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As one of the non-selective cation channel gene family, the cyclic nucleotide-gated
channel (CNGC) gene plays vital roles in plant physiological processes which are related to
signal pathways, plant development, and environment stresses. However, genome-wide
identification and analysis of the CNGC gene family in maize has not yet been conducted.
In this study, 12 ZmCNGC genes are detected in the maize genome, which are unevenly
distributed on chromosomes 1, 2, 4, 5, 6, 7 and 8. They are classified into four major
groups, including group I, Il, lll, and IV. Prediction of cis-acting regulatory elements show
that 137 putative cis-elements which are related to hormones-response, abiotic stress and
organ development. Synteny analysis showed that 2, 2 and 1 ZmCNGCs had homologous
genes in Sorghum, rice and Brachypodium, respectively. Gene ontology (GO) analysis
demonstrated that most of the ZmCNGCs are involved in various biological processes
including cellular processes, establishment of localization, and transmembrane transport.
Furthermore, the co-expression network analysis of ZmCNGC genes may establish the
importance of better understanding ZmCNGC transduction pathways in maize.
Additionally, expression profiles of ZmCNGC genes are shown to express in a tissue-
specific pattern. Our results provide valuable information to increase our understanding of
the CNGC gene family in maize.
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Abstract

As one of the non-selective cation channel gene family, the cyclic nucleotide-gated channel
(CNGC) gene plays vital roles in plant physiological processes which are related to signal
pathways, plant development, and environment stresses. However, genome-wide identification
and analysis of the CNGC gene family in maize has not yet been conducted. In this study, 12
ZmCNGC genes are detected in the maize genome, which are unevenly distributed on
chromosomes 1, 2, 4, 5, 6, 7 and 8. They are classified into four major groups, including group I,
I, 11, and IV. Prediction of cis-acting regulatory elements show that 137 putative cis-elements
which are related to hormones-response, abiotic stress and organ development. Synteny analysis
showed that 2, 2 and 1 ZmCNGCs had homologous genes in Sorghum, rice and Brachypodium,
respectively. Gene ontology (GO) analysis demonstrated that most of the ZmCNGC:s are involved
in various biological processes including cellular processes, establishment of localization, and
transmembrane transport. Furthermore, the co-expression network analysis of ZmCNGC genes
may establish the importance of better understanding ZmCNGC transduction pathways in maize.
Additionally, expression profiles of ZmCNGC genes are shown to express in a tissue-specific
pattern. Our results provide valuable information to increase our understanding of the CNGC gene

family in maize.
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INTRODUCTION

In the process of organism evolution, the formation of complex nutrient absorption and transport
system includes ion channels, ion pumps and carriers, and it has been previously shown that those
systems respond to endogenous and abiotic stimuli (Saand et al. 2015b). The cyclic nucleotide-
gated channel (CNGC) is a Ca*"-permeable cation transport channel, which is suggested to have
one of the fundamental mechanisms for organismal systems (Nawaz et al. 2014; Yuen &
Christopher 2013). As a molecular switch, secondary messengers such as cyclic nucleotide
monophosphates (¢c(NMPs; 3°,5’-cAMP and 3°,5’-cGMP) and Ca?*/calmodulin (CaM) can regulate
CNGCs, those messengers are activated by directing binding of cyclic nucleotides as well as are
inhibited by binding of CaM to the CaM binding domain (Borsics et al. 2007; Defalco et al. 2016;
Kaplan et al. 2007; Saand et al. 2015b).

As CNGCs are key components for plant development, many previous research studies have been
conducted (Harada et al. 2003; Hua et al. 2003; Wang et al. 2013). With the application of
bioinformatics tools, identification of CNGC gene family in Arabidopsis, rice and other plants
were carried out. So far, CNGC genes have been identified in many plants, with 20 for Arabidopsis,
16 for rice, 18 for tomato and 26 in B. oleracea. (Bridges et al. 2005; Chen et al. 2015; Guo et al.
2017; Kakar et al. 2017; Nawaz et al. 2014; Saand et al. 2015a; Ward et al. 2009; Zelman et al.
2013; Zelman et al. 2012). Most CNGCs have been characterized by genetic methods and found
to be related to plant physiological and molecular functions, including playing vital roles in
multiple physiological processes which are involved in signal pathways, plant development, and
environmental stresses. For example, AtCNGCIS8 is expressed primarily in Arabidopsis pollen
(Frietsch et al. 2007); photl and phot2 increases cytosolic Ca?" in Arabidopsis leaves (Harada et
al. 2003); AtCNGC?2 play key roles in stress signaling pathways, including changes the cytosolic
free Ca?" in Arabidopsis and CNGC4 is permeable to both K+ and Na+ and activated by both
cGMP and cAMP (Balague 2003; Reddy et al. 2011; Tracy et al. 2008). Meanwhile, the structure
of Arabidopsis CNGCs have six transmembrane domains with a pore domain, also have cyclic

nucleotide-binding domain and CaM-binding domains in the C-terminus, and these domains have
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diverse functions (Chin et al. 2009; Hua et al. 2003; Kohler & Neuhaus 2000; Talke et al. 2003).
For example, Arabidopsis CNGC6, CNGC7, CNGC8, CNGC9, CNGC10 and CNGC16 participate
in the pollen development (Gao et al. 2012; KW et al. 2006; Tunc-Ozdemir et al. 2013; Wang et
al. 2013); CNGC2, CNGC4, CNGCI11 and CNGCI2 are activated in response to pathogenic
microorganisms (Dodd et al. 2010); and CNGC6, CNGC10, CNGC19 and CNGC20 are involved
in abiotic stress (Kugler et al. 2009; Mosher et al. 2010).

In recent years, efforts had been made in studying the CNGC gene family in plants, but as one of
the most important food crops and source of industrial materials in the world, the maize CNGC
gene family was rarely reported. In this study, with the benefit from genome-wide sequence
information in maize and research information on Arabidopsis and rice CNGC families, we
conducted genome-wide identification of CNGCs in maize through comprehensive bioinformatics
analyses. Furthermore, comprehensive analyses were conducted including multiple alignments,
gene structure, conserved motifs and gene duplication of ZmCNGCs, and prediction of cis-acting
regulatory elements, GO analysis, expression profiles of ZmCNGC genes and a co-expression
network between ZmCNGC and other maize genes. This is the first systematic study of CNGC

genes in maize and will provide the basis for further research on the ZmCNGC gene family.

MATERIALS AND METHODS

Identification of CNGC genes in maize genome

To identify the CNGC genes in maize, 20 Arabidopsis and 16 rice CNGC protein sequences were
obtained from the TAIRI10 database (http://www.arabidopsis.org/index.jsp) and the RGAP
database (http://rice.plantbiology.msu.edu/), respectively. After that, two method were used to
search against the maize protein sequences, one is build a Hidden Markov Model (HMM) to search
against maize protein sequences, another one is use local BLASTP method with a threshold of e-
value < le-5. After that, the putative non-redundant protein sequence of maize CNGC genes were
retrieved. To further confirm the ZmCNGC proteins whether have the CNBD domain, those

putative ZmCNGC protein sequences were summited to SMART (http:/smart.embl-
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heidelberg.de/) (Letunic & Bork 2018) and NCBI-CDD (https://www.ncbi.nlm.nih.gov/cdd/)
(Marchler-Bauer et al. 2017), genes without the CNBD domains or the amino acids size of below
< 200 were removed and the ZmCNGC genes were confirmed.

The PI (theoretical isoelectric point), MW (molecular weight), and GRAVY of ZmCNGCs were

predicted by ExPASy (http://web.expasy.org/protparam/) (Artimo et al. 2012). And the prediction

subcellular location of ZmCNGCs were using the CELLO v.2.5 (http://cello.life.nctu.edu.tw/).
The information of chromosome distribution of ZmCNGCs and the sequences including DNA
sequences, CDS, cDNA, up-stream 1500bps of ZmCNGC genes were obtained from result of

BLASTN search in the Ensembl Plant database (http://plants.ensembl.org/index.html) (Bolser et

al. 2016).

Multiple alignments, phylogenetic analysis and gene duplication analysis
Multiple  sequences alignments were performed using T-COFFEE web tool

(http://tcoffee.crg.cat/apps/tcoffee/index.html) (Di Tommaso et al. 2011) and visualized by

ESPript with default program (Robert & Gouet 2014). An un-root phylogenetic tree was
constructed with 1000 bootstrap replication using MEGA 7 (Kumar et al. 2016) based on the full-
length protein sequences alignment. Segmental duplication between maize genes as well as the
synteny block between maize and Sorghum, rice and Brachypodium were obtained from the Plant
Genome Duplication database (Lee et al. 2013). The substitution rates (Ka/Ks) of duplication
events were calculated by using the DnaSP v5 (Librado & Rozas 2009), and the divergence times
(Mya) were calculated as a formula Mya= Ks/2\ x 107°, therein A=6.5%10" (Lynch & Conery
2000).

Analyses of genes structure and conserved motifs
The gene structure (exon-intron) of ZmCNGC genes were performed by the Gene Structure

Display Server (GSDS, http://gsds.cbi.pku.edu.cn/) (Hu et al. 2015) using CDS and genome

sequences of ZmCNGC genes. The conserved motif of ZmCNGC proteins were using the MEME
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Suite web server (http://meme-suite.org/index.html) (Bailey et al. 2015) with the maximum

number of motif sets at 9 and optimum width of motifs from 6 to 200 amino acid.

Cis-acting regulatory elements and GO annotation of ZmCNGCs
The up-stream 1500bps of ZmCNGC DNA sequences were used to find cis-acting regulatory
elements by Signal Scan Search’ programs in the NEW PLACE database

(https://sogo.dna.affrc.go.jp/cgi-bin/sogo.cgi?lang=en) (Higo et al. 1999). The gene ontology

(GO) annotation of ZmCNGC proteins were submitted to Monocots PLAZA 4.0 (Van Bel et al.
2017) to predict the function of ZmCNGC proteins, then the annotation was visualized and plotted
by BGI WEGO (Ye et al. 2006).

Expression profiles of ZmCNGC genes and network interaction analysis
For understanding the expression of ZmCNGC genes in different tissues, two high throughput
datasets of maize were obtained from the  Expression Atlas  datasets

(https://www.ebi.ac.uk/gxa/home/) under accession number E-MTAB-3826 and E-MTAB-439.

These data were used to analyze the expression of ZmCNGC in six different tissues (i.e. ear,
embryo, endosperm, pollen, root and tassel) and different development stages in embryo,
endosperm and seed, respectively. The FPKM values were used to calculate for each ZmCNGC
genes. The interaction network was constructed on the base on the orthologs between maize and
Arabidopsis using the AraNet v2 (Lee & Lee 2017) and visualized by the Cytoscape v3.4.0
(Shannon et al. 2003).

RESULTS AND DISSCUSSIONS

Genome-wide identification of CNGC genes in maize

To identify a complete overview of CNGC genes in maize, we firstly used 20 Arabidopsis and 16
rice CNGC protein sequences align blast against maize protein sequences. After BLAST

alignment, a total of 18 putative ZmCNGC genes were identified in the maize genome. Then, to
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confirm those 18 putative ZmCNGC genes, we used the SMART and NCBI CDD to find whether
they contained the CNGC-specific domains (CNBD and transmembrane). After removing
redundancy genes, a total of 12 ZmCNGC genes were detected, less than rice and Arabidopsis
CNGC genes, the reason for it may be the gene duplication occur in rice and Arabidopsis (Paterson
et al. 2004; Yu et al. 2005). As shown in Table 1, five of them were located in chromosome 5,
others were unevenly located in chromosomes 1, 2, 4, 6, 7, and 8. The physiological and
biochemical properties of these 12 ZmCNGC genes are listed in Table 1. The protein lengths
ranged from 326 to 745 aa with average of 612 aa. The molecular weight of these proteins ranged
from 38.63 kDa (GRMZM2G129375) to 85.52 kDa (GRMZM2G135651) and the pl value ranged
from 8.92 (GRMZM2G023037) to 9.75 (GRMZM2G090528). Subcellular localization analysis
indicated that all of ZmCNGCs localized in the plasma membrane except for GRMZM2G066269
which was localized in the nuclear fraction, this result is consistent with Arabidopsis, for example,
previous studies have revealed that CNGCs are majorly localized in the plasma membrane
(Lemtiri-Chlieh & Berkowitz 2004). In addition, some are distributed in vacuole membrane and
nuclear envelope (Borsics et al. 2007; Christopher et al. 2007; Yuen & Christopher 2013).

To further access the existence of ZmCNGCs we identified, all the expressed sequence tags (EST)
which aligned to ZmCNGC genes using the BLASTN program form NCBI; results found only
GRMZM2G066269 showed no EST hits, other ZmCNGCs had more than 13 representative

matches to ESTs.

Phylogenetic, classification and duplication analyze of CNGC genes

To further understanding the evolutionary relationship of CNGCs, an unrooted Neighbor-Joining
(NJ) phylogenetic tree was generated based on the full-length protein alignments of ZmCNGCs,
AtCNGCs and OsCNGCs (Maser et al. 2001; Nawaz et al. 2014). Thus, 20 from Arabidopsis, 20
from rice, and 12 from maize were used for constructing un-rooted phylogenetic tree. As shown
in Figure 1, the phylogenetic tree clustered the CNGCs into four major groups, including group I,

I, 111, and IV. Of those four groups, group I, II and III are monophyletic, group IV was divided
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into subgroups IVa and IVb. Among them, group I contains three maize CNGC genes
(GRMZM2G066269, GRMZM2G148118, and GRMZM2G129375), six in Arabidopsis and two
in rice. Group II contained two maize CNGC genes (GRMZM2G077828, GRMZM2G023037),
five in Arabidopsis and three in rice. Similarly, group III contains three maize CNGC genes
(GRMZM2G090528, GRMZM2G074317, and GRMZM2G858887). Group IV embraced seven
in rice and seven in Arabidopsis, forming the largest CNGC group with four members in maize
which included three in [Va (GRMZM2G068904, GRMZM2G005791 and GRMZM2G135651)
and one in IVb (GRMZM2G141642). Based on the phylogenetic tree among ZmCNGCs,
AtCNGCs and OsCNGCs, we also grouped maize CNGC genes into four sub-groups (Figure 2A).
In the process of gene evolution, gene duplication play a significant role in generating new
members and creating novel gene functions (Magadum et al. 2013). In this study, results found
that two segmental duplications gene pairs were formed in maize genome (Table 2), including
GRMZM2G005791-GRMZM2G436583 and GRMZM5G858887-GRMZM2G074317. To further
investigated the evolutionary process between maize CNGCs and other gramineae plants, the
genome synteny among Sorghum, rice and Brachypodium were also explored. Results showed that
2,2 and 1 ZmCNGCs had homologous genes in Sorghum, rice and Brachypodium, respectively
(Table 2). The substitution rate (Ka/Ks) is use to evaluate the specific positions under positive
selection pressure after duplication (Mayrose et al. 2007), Ka/Ks =1, <1 or >1 indicates neutral,
purifying and positive selection (Lynch & Conery 2000). As result shown in Table 2, the Ka/Ks
of each gene pair was calculated and Ka/Ks of all gene pairs were less than 1, suggested that the
selection pressure after duplication was strongly purifying selection. Moreover, the divergence
time were also calculated, results indicated that the divergence time between maize CNGCs and
other gramineae plants were unevenly divergence, it may be the reason why maize CNGCs were
a small gene family. Previous research showed that the gene duplication is a significant origin to
generate novel genes (Davidson et al. 2013), thus, these results implied that the duplication events

gave principal role in gene evolution.
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Multiple alignments, gene structure and conserved motif of ZmCNGCs

The CNBD domain is a gene structural feature element in plant CNGCs which contain the PBC
and the hinge region (Diller et al. 2001). As shown in Figure 3, after aligning the CNBD region of
maize CNGCs, the putative PBC (phosphate binding cassette, from site 217 to 232 in Figure 3)
and hinge domain (from site 260 to 266 in Figure 3) were also identified, which were consistent
with rice CNGCs (Nawaz et al. 2014). Results showed that glycine (G), acidic residue glutamate
(E), leucine (L) and aromatic tryptophan (W) inside the PBCs were 100% conserved, consistent
with rice CNGCs (Nawaz et al. 2014).

As well the aliphatic alanine (A), aromatic phenylalanine (F) and leucine (L) were the most
conserved within the hinge region. Compared to rice and Arabidopsis (Supplemental File 1), we
found that glycine (G) and leucine (L) were found to be conserved 100% in CNGCs PBC domains,
while aromatic phenylalanine (F) and leucine (L) were 100% conserved in the hinge domain. The
diversity conserved motifs in maize, rice and Arabidopsis suggested that the function conserved
among them.

Furthermore, gene structure analysis could add better understanding to the gene function and
evolution. As a whole, the number of introns ranged from 1 to 7 while GRMZM2G077828 was
intronless (Figure 3B), different from rice and Arabidopsis CNGCs. Previously showed that rice
CNGC ranged from 1 to 11 introns, while Arabidopsis CNGCs ranged from 4 to 10 introns (Nawaz
et al. 2014). Motif-based recognition of proteins give understanding the evolution history (Seoighe
& Gehring 2004). Eight putative motifs were characterized and named as motif 1 to motif 8 in
ZmCNGC:s. The relative positions of motif in the four groups were found to have various patterns
(Figure 3C). The conserved domain of most ZmCNGCs harbor motif 1, representing it is the
typical ZmCNGC domain also as sequence logo of CNBD domain (Supplemental file 2). Fischer
et al. (2013) have showed that IQ (motif 2 in this study) as a functional motif within CaMBD and
downstream of the CNBD domain, also conserved among plant CNGCs. Study has showed that
IQ motif enhances the changeable of Ca?*-dependent channel control mechanisms in plant. In this

study, 66.7% CNGC proteins (including group I, II and IVa) contained IQ (motif 2), suggesting
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that those proteins bind CaM in a Ca?"-dependent manner. In addition, 9 ZmCNGCs except
GRMZM2G129375, GRMZM2G066269, and GRMZM2G090528 possess motif 4 which
associated with associated with ion transport (Nawaz et al. 2014). Other motifs have not been

identified in other plants or animals, suggested that these motif is maize specific.

Prediction of cis-acting regulatory elements and GO analysis of ZmCNGC proteins

Cis-acting regulatory elements are important molecular witches which associated with the
transcriptional regulatory of genes when encounter environment stresses (Nakashima et al. 2009).
To better understand the possible biological processes of these ZmCNGCs involved, 1.5 kb
upstream of ZmCNGC genes genomic sequences were used to identify cis-regulatory elements and
these were submitted to the NEW PLACE web tool. 137 different putative cis-elements were found
to be associated with identified ZmCNGC genes and only 12, including CACTFTPPCALI,
EBOXBNNAPA, DOFCOREZM, MYCCONSENSUSAT, CAATBOXI1, GTGANTGIO,
WRKY710S, GTICONSENSUS, ROOTMOTIFTAPOX1, POLLENILELATS52, MYBCORE,
and OSE2ROOTNODULE, were apparently in the promoter region of all ZmCNGC genes
(Supplemental File 3: Table S1) and highly consistent with rice CNGCs, maybe these elements in
the upstream region were conserved (Nawaz et al. 2014). Additionally, five cis-elements were
gene-specific, such as ACGTCBOX, TATABOX3, HDZIP2ATATHB2, CTRMCAMV35S, -
300CORE, ABREMOTIFAOSOSEM and MRNA3ENDTAH3 were unique to
GRMZM2G005791, GRMZM2G068904, GRMZM2G074317, GRMZM2G135651,
GRMZM2G135651, GRMZM2G005791 and GRMZM2G135651, respectively. Also, some cis-
elements were involved in different abiotic/biotic stimuli, including those such as hormone-
response (i.e. abscisic acid, auxin, ethylene, etc.), stress-related (i.e. drought, temperatures,
disease, etc.) and development-related (i.e. mesophyll specific, tissue specific, etc.), indicating that
these ZmCNGC genes may be involved in regulating diverse stress responses. For example, study
showed that the CACTFTPPCA1 motif is for mesophyll-specific gene expression in the C4 plant
(Gowik et al. 2004); MYCCONSENSUSAT is MYC recognition site which related to abiotic
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stress signaling (Liu et al. 2015); and WRKY710S is reported as binding site of WRKY71 which
involved in gibberellin signaling pathway (Zhang et al. 2004). Different cis-elements presenting
in ZmCNGC genes indicated that they may relate to different regulatory networks.

Furthermore, gene ontology (GO) terms were used to predict the functions of ZmCNGCs by
classifying them into categories with three independent ontologies including those for biological
process (BP), molecular function (MF), and cellular components (CC) (Consortium 2017). As
shown in Figure 4, the biological process of ZmCNGCs were involved in cellular processes for
establishment of localization and transmembrane transport. The molecular function ZmCNGCs
participated in substrate-specific and transmembrane transport. Further, cellular component
analysis revealed the localization of ZmCNGCs in the cell and membrane, may be the reason why

the subcellular localization of most ZmCNGCs localized in the plasma membrane.

Co-expression network between ZmCNGC and other maize genes

To get the detailed information about the interaction relationship between ZmCNGC genes and
other maize genes, the co-expression network based on the orthology-based predictions following
the network in Arabidopsis were constructed. As shown in Figure 5, a total of 5 ZmCNGC genes
including GRMZM2G068904, GRMZM2G077828, GRMZM2G005791, GRMZM2G141642 and
GRMZM2G858887 with 76 gene pairs of network interactions were identified. GO annotations of
interacting genes were also performed (Supplemental File 3: Table S2). Some symbols such as
SOS1, BPM2, SKOR and BPM4, which play an essential role in regulation of organ development
and osmotic stress response were shown. The co-expression network analysis of ZmCNGC genes
may provide comprehensive information for understanding ZmCNGC genes transduction

pathways in maize.

Expression profiles of ZmCNGC genes in different tissues

We performed transcriptome sequencing to evaluate tissue-specific expression levels of ZmCNGC

genes in different tissues based on previous study. As shown in Supplemental File 4, the expression
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levels among ZmCNGC genes were tissue-specific in their expression. For example,
GRMZM2G077828 and GRMZM2G148118 were highly expressed in pollen and all group III
genes (GRMZM5G858887, GRMZM2G074317 and GRMZM2G090528) were mainly expressed
in embryo, while GRMZM2G129375 and GRMZM2G005791 were expressed at low levels in
pollen and embryo, indicted that III sub-group genes contribute to maize embryo development.
We also evaluated some ZmCNGC genes in embryo, endosperm and seed expression in some days
after pollination. As shown in Supplemental File 4 B, C and D, the embryo specific-expression
gene GRMZMS5G858887 is gradually went up with time, and GRMZM2G090528 is highly
expression in embryo, endosperm and seed. Interestingly, we found that all group III genes
including GRMZMS5G858887, GRMZM2G074317 and GRMZM2G090528 had participated in
gene duplication. Previous research have demonstrated that duplication genes often obtain new
functions to enhance plant adapt to the environment (Dias et al. 2003). Compared to other
ZmCNGC genes, the gene expression of these three duplication genes were more intense,
suggested that these three ZmCNGC genes obtained gene functions from other plants after
duplication. Further illustrated that group III gene play important role in maize gene duplication,
evolution and expression.

Most researches showed that cyclic nucleotide-gated channels (CNGCs) genes have been related
to pollen development and in response to environmental stimulus. For example, Arabidopsis
CNGC16 is critical for pollen fertility under conditions of heat stress and drought stress (Tunc-
Ozdemir et al. 2013), and CNGC18 has been shown to function in pollen tube tip growth . In rice,
OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues (Xu et
al. 2017). GRMZM2G148118 and GRMZM2G077828, two homologous gene of CNGCI6 and
CNGC18 in our study are mainly expressed in pollen, indicated they mainly involved in pollen
development. Previous study showed that the AtCNGC3 promoter::GUS construct in transgenic
plants revealed expression throughout plant development mainly in the embryo, leaves and roots,
the expression level of GRMZM2G023037 is consistent with AtCNGC3 which highly expressed in

plant development except pollen (Kaplan et al. 2007).

Peer] reviewing PDF | (2018:02:23803:1:1:NEW 14 Mar 2018)



Peer]

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

CONCLUSION

We identified 12 ZmCNGC genes from the maize genome, and classed them into four major
groups. We comprehensively analyzed the gene structure and conserved motif in ZmCNGCs.
Aligning the maize CNGCs and other plants showed that PBC and hinge domain is the most
conserved in CNBD domain. Also, a total of 137 putative cis-elements were identified and related
to hormones response, abiotic stress and organ development. GO analysis indicated that most of
them are involved in various biological processes, including cellular process, establishment of
localization and transmembrane transport. Furthermore, the co-expression network analysis of
ZmCNGC genes may provide important information for the better understanding ZmCNGC
transduction pathways. Expression profiles of ZmCNGC genes were tissue-specific expressed and
related to pollen development. In addition, gene duplication analysis indicated that ZmCNGC
genes obtained gene functions from other plants after duplication. In summary, our results provide

a solid foundation for further evolutionary and functional investigations on ZmCNGC:s.
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Characteristic features of ZmCNGC gene family identified in Zea mays
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Table 1 Characteristic features of ZmCNGC gene family identified in Zea mays

Grou Gene name Ch start end Lengt MW (Da) pl  GRAVY Localization ES
P r h (aa) T
GRMZM2G148118 4 23019490 23020538 701 79914.66 9.1 -0.046  PlasmaMembran 17
9 3 8 e
GRMZM2G129375 6 10982435 10982592 326 3840522 9.1 -0.484 PlasmaMembran 23
9 1 7 e
GRMZM2G066269 4 23038271 23038459 329 38632.18 9.5 -0.52 Nuclear 0
7 6 9
11 GRMZM2G023037 2 5966501 5978989 723 82856.52 8.9 -0.114 PlasmaMembran 29
2 e
GRMZM2G077828 5 17453069 17455739 699 80110.81 9.4 -0.091 PlasmaMembran 15
2 e
11 GRMZM2G005791 5 21883443 21884091 700 80057.39 89 -0.078 PlasmaMembran 31
5 7 7 e
GRMZM2G068904 5 19160904 19161178 689 80038.95 9.8 -0.117  PlasmaMembran 15
6 4 e
GRMZM2G135651 7 15065251 15065706 739 85523.26 9.3 -0.148 PlasmaMembran 61
2 0 3 e
IVa GRMZM2G141642 5 21711922 21712546 463 53303.64 9.4 -0.059  PlasmaMembran 13
4 5 8 e
IVb GRMZM5G858887 5 6938133 6943695 745 83672.62 94 0.081 PlasmaMembran 84
6 e
GRMZM2G074317 1 28340150 28340803 730 81440.82 9.4 0.067 PlasmaMembran 74
7 4 3 e
GRMZM2G090528 8 17724486 17724728 505 5704247 9.7 0.014 PlasmaMembran 48
7 1 5 e
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Table 2(on next page)

The Ka/Ks ratios and estimated divergence time for orthologous CNGC proteins between
maize and other Gramineae plants

Segmental duplication between maize genes as well as the synteny block between maize and
other gramineae plants were obtained from the Plant Genome Duplication database. The
substitution rates (Ka/Ks) of duplication events were calculated by using the DnaSP v5, and
the divergence times (Mya) were calculated as a formula Mya= Ks/2A x 107, therein

A=6.5%x10"°.
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1 Table2

2 The Ka/Ks ratios and estimated divergence time for orthologous CNGC proteins between maize and other

3 Gramineae plants

4

Gene ID Gene ID Ka Ks Ka/Ks Mya

GRMZM2G005791 GRMZM2G436583 0.1202 1.3677 0.087885 105.2077
GRMZM2G074317 GRMZMS5G858887 0.0258 0.1829 0.141061 14.06923
GRMZM2G077828  Sobic.001G155100 0.5298 0.8917 0.594146 68.59231
GRMZM2G090528  Sobic.009G188800 0.095 0.4878 0.194752 37.52308
GRMZM2G090528 Sobic.003G317700 0.0306 0.0993 0.308157 7.638462
GRMZM2G077828 LOC 0s03g44440 0.7415 1.2253 0.605158 94.25385
GRMZM2G090528 LOC 0s05g42250 0.1187 0.4278 0.277466 32.90769
GRMZM2G090528 LOC 0Os01g57370 0.073 0.3017 0.241962 23.20769
GRMZM2G077828 Bradilg13740 0.7912 1.1721 0.675028 90.16154

5

6

7

8
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Figure 1(on next page)

Phylogenetic analysis of CNGC proteins among Zea mays, Arabidopsis and rice

The CNGC genes of maize, Arabidopsis thaliana, rice and maize were clustered into four

major groups, including Group |, II, lll, and IV (a and b).
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Figure 2(on next page)

The structure of ZMCNGCs in Zea mays

Phylogenetic relationships (A), gene structure (B) and motif compositions (C) of ZmCNGCs.

Peer] reviewing PDF | (2018:02:23803:1:1:NEW 14 Mar 2018)



GRMZM2G129375
GRMZM2G148118

GRMZM2G066269
—— GRMZM2G023037
—— GRMZM2G077828
——— GRMZM2G068904
—— GRMZM2G005791

——— GRMZM2G135651
GRMZM2G141642
—— GRMZM2G090528

GRMZM2G074317
GRMZM5G858887

PeerJ Manuscript to be reviewed

|
0 3000 6000

gene struture
. exon . upstream/downstream

1 — - 1
; —— I |

12000 O 160 320 480 640
motif

. motif1 motif3 motif5 . motif7
motif4 [l motifé [ motif8




Peer]

Figure 3(on next page)

Multiple alignments of ZmMCNGC proteins.

The putative PBC (phosphate binding cassette, from site 217 to 232 in Figure 3) and hinge

domain (from site 260 to 266 in Figure 3) were identified in maize CNGC proteins.
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Figure 4 (on next page)
Gene Ontology annotation of ZmMCNGCs

The CC, MF and BP represent cellular components, molecular function and biological process

in GO annotation, respectively.
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Figure 5(on next page)

The interaction network of ZmCNGCs in Zea mays according to the orthologs in
Arabidopsis

Yellow circus represent the ZmCNGCs in this study, others represent the genes in Zea mays

genome.
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