (https://www.ebi.ac.uk/gxa/home/)  with  the  accession  numbers E-MTAB-

3826  and  E-MTAB-4395.  Those  data  were  used  to  analyze  the  expression  of

ZmCNGC in 6 different tissues  (including ear, embryo, endosperm, pollen, root and

tassel)  and  different  development  stages  in  embryo,  endosperm, and  seed,

respectively. The FPKM values were  used to   calculated for each  of the  ZmCNGC

genes. The interaction network was constructed on the based on the orthologs between

maize  and  Arabidopsis using  the  AraNet  v2  (Lee  &  Lee  2017)  annotations  and

visualized by the Cytoscape v3.4.0 (Shannon et al. 2003).

RESULTS AND DISSCUSSIONS

Identification of CNGC genes in Zea mays

To  identify  a  complete  overview  of  CNGC  genes  in maize,  we  firstly  used  20

Arabidopsis and 16 rice  CNGC protein sequences to  blas align  tBLAST to against

maize protein  sequences.  After  blastBLAST  alignment,  a  total  of  18  putative
5
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ZmCNGC genes  were identified  in  the  maize genome.  Then,  to  confirm those 18

putative ZmCNGC genes, we used the SMART and NCBI CDD to foundfind whether

havethey contained the CNGC-specific domains (CNBD and transmembrane). After

removing redundancy genes, a total of 12 ZmCNGC genes were detected. As shown in

Table 1, five of them were located in chromosome 5, others were unevenly located in

chromosomes 1, 2, 4, 6, 7, and 8. The physiological and biochemical properties of

these 12 ZmCNGC genes wereare listed in Table 1. The protein lengths ranged from

326 to 745 aa with average of 612.42 aa.  The molecular weight of these proteins

ranged from 38.63 kDa (GRMZM2G129375) to 85.52 kDa (GRMZM2G135651) and

the pI value ranged from 8.92 (GRMZM2G023037) to 9.75 (GRMZM2G090528).

Subcellular  localization  analysis  indicated  that  all  of  ZmCNGCs  localized  in  the

plasma membrane except for GRMZM2G066269 which was localized in the nuclear

fraction, this result is consistent with Arabidopsis,; for example, previous studies have

revealed that CNGCs are majorly localized in the plasma membrane, i. In addition,

some are distributed in vacuole membrane and nuclear envelope (Borsics et al. 2007;

Christopher et al. 2007; Yuen & Christopher 2013). 

To  further  access  the  existence  of  ZmCNGCs  we  identified,  all  the  expressed

sequence  tags  (EST)  were  blast  towhich  aligned  to ZmCNGC  genes  using  the

BLASTN program infrom NCBI,; results found only GRMZM2G066269 showed no

EST hits, other ZmCNGCs had more than 13 representative matches to ESTs.

Phylogenetic analysis of CNGC genes in maize, Arabidopsis and rice

To  further  understanding  the  evolutionary  relationship  of  CNGCs,  an  unrooted

neighbor-joining phylogenetic tree was generated based on the full-length proteins

alignments of ZmCNGCs, AtCNGCs and OsCNGCs (Maser et al. 2001; Nawaz et al.

2014). Thus, 20 from  Arabidopsis, 20 from rice, and 12 from maize were used for

constructing un-rooted phylogenetic tree. As shown in Figure 1, the phylogenetic tree

clustered the  CNGCs into four major groups, including group I, II, III, and IV. Of

those four groups, group I, II and III are monophyletic, group IV  werewas divided

into subgroups IVa and IVb. Among them, group I contains three maize CNGC genes

(GRMZM2G066269,  GRMZM2G148118,  and  GRMZM2G129375),  six  in

Arabidopsis and  two  in  rice.  Group  II  containsed two  maize  CNGC  genes

(GRMZM2G077828,  GRMZM2G023037),  five  in Arabidopsis, and  three  in  rice.

Similarly,  group  III  contains  three  maize  CNGC  genes  (GRMZM2G090528,
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GRMZM2G074317, and GRMZM2G858887).  And gGroup IV embracesd seven in

rice and seven in Arabidopsis, forming the largest GNGC group with four members in

maize CNGC genes   which  includinged three  in  IVa  (GRMZM2G068904,

GRMZM2G005791 and GRMZM2G135651) and one in IVb (GRMZM2G141642).

Based on the phylogenetic tree among ZmCNGCs, AtCNGCs and OsCNGCs, we also

grouped maize CNGC genes into four sub-groups (Figure 3A). 

Multiple alignments, gene structure and conserved motif of ZmCNGCs

Due to  tThe CNBD domain  is  the  geneis a structureural feature  element  in  plant

CNGCs which contain the PBC and the hinge region (Diller et al. 2001). As shown in

Figure 2, after aligning the CNBD region of maize CNGCs, the putative PBC and

hinge domain were also identified, which were consistent with rice CNGCs (Nawaz et

al. 2014). Results showed that glycine (G), acidic residue glutamate (E) and, leucines

(L) and aromatic tryptophan (W) inside the PBCs were 100% conserved. As well as,

the aliphatic alanine (A), aromatic phenylalanine (F) and leucines (L) were the most

conserved within thein hinge region. Compared to rice and Arabidopsis (Supplemental

File 2), we found that glycine (G) and leucines (L) were found to be conserved  at

100% in CNGCs PBC domains, while aromatic phenylalanine (F) and leucines (L)

were 100% conserved in the hinge domain. Furthermore, gene structure analysis could

add better understanding to the gene functions and evolution. As a whole, the number

of exons ranged from 1 to 8 while GRMZM2G077828 was intronless (Figure. 3B). In

addition, eight putative motifs were characterized and named as motif 1 to motif 8 in

ZmCNGCs. The relative positions of motif in  the  four groups were found to have

various patterns (Figure. 3C). The conserved domain of  the most ZmCNGCs harbor

motif 1, representing it is the typical ZmCNGC domain. 

Prediction  of  cis-acting  regulatory  elements  and  GO  analysis  of  ZmCNGC

proteins

ForTo better  understand  the  possible  biological  processes  of  these  ZmCNGCs

involved,  1.5  kb  upstream  of  ZmCNGC genes  genomic  sequences  were  used  to

identify cis-regulatory elements and these were  submitted to  the  NEW PLACE web

tool.  There  are 137  different  putative cis-elements were found to be  presented in at

least  oneassociated  with  indentified ZmCNGC genes and  only  12,  including

CACTFTPPCA1,  EBOXBNNAPA,  DOFCOREZM,  MYCCONSENSUSAT,
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CAATBOX1,  GTGANTG10,  WRKY71OS,  GT1CONSENSUS,

ROOTMOTIFTAPOX1,  POLLEN1LELAT52,  MYBCORE,  and

OSE2ROOTNODULE, out of them were apparentlyappeared in the promoter region

of all ZmCNGC genes (Supplemental File 1: Table S1). Additionally, five cis-elements

were  gene-specific,  such  as  ACGTCBOX,  TATABOX3,  HDZIP2ATATHB2,

ABREMOTIFAOSOSEM  and  MRNA3ENDTAH3  and  were  unique  to

GRMZM2G005791,  GRMZM2G068904,  GRMZM2G074317  and

GRMZM2G135651, respectively [5 compared to 4? one missing]. 

Also, some cis-elements were involved in different abiotic/biotic stimuli,  including

those  such as hormones-response (abscisic acid, auxin, ethylene, etc.), stress-related

(drought,  temperatures,  disease,  etc.)  and development-related (mesophyll  specific,

tissue specific, etc.), indicateding that these ZmCNGC genes mightmay be involved in

regulating  diversitye stresses responses.  Different  cis-elements  presenting  in

ZmCNGC genes indicated that they may relate to different regulatory networks.

Furthermore,  gene  ontology  (GO)  terms  were  used  to  predict  the  functions  of

ZmCNGCs by classifying  them into  categories  with  three  independent  ontologies

including  those for biological process (BP), molecular function (MF),  and cellular

components (CC) (Consortium 2017). As shown in Figure 4, the biological process of

ZmCNGCs were involved in cellular processes,  for establishment of localization and

transmembrane  transport.  The  molecular  function  ZmCNGCs  participated  in

substrate-specific  and  transmembrane  transporter.  Further,  cellular  component

analysis revealed the localization of ZmCNGCs in the cell and membrane.

Co-expression network between ZmCNGC and other maize genes

To get the detailed information about the interaction relationship between ZmCNGC

genes and other maize genes, the co-expression network based on the orthology-based

predictions followeding the network in  Arabidopsis were constructed. As shown in

Figure  5,  a  total  of  5  ZmCNGC genes  including  GRMZM2G068904,

GRMZM2G077828,  GRMZM2G005791,  GRMZM2G141642  and

GRMZM2G858887 with  76  gene pairs of network interactions were identified. GO

annotations of interacteding genes  were  also performed  (Supplemental File 1: Table

S2). Some symbols such as SOS1, BPM2, SKOR and BPM4, which play an essential

role in regulation of organ development and  osmotic stress respondse were shown.

The co-expression network analysis of ZmCNGC genes may provide comprehensive
8
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information for understanding ZmCNGC genes transduction pathways in maize.

Expression profiles of ZmCNGC genes in different tissues

We performed transcriptome sequencing to evaluate tissue-specific expression levels

of  ZmCNGC  genes  atin different  tissues based on previous studyies.  As shown in

Figure 6, the expression levels among  ZmCNGC  genes were tissue-specific  in their

expressedion. For example,  GRMZM2G077828 and  GRMZM2G148118 were highly

expressed  in  pollen  and  all  IVb  sub-group  genes  (GRMZM5G858887,

GRMZM2G074317 and GRMZM2G090528) were mainly expressed in embryo, while

GRMZM2G129375 and  GRMZM2G005791 were  lowly expressed  at  low levels  in

pollen and embryo, indicted that IVb sub-group genes contribute to maize embryo

development.  We also evaluated some  ZmCNGC genes in embryo, endosperm and

seed expression in some days after pollination. As showed in Figure 6 B, C and D, the

embryo specific-expression gene GRMZM5G858887 is gradually went up with time,

and GRMZM2G090528 is highly expression in embryo, endosperm and seed.

Most researches showed that cyclic nucleotide-gated channels (CNGCs) have been

related to pollen development and in response to environment stimulus. For example,

Arabidopsis CNGC16 is critical for pollen fertility under conditions of heat stress and

drought stress (Tunc-Ozdemir et al. 2013), and CNGC18 has been shown to function

in  pollen  tube  tip  growth  .  In  rice,  OsCNGC13  promotes  seed-setting  rate  by

facilitating pollen tube growth in stylar tissues (Xu et al. 2017).  GRMZM2G148118

and GRMZM2G077828, two homologous gene of CNGC16 and CNGC18 in our study

are mainly expressed in pollen, indicated they mainly involved in pollen development.

Previous  study showed that  the  AtCNGC3 promoter::GUS construct  in  transgenic

plants  revealed  expression  throughout  plant  development  mainly  in  the  embryo,

leaves  and  roots,  the  expression  level  of  GRMZM2G023037  is  consistent  with

AtCNGC3 which highly expressed in plant development except pollen (Kaplan et al.

2007).

CONCLUSION

To  study  the  CNGC  gene  family  in  the  maize,  we  identified  12  CNGC genes

distributed in 7 chromosomes which were classified into four major groups. Aligning

the maize CNGCs and other plants showed that PBC and hinge domain is the most

conserved in CNBD domain. Also, a total of 137 putative cis-elements were found
9
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and related to hormones response, abiotic stress and organ development. GO analysis

indicated that most of them are involved in various biological processes, including

cellular  process,  establishment  of  localization  and  transmembrane  transport.

Furthermore,  the  co-expression  network  analysis  of  ZmCNGC genes  may provide

important information for the better understanding ZmCNGC transduction pathways.

Expression profiles of ZmCNGC genes were tissue-specific expressed and related to

pollen development. Taken together, our results provide a solid foundation for further

evolutionary and functional investigations on ZmCNGCs.
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