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Multiplex bead assays are an extension of the commonly used sandwich ELISA. The

advantage over ELISA is that they make simultaneous evaluation of several analytes

possible. Several commercial assay systems, where the beads are acquired on a standard

flow cytometer, exist. These assay systems come with their own software tool for analysis

and evaluation of the concentration of the analyzed analytes. However, these tools are

either tied to particular commercial software or impose other limitations to their licenses,

such as the number of events which can be analyzed. In addition, all these solutions are

‘point and click’ which potentially obscures the steps taken in the analysis. Here we

present beadplexer, an open-source R-package for the reproducible analysis of multiplex

bead assay data. The package makes it possible to automatically identify bead clusters,

and provides functionality to easily fit a standard curve and calculate the concentrations of

the analyzed analytes. beadplexer is available from CRAN and from

https://gitlab.com/ustervbo/beadplexr
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10 Abstract

11 Multiplex bead assays are an extension of the commonly used sandwich ELISA. The 

12 advantage over ELISA is that they make simultaneous evaluation of several analytes 

13 possible. Several commercial assay systems, where the beads are acquired on a standard 

14 flow cytometer, exist. These assay systems come with their own software tool for analysis 

15 and evaluation of the concentration of the analyzed analytes. However, these tools are 

16 either tied to particular commercial software or impose other limitations to their licenses, 

17 such as the number of events which can be analyzed. In addition, all these solutions are 

18 ‘point and click’ which potentially obscures the steps taken in the analysis. Here we present 

19 beadplexer, an open-source R-package for the reproducible analysis of multiplex bead assay 

20 data. The package makes it possible to automatically identify bead clusters, and provides 

21 functionality to easily fit a standard curve and calculate the concentrations of the analyzed 

22 analytes. beadplexer is available from CRAN and from 

23 https://gitlab.com/ustervbo/beadplexr.

PeerJ reviewing PDF | (2018:05:28011:1:1:NEW 7 Sep 2018)

Manuscript to be reviewed



24 Introduction

25 The enzyme-linked immunosorbent assay (ELISA) is a commonly used method to 

26 determine the concentration of soluble analytes such as cytokines (Elshal & McCoy, 2006). 

27 The concentration of the analyte is determined from a standard curve, which is created 

28 from standard samples with known concentrations. The ELISA is a single point assay and 

29 query into several analytes can be time consuming or impossible when the sample is 

30 limited. Development in polystyrene bead preparations made it possible to construct 

31 assays that allow for query of several analytes at the same time. Similar to the ELISA, the 

32 analytes of interest are captured by a primary antibody (Figure 1A). The captured analytes 

33 are subsequently labelled with a secondary antibody which in turn is detected with a 

34 fluorochrome conjugated tertiary antibody. The level of fluorochrome intensity is directly 

35 related to the amount of bound tertiary antibody, and therefore also to the amount of 

36 analyte present in the sample. In a multiplex bead assay, the primary antibody is fixed on a 

37 polystyrene bead, and physical properties such as size and granularity as well as 

38 fluorescent colors of the beads are used to distinguish the different analytes studied. The 

39 data is usually collected using a standard flow cytometer.

40 The LEGENDplex system from BioLegend, the CBA system from BD Biosciences, and the 

41 MACSPlex system from Miltenyi Biotec are all bead based multiplex systems (Morgan et al., 

42 2004; Miltenyi Biotec, 2014; Yu et al., 2015). The systems differ slightly in terms of physical 

43 properties and colors used, and in the number of analytes that can be simultaneously 

44 identified. The Bio-Plex system from Bio-Rad works in a similar manner as those described 

45 here, but requires a dedicated instrument and does not produce files suitable for analysis 

46 with beadplexr. The individual assays that can be analyzed with beadplexr are described in 

47 the following.

48 LEGENDplex: Beads fall into two large groups based on size and granularity – as related to 

49 the forward light scattering, FSC, and the perpendicular light scatter, SSC.  Within each 

50 group, individual analytes are discriminated by the intensity of Allophycocyanin (APC) of 

51 the beads. The concentration of the analyte is related to the intensity of Phycoerythrin (PE).

PeerJ reviewing PDF | (2018:05:28011:1:1:NEW 7 Sep 2018)

Manuscript to be reviewed



52 CBA: All beads have similar size and granularity. The individual analytes are discriminated 

53 by the intensity of APC and APC-Cy7 of the bead. The concentration of the analyte is related 

54 to the intensity of PE.

55 MACSPlex: All beads have similar size and granularity. The individual analytes are 

56 discriminated by the intensity of PE and Fluorescein isothiocyanate (FITC) of the bead. The 

57 concentration of the analyte is related to the intensity of APC.

58 All multiplex systems come with their own analysis software. However, these solutions 

59 might come with an added price tag because of binding to a particular piece of software, or 

60 the license is valid only for a number of bead events. In this case, large data files with many 

61 bead events or repeated re-evaluation of the acquired data might result an expiration of the 

62 license. In addition, the usability and flexibility of the analysis solutions are restricted and 

63 often impractical for experiments with a large number of samples. Currently no open 

64 source alternative exists.

65 Here the general usage of the beadplexr package for R (R Core Team, 2018) is introduced. It 

66 will be demonstrated how to load the files generated by the flow cytometer, identify bead 

67 populations, draw standard curves and calculate concentration of the experimental 

68 samples.

69 Materials & Methods

70 The beadplexr package includes data from an unpublished "Human Growth Factor Panel 

71 (13-plex)" LEGENDplex (BioLegend) experiment performed in our laboratory. The dataset 

72 consists of eight controls samples and a serum sample from a single healthy volunteer. All 

73 samples were processed in duplicates and per manufacturer’s instructions. The data was 

74 acquired on a CytoFLEX cytometer (Beckman Coulter). An example of a flow cytometry 

75 data file is also included in the package. We utilize these data to illustrate the functionality 

76 of the package.

77 The data here were analyzed with R, version 3.5.1, (R Core Team, 2018) and plots created 

78 with ggplot2 (Wickham, 2009) and cowplot (Wilke, 2017). The workflow and examples 
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79 presented here make use of or suggests the following R-packages: devtools (Wickham, 

80 Hester & Chang, 2018), dplyr (Wickham et al., 2018), hexbin (Carr et al., 2018), magrittr 

81 (Bache & Wickham, 2014), purr (Henry & Wickham, 2018), stringr (Wickham, 2018), and 

82 tidyr (Wickham & Henry, 2018).

83 Results

84 Package overview

85 The released package can be installed from CRAN and the development version from 

86 GitLab:

87 # Installing the package --------------------------------------------------

88 # From CRAN

89 install.packages("beadplexr")

90 # From GitLab using devtools

91 # install.packages("devtools")

92 # devtools::install_git("https://gitlab.com/ustervbo/beadplexr")

93 #

94 # Or with vignettes built

95 # devtools::install_git("https://gitlab.com/ustervbo/beadplexr",

96 #                       build_vignettes = TRUE)

97

98 The package provides several steps to extract the analyte concentration from the raw data 

99 (Figure 1B). The functions for interacting with the data are flexible, but sensible defaults 

100 make them accessible to the novice R-user. The workflow and examples presented here are 

101 collected in Script S1, and a more detailed workflow is presented in the package vignette. 

102 The latter can be viewed using the command vignette(“legendplex-analysis”).

103 Reading FCS-files

104 beadplexr works with Flow Cytometry Standard (FCS) files (Seamer et al., 1997), which is 

105 the usual output of a flow cytometer. The function read_fcs() loads the given FCS-file using 

106 the functionality provided by the Bioconductor package flowcore (Ellis et al., 2017) and 

107 performs the following steps:
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108 1. Apply an arcsinh transformation of the bead channels – this natural logarithm based 

109 transformation generally performs well on all flow cytometry data (Finak et al., 

110 2010). Opposed to the traditionally used log10 scaling of flow cytometry data, the 

111 arcsinh can deal with the negative values produced by some newer digital flow 

112 cytometers

113 2. Remove boundary events of the size (FCS) and granularity (SSC) channels – events 

114 outside the range of the detectors are registered with the maximum value possible. 

115 These events can interfere with the clustering

116 3. Optionally subset the channels to contain just bead events – similar to removal of 

117 boundary events, this might improve identification of the bead clusters

118 4. Convert the FCS-data to a data.frame

119 # Reading fcs-files -------------------------------------------------------

120 library(beadplexr)

121

122 # Get the path to the example fcs-file

123 .file_name <- system.file("extdata",

124                           "K2-C07-A7.fcs",

125                           package = "beadplexr")

126

127 # `read_fcs()` requires at least a path and file name of the file to load,

128 # by identifying the required forward and side scatter and the bead

129 # property channels, only the required data is returned.

130 #

131 # The argument `.filter` takes a named list, where each element is a size

132 # two vector, giving the lower and upper cut-off for the channel given in

133 # the element name

134 .data <- read_fcs(

135   .file_name = .file_name,

136   .fsc_ssc = c("FSC-A", "SSC-A"),

137   .bead_channels = c("FL6-H", "FL2-H"),

138   .filter = list(

139     "FSC-A" = c(3.75e5L, 5.5e5L),

140     "SSC-A" = c(4e5L, 1e6L),

141     "FL6-H" = c(7L, Inf)
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142   )

143 )

144

145 Because of the variation in detector settings between flow cytometers, it is left to the user 

146 to get the event filtering settings correct for an experiment. However, the event filtering 

147 should remain stable once established. This, of course, requires that there is no change of 

148 cytometer, and that there is no particular drift in the used cytometer. Visualizing the 

149 populations greatly helps in setting the appropriate cut-offs (Figure 2). It is for this reason 

150 that the ggplot2 based convenience function facs_plot() is included.

151 Naming the FCS-files

152 Each sample in a multiplex bead assay must have a unique and meaningful name. A later 

153 step in the workflow separates standard samples from experimental samples. The standard 

154 samples are in addition ordered in a way that calculation of dilution of standard 

155 concentrations is possible. For the dataset included in the package, ‘C’ followed by an 

156 integer denotes the standard (control) samples – as suggested in the LEGENDplex manual – 

157 and ‘S’ followed by an integer denotes the experimental samples. The different parts of the 

158 file name should be separated by a character not used in the IDs; this will make for easy 

159 parsing of the file names. 

160 Identification of analyte MFI

161 The mean fluorescence intensity (MFI) of each analyte relates directly to the concentration 

162 of the analyte in the sample (Figure 1A). The first step to calculate the analyte 

163 concentration is to identify the bead populations representing the analytes and calculate 

164 the MFIs of these.

165 beadplexr makes use of structured Panel Information to provide analyte metadata such as 

166 name and start concentration for each standard sample, as well as the name of the panel, 

167 the fold dilution of the standards, and the units of the analytes. The desired Panel 

168 Information is loaded using the load_panel() function by passing the name or a name 

169 pattern to the function. The package itself comes with a set of LEGENDplex Panel 

170 Information, which are documented in the help files to load_panel(). The Panel Information 

171 file itself is in YAML format, and the load_panel() function can also load a Panel 
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172 Information file located outside the package. The latter is useful in the cases of custom 

173 panels. The Panel Information is not required, but makes sense if the assay is repeated 

174 across several projects.

175

176 # Libraries ---------------------------------------------------------------

177

178 library(beadplexr)

179 library(ggplot2)

180 library(cowplot)

181 library(dplyr)

182 library(purrr)

183 library(tidyr)

184 library(readr)

185 library(stringr)

186

187

188 # Load data ---------------------------------------------------------------

189

190 data(lplex)

191 # Load one of the panels distributed with the package, see ?load_panel() for

192 # the included panels

193 panel_info <- load_panel(.panel_name = "Human Growth Factor Panel (13-plex)")

194

195 Analytes of any assay system are identified using the function identify_analyte(), which 

196 identifies analyte clusters and assign an analyte ID to each cluster. The function takes a 

197 data.frame with events and a character vector giving the name of column(s) where the 

198 analytes can be discriminated. An identifier for each analyte is passed in the argument 

199 .analyte_id, which is simply a character vector giving the ID of the analyte. 

200 identify_analyte() sorts the clusters based on their centers and use this ranking to assign 

201 the analyte IDs. The order of analyte IDs given in .analyte_id is therefore important and must 

202 match the expected order of analytes. An optional argument is .trim which allows the 

203 removal events in the periphery of a cluster. The value of the argument gives the fraction of 
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204 the most distant points to be removed. Distance based trimming is non-trivial since the 

205 possible numerical range depends on the detection range of the flow cytometer. 

206 The function identify_analyte() interfaces several methods for unsupervised clustering, 

207 which are passed in the .method argument.  The default clustering method is clustering 

208 large applications (clara) from the package cluster (Maechler et al., 2017). The method 

209 selects a number of subsets of fixed size and applies the partitioning around medoids 

210 (pam)-algorithm to each subset. The objective of the pam-algorithm is to minimize the 

211 dissimilarity between the representative of k clusters and the members of each cluster 

212 (Kaufman & Rousseeuw, 2009). The best resulting set of medoids (cluster centers) is that 

213 with the lowest average dissimilarity of all points in the original dataset to the medoids. 

214 Though similar to pam in algorithm type, the Base-R included  kmeans works on minimizing 

215 the distance to the cluster representative (Zaki & Wagner Meira, 2014). 

216 The dbscan method in the fpc package differs from clara and kmeans in that dbscan identifies 

217 clusters based local density (Hennig, 2015). The function requires a neighborhood size and 

218 minimum number of events in each neighborhood to evaluate whether points can be 

219 considered as belonging to a cluster (Zaki & Wagner Meira, 2014). If the bead populations 

220 have different local densities, there is no guarantee that the correct number of clusters will 

221 returned. This problem does not exist for Mclust from the mclust package, which fits a 

222 Gaussian mixture model using the EM-algorithm (Scrucca et al., 2016).  This algorithm 

223 iteratively optimizes the individual parameters of k normal distributions (Zaki & Wagner 

224 Meira, 2014). This way the relationship between a cluster and a set of data points is given 

225 by a set of probability scores.

226 We have found that dbscan() is the best clustering method for the forward-side scatter 

227 population identification. However, it can be difficult to get the parameters event count and 

228 neighborhood size correct. The reason for this difficulty lies in the sensitivity of the method 

229 to the choice of neighborhood size; if it is too large clusters might be merged, and if it is too 

230 small everything might be classified as noise. In our experience, the clustering function 

231 clara() is a great all-rounder although the subsampling performed by the function can lead 
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232 to slight differences between each run. Using the same value for set.seed() at the 

233 beginning of each session will alleviate this and make each run reproducible.

234 Different flow cytometers perform differently in terms of separation of the individual bead 

235 populations. This is due to factors such as detector settings and age of the cytometer and its 

236 light sources. The consequence is that the populations of interest might be closer together 

237 or further apart. Another consequence might be an increased in the noise of the detectors 

238 of the flow cytometer. Collectively these differences in the data constitution means that one 

239 clustering function might perform better on one dataset while be inferior on another. As 

240 with analysis of all flow cytometric data the optimal solution is a matter of taste, but the 

241 better clustering function is the one that separates the populations well, without including 

242 too much noise. 

243 The function identify_legendplex_analyte() can be applied to each sample individually in a 

244 loop. However, it is more prudent to apply the function to all samples at the same time 

245 because the clustering decision will be identical for each sample. In addition, clustering on 

246 all the samples is 1.4 times faster than clustering on each sample individually.

247 # Identify analytes -------------------------------------------------------

248

249 # The function `identify_legendplex_analyte()` used here is convenience

250 # around the clustering work horse `identify_analyte`. The

251 # `identify_legendplex_analyte()` identifies the bead populations according

252 # to size and granularity, and for each of the two populations the individual

253 # bead populations are identified

254 #

255 # The function requires a named list with analytes from the Panel

256 # Information, and a list with a list of key-value pairs giving the arguments

257 # for the bead identification on the forward and side scatter, and a list of

258 # key-value pairs giving arguments for the bead identification in each

259 # subpopulation in the APC channel.

260 #

261 # The argument .trim gives the fraction of events furthest from the centers of

262 # the groups that should be removed. The population center is found by a

263 # Gaussian kernel estimate. In this case we remove 1% and 3% of the of the
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264 # events based on their distance to the group center. 

265 #

266 # The inner lists can be named, but this is not required.

267 args_ident_analyte <- list(fs = list(.parameter = c("FSC-A", "SSC-A"),

268                                      .column_name = "Bead group",

269                                      .trim = 0.01),

270                            analyte = list(.parameter = "FL6-H",

271                                            .column_name = "Analyte ID",

272                                            .trim = 0.03))

273

274 # The FCS-data is a list of samples, which we combine before cluster

275 # identification.

276 analytes_identified <- lplex %>% 

277   bind_rows(.id = "Sample") %>%

278   identify_legendplex_analyte(.analytes = panel_info$analytes, 

279                               .method_args = args_ident_analyte)

280

281 The analyte IDs for the “Human Growth Factor Panel (13-plex)” bead group A are A4, A5, 

282 A6, A7, A8, A10 and for group B the analyte IDs are B2, B3, B4, B5, B6, B7, B9. In this case, 

283 the beads are arranged from low to high, that is the lowest analyte ID has lowest intensity 

284 in the APC channel (Figure 3).

285 This initial and crucial step of the analysis has been successfully performed with data from 

286 a CBA experiment (C. McGuckin, CTIBIOTECH, Lyon, France, unpublished) and from a 

287 MACSPlex experiment (Miltenyi Biotec, Bergisch Gladbach, Germany, unpublished) using 

288 the function identify_analyte().

289 With the analytes identified and the bead populations documented, the MFI of each analyte 

290 can finally be calculated. The function calc_analyte_mfi() gives the possibility to calculate 

291 geometric, harmonic, and arithmetic mean of the in intensity of each respective analyte 

292 reporter, such as PE in a LEGENDplex assay. Since the reporter intensities are usually log-

293 transformed only the geometric mean is relevant, but harmonic and arithmetic mean are 

294 included to accommodate for special cases.

295 # Calculate analyte MFI ---------------------------------------------------
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296

297 # The mean fluorescence intensity is calculated for each sample and analyte.

298 # The function `calc_analyte_mfi()` provides three ways of calculating the

299 # MFI: geometric, harmonic, and arithmetic mean.

300 analyte_mfi <- analytes_identified %>% 

301   filter(!is.na(`Analyte ID`)) %>% 

302   # Call `calc_analyte_mfi()` for each sample

303   group_by(Sample) %>% 

304   do(calc_analyte_mfi(., .parameter = "FL2-H", 

305                    .column_name = "Analyte ID", 

306                    .mean_fun = "geometric")) %>% 

307   # Later we will fit the standard curve on a log-log scale, so we transform

308   # here

309   mutate(`FL2-H` = log10(`FL2-H`))

310 Calculation of standard and experimental samples

311 The calculation of the concentration of the analytes of the experimental samples requires 

312 two steps:

313 1. Create a standard curve by fitting a model to the MFI of the standard analytes and 

314 their known concentrations

315 2. Estimate the concentration of each sample analyte from the fitted model

316 The samples in the dataset included in the package can be distinguished by the presence of 

317 ‘C’ or ‘S’, respectively. The sample type indicating letter is then followed by one or more 

318 integers. Using this naming scheme, it is easy to separate standard samples from the 

319 experimental samples. It is also easy to order the standard samples for concentration 

320 assignment. In this case the naming scheme suggested in the LEGENDplex assay protocol is 

321 followed: 7 indicates the highest concentration of the standard analyte, 1 indicates the 

322 lowest concentration, and 0 indicates blank.

323

324 The order of the standard samples is crucial for the function calc_std_conc() to correctly 

325 calculate the concentration of an analyte in each standard sample. The function requires a 
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326 vector which gives the order of the standard samples, a start concentration for the analyte, 

327 and a dilution factor. The standard samples are ordered numerically from high to low and 

328 assigned a standard concentration, such that the first sample is given the start 

329 concentration and the second to last sample the lowest concentration, and the very last 

330 sample the concentration 0, as this is assumed to be for background measurement. 

331 The start concentration is stored in the Panel Information for each analyte separately, as 

332 the start concentration might differ from analyte to analyte. The dilution factor is also given 

333 in the Panel Information. It will always be the same for all standard analytes and is usually 

334 4, meaning that the concentration of each standard analyte is 4 times lower than the 

335 previous concentration. This generally gives a good range of standard concentrations.

336 # Helper function to extract the sample number ----------------------------

337

338 #' Cast sample ID to numeric

339 #'

340 #' @param .s A string with the sample ID pattern to be cast

341 #' @param .pattern A string giving the pattern

342 #'

343 #' @return

344 #' A numeric

345 #' 

346 as_numeric_sample_id <- function(.s, .pattern = c("C[0-9]+", "S[0-9]+")){

347   .pattern <- match.arg(.pattern)

348

349   # Extract the pattern defined just above, remove the first element, and

350   # cast to a numeric

351   .s %>%

352     str_extract(.pattern) %>% 

353     str_sub(start = -1L) %>% 

354     as.numeric()

355 } 

356

357 # Split in standard and sample --------------------------------------------

358

359 # We need to fit a standard curve on the standard samples, and use this curve
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360 # to calculate the concentration of the experimental samples. Here we split 

361 # the data set in two: one with the standard samples and one with the

362 # experimental samples.

363 #

364 # We need to order the standard samples from high to low in order to

365 # calculate the concentration of the analytes in the standard sample.

366 # Incorporating the information into the sample name in terms of an easily

367 # parsable pattern is a good practice.

368

369 # All standard samples have the pattern C[number]

370 standard_data <- analyte_mfi %>% 

371   ungroup() %>% 

372   filter(str_detect(Sample, "C[0-9]+")) %>% 

373   mutate(`Sample number` = as_numeric_sample_id(Sample, . pattern = "C")) %>% 

374   select(-Sample) 

375

376 # All non-standards are experimental samples... we could also filter on

377 # S[number]

378 experiment_data <- analyte_mfi %>% 

379   ungroup() %>% 

380   filter(!str_detect(Sample, "C[0-9]+")) %>% 

381   mutate(`Sample number` = as_numeric_sample_id(Sample, . pattern = "S")) %>% 

382   select(-Sample) 

383

384 # To the standard data we have to add additional information such the start

385 # concentration of each standard analyte and the dilution factor, as well as

386 # as the analyte names (analyte IDs by themselves do not make much sense).

387 #

388 # The concentration of the standard samples is calculated using

389 # `calc_std_conc()`, which take a vector of sample numbers for ordering, a

390 # start concentration and a dilution factor.

391 standard_data <- standard_data %>% 

392   left_join(as_data_frame_analyte(panel_info$analytes), by = "Analyte ID") %>%

393   rename(`Analyte name` = name) %>% 

394   group_by(`Analyte ID`, `Analyte name`) %>%

395   mutate(

396     Concentration = calc_std_conc(
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397       `Sample number`,

398       concentration,

399       .dilution_factor = panel_info$std_dilution

400     )

401   ) %>% 

402   # Later we will fit the standard curve on a log-log scale, so we transform

403   # here

404   mutate(Concentration = log10(Concentration)) %>%

405   select(-concentration, -`Bead group`)

406

407 The next step is to fit a standard curve for each analyte. With the standard curve we can 

408 calculate the concentration of the experimental samples (the purpose of the initial work), 

409 we can check the quality of the measurements and the standard curve, and plot the 

410 experimental samples on the standard curve (beadplexr provides easy access to all of this). 

411 The latter is to allow for visual verification that the experimental samples are within the 

412 linear part of the standard curve.

413 However, in each case we need to ensure that the correct standard curve is used with the 

414 correct experimental data, which means we have to juggle at least three structures: A 

415 data.frame with the standard data, a data.frame with the experimental sample data, and the 

416 models for each analyte (probably a list). It quickly becomes tedious to ensure that 

417 everything is in the correct order - and it is most certainly error prone. To circumvent this, 

418 we can use the nest() and its inverse unnest() functions of the tidyr package. nest() relies 

419 the fact that a data.frame in R is in fact a list, and uses this to pack a data.frame into a 

420 single cell of a data.frame. 

421 combine # Nest standard and experimental data -------------------------

422

423 # Nested data.frames is a great way of combining and working with complex

424 # data structures.

425 #

426 # First we pack all the standard data in to a data.frame with a set of

427 # data.frames

428 standard_data <- standard_data %>% 

429   nest(-`Analyte ID`, .key = "Standard data")
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430

431 # The the same for all the experimental data

432 experimental_data <- experiment_data %>% 

433   nest(-`Analyte ID`, .key = "Experimental data")

434

435 # Since both structures are data.frames we can easily combine them

436 plex_data <- inner_join(standard_data, experiment_data, by = "Analyte ID")

437

438 With everything in a neatly arranged data.frame we can now focus on the actual task at 

439 hand, namely calculation of the standard curve for each analyte. For this we use the 

440 function fit_standard_curve(), which interfaces the drm() function from the drc package 

441 (Ritz et al., 2015). The drm() function specializes in fitting various biological response-

442 models, and the drc package provides several response-models, such as the four- and five-

443 parameter log-logistic model. fit_standard_curve() is designed to be used in the piped 

444 workflow, and takes a data.frame with MFIs and concentrations and returns the model as a 

445 drc object. The four-parameter log-logistic model is widely used in analysis of ELISA data. 

446 Since the five-parameter model yields better fits, because of the increased flexibility, this is 

447 the default function (Gottschalk & Dunn, 2005).

448 # Calculate standard curves -----------------------------------------------

449

450 # For each of the analytes we calculate the standard curve. Working with

451 # nested data.frames means that we have to loop over each row to calculate

452 # the standard curve using the data.frame in "Standard data"

453 #

454 # When clustering is performed with mclust, the package mclust is

455 # loaded in the background (an unfortunate necessity). The mclust

456 # package also has a function called `map`, so an unlucky side effect

457 # of clustering with mclust, is that we need to be specify which map

458 # function we use.

459

460 plex_data <- plex_data %>% 

461   group_by(`Analyte ID`) %>% 

462   mutate(`Model fit` = purrr::map(`Standard data`, 

463                                   fit_standard_curve, 

PeerJ reviewing PDF | (2018:05:28011:1:1:NEW 7 Sep 2018)

Manuscript to be reviewed



464                                   .parameter = "FL2-H"))

465

466 We can plot the standard curve using the built in plot_std_curve() function (Figure 4A). 

467 With the standard curve created we can calculate the concentrations of the experimental 

468 samples using the function calculate_concentration(), which requires a data.frame with 

469 the MFIs in a column, and the fitted model. It can be helpful to apply 

470 calculate_concentration() to the standard samples, as this can be used to verify that the 

471 standard measurements were all fine, and that the estimation of the sample concentrations 

472 therefore is trustworthy.

473 After calculating the concentrations we can plot the known standard concentrations versus 

474 the estimated standard concentrations using the function plot_target_est_conc() (Figure 

475 4B) and visualize where the samples fall on the standard curve with plot_estimate() 

476 (Figure 4C).

477 # Calculate experimental sample concentrations ----------------------------

478

479 # Using the standard curve just calculated, we can back-calculate the

480 # concentration of the standard concentrations, and more importantly the

481 # concentration of the experimental samples

482 plex_data <- plex_data %>% 

483 mutate(`Standard data` = 

484          purrr::map2(`Standard data`, `Model fit`, 

485                      calculate_concentration, .parameter = "FL2-H")) %>% 

486   mutate(`Experimental data` = 

487            purrr::map2(`Experimental data`, `Model fit`, 

488                        calculate_concentration, .parameter = "FL2-H"))

489

490

491 # Add concentration plots -------------------------------------------------

492

493 # We can also loop over each row and add plots to the data.frame

494 plex_data <-  plex_data %>% 

495   mutate(`Std curve` =

496            purrr::pmap(list(.data = `Standard data`, 
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497                             .model = `Model fit`, 

498                             .title = `Analyte name`),

499                        plot_std_curve, .parameter = "FL2-H")) %>% 

500   mutate(`Std conc` =

501            purrr::map(`Standard data`,

502                       plot_target_est_conc)) %>% 

503   mutate(`Est curve` = 

504            purrr::pmap(list(`Experimental data`, 

505                             `Standard data`, 

506                             `Model fit`, 

507                             `Analyte name`), 

508                        plot_estimate, .parameter = "FL2-H"))

509

510 Lastly we fulfill the purpose of all the previous actions and extract the concentration of 

511 each analyte for each sample.

512 # Extract analyte concentration -------------------------------------------

513

514 plex_data %>% 

515   unnest(`Experimental data`) %>% 

516   # Make the names a little more telling and transform them back to useful

517   # concentrations

518   rename(`Concentration (pg/ml)` = Calc.conc, 

519          `Concentration error` = `Calc.conc error`) %>% 

520   mutate(`Concentration (pg/ml)` = 10^ `Concentration (pg/ml)`,

521          `Concentration error` = 10^`Concentration error`)

522 Discussion

523 Multiplex bead assays make simultaneous evaluation of several analytes possible. Because 

524 of this, they are an attractive alternative to the commonly used sandwich ELISA. 

525 Commercial systems are available for acquisition on a standard flow cytometer, but these 

526 commercial systems make use of their own proprietary software for the data analysis. This 

527 can impose different limitations to the analysis. The R-package beadplexr, released under 

528 the MIT license, is meant as an open-source alternative to these commercial systems. The 

529 package is available from CRAN and from https://gitlab.com/ustervbo/beadplexr.
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530 A critical step in the analysis multiplex bead assays is the identification of bead populations 

531 corresponding to each analyte. A single function in beadplexr acts as an interface to several 

532 common, and tested, clustering functions, making it easy to find the best suited clustering 

533 function. Future versions of the package will see improvements in this part, with inclusion 

534 of other clustering methods and perhaps a heuristic for automatic method selection.

535 Flow cytometry data are inherently noisy. beadplexr only provides a rudimentary function 

536 for removing points with no neighbors and lets the clustering functions determine which 

537 events are considered noisy though the .trim argument. However, a very noisy data set 

538 might make it difficult for an optimal identification of the bead clusters in the first place. 

539 De-noising multidimensional data is not trivial, but work is planned in this direction for a 

540 future release. 

541 Conclusion

542 The R-package beadplexr provides a frame work for easy and reproducible analysis of 

543 multiplex bead assays for the experienced and the novice user alike.
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598 Figure legends

599 Figure 1: Overview of assay principle and the package workflow.

600 A) Schematic overview of the principle of a LEGENDplex assay. B) Steps in analysis of a 

601 multiplex bead assay with accompanying visualizations.

602 Figure 2: Visualization of flow cytometry data.

603 Size (FSC) and granularity (SSC) can be used distinguish the two LEGENDplex bead 

604 populations. A) Common monochrome scatter-plot created with facs_plot(.x = “FSC-H”, 

605 .y = “SSC-H”, .beads = “Bead group”) on the sample ‘K3-C0-1.fcs’. High density regions 

606 are obscured in this type of plots. B) Pseudo-colored scatter -plot created with 

607 facs_hexbin(.x = “FSC-H”, .y = “SSC-H”, .beads = “Bead group”, .bins = 75) on the 

608 same sample as in A). The number of events in discrete bins is indicated by color. The 

609 coloring is according to the standard blue-green-yellow-red scheme, where blue indicates a 

610 low number of events, and red indicates a high number. The Pseudo-colored scatter -plot 

611 requires the R-package hexbin to be installed.

612 Figure 3: Bead identification and visualization of LEGENDplex data.

613 Populations identified in the sample ‘K3-C0-1.fcs’. A) Identification of the two bead 

614 populations ‘A’ and ‘B’ according to size and granularity: The two clusters were identified 

615 using .method = clara and noisy data points were excluded by .trim = 0.01. B-C) 

616 Identification of analytes of the bead population ‘A’ and ‘B’: The 1 dimensional clusters 

617 along the APC channel were identified using .method = clara and noisy data points were 

618 excluded by .trim = 0.03. Noisy data points are assigned the group ‘NA’.

619 Figure 4: Visualization of standard and experimental samples for Angiopoietin-2.

620 The dataset included in beadplexr is from a 13-plex assay. Here we use Angiopoietin-2 to 

621 illustrate the visualizations. A) A log-log plot of the standard curve of Angiopoietin-2. Each 

622 point is a single measurement (each in duplicate). The standard concentration is diluted in 

623 steps of four fold dilution from 50,000.0 to 12.21 pg/ml. The intensity of the analyte is 

624 measured in the PE channel. The full line indicates the best fit, and gray the confidence 

625 interval. B) Correlation between the standard concentration (x-axis) and the calculated 

PeerJ reviewing PDF | (2018:05:28011:1:1:NEW 7 Sep 2018)

Manuscript to be reviewed



626 concentration of the standard samples (y-axis).  The back calculation is done using the fit in 

627 A) and the MFI of the samples. C) Using the fit in A) the concentration of an experimental 

628 sample is calculated. Visual inspection of the position of the experimental samples on the 

629 standard curve can reveal samples that are close to the upper or lower bound of the 

630 standard curve.

631

PeerJ reviewing PDF | (2018:05:28011:1:1:NEW 7 Sep 2018)

Manuscript to be reviewed



Figure 1(on next page)

Overview of assay principle and the package workflow

A) Schematic overview of the principle of a LEGENDplex assay. B) Steps in analysis of a

multiplex bead assay with accompanying visualizations.
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Figure 2(on next page)

Visualization of FACS data

Size (FSC) and granularity (SSC) can be used distinguish the two LEGENDplex bead

populations. A) Common monochrome scatter-plot created with facs_plot(.x = “FSC-H”, .y =

“SSC-H”, .beads = “Bead group”) on the sample ‘K3-C0-1.fcs’. High density regions are

obscured in this type of plots. B) Pseudo-colored scatter -plot created with facs_hexbin(.x =

“FSC-H”, .y = “SSC-H”, .beads = “Bead group”, .bins = 75) on the same sample as in A). The

number of events in discrete bins is indicated by color. The coloring is according to the

standard blue-green-yellow-red scheme, where blue indicates a low number of events, and

red indicates a high number. The Pseudo-colored scatter -plot requires the R-package hexbin

to be installed.
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Figure 3(on next page)

Bead identification and visualization of LEGENDplex data

Populations identified in the sample ‘K3-C0-1.fcs’. A) Identification of the two bead

populations ‘A’ and ‘B’ according to size and granularity: The two clusters were identified

using .method = clara and noisy data points were excluded by .trim = 0.01. B-C)

Identification of analytes of the bead population ‘A’ and ‘B’: The 1 dimensional clusters along

the APC channel were identified using .method = clara and noisy data points were excluded

by .trim = 0.03. Noisy data points are assigned the group ‘NA’.
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Figure 4(on next page)

Visualization of standard and test samples for Angiopoietin-2

The dataset included in beadplexr is from a 13-plex assay. Here we use Angiopoietin-2 to

illustrate the visualizations. A) A log-log plot of the standard curve of Angiopoietin-2. Each

point is a single measurement (each in duplicate). The standard concentration is diluted in

steps of four fold dilution from 50,000.0 to 12.21 pg/ml. The intensity of the analyte is

measured in the PE channel. The full line indicates the best fit, and gray the confidence

interval. B) Correlation between the standard concentration (x-axis) and the calculated

concentration of the standard samples (y-axis). The back calculation is done using the fit in

A) and the MFI of the samples. C) Using the fit in A) the concentration of an experimental

sample is calculated. Visual inspection of the position of the experimental samples on the

standard curve can reveal samples that are close to the upper or lower bound of the

standard curve.
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