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We studied the relationship between plant functional foliar traits and the endophytic

bacterial communities associated in trees, taking the example of sessile oak (Quercus

petraea (Matt.) Liebl). Forty-five samples with replicates of eight leaves per sample were

collected in spring, summer and autumn. Bacterial community diversity was analyzed via

Automated Ribosomal Intergenic Spacer Analysis (ARISA). The leaf traits specific leaf area,

level of herbivory, stomatal number, stomatal length, carbon and nitrogen concentration

were measured for the leaves of each sample. For statistical analysis, linear mixed effect

models, the Canonical Correlation Analysis (CCA) and Non-Parametric Multivariate Analysis

of Variance (NPMANOVA) were applied. Herbivory, nitrogen and carbon concentration were

significantly different in autumn compared to spring and summer (p value < 0.05), while

stomatal length was differentiated between spring and the other two seasons (p value <

0.01). The seasonal differentiation of the bacterial community structure was explained by

the first and second axes (29.7 % and 25.3 %, respectively) in the CCA. The most

important foliar drivers resulted to be herbivory, nitrogen concentration and stomatal

length.
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18 ABSTRACT

19 We studied the relationship between plant functional foliar traits and the endophytic bacterial 

20 communities associated in trees, taking the example of sessile oak (Quercus petraea (Matt.) Liebl). 

21 Forty-five samples with replicates of eight leaves per sample were collected in spring, summer and 

22 autumn. Bacterial community diversity was analyzed via Automated Ribosomal Intergenic Spacer 

23 Analysis (ARISA). The leaf traits specific leaf area, level of herbivory, stomatal number, stomatal 

24 length, carbon and nitrogen concentration were measured for the leaves of each sample. For 

25 statistical analysis, linear mixed effect models, the Canonical Correlation Analysis (CCA) and 

26 Non-Parametric Multivariate Analysis of Variance (NPMANOVA) were applied. Herbivory, 

27 nitrogen and carbon concentration were significantly different in autumn compared to spring and 

28 summer (p value < 0.05), while stomatal length was differentiated between spring and the other 

29 two seasons (p value < 0.01). The seasonal differentiation of the bacterial community structure 

30 was explained by the first and second axes (29.7 % and 25.3 %, respectively) in the CCA. The 

31 most important foliar drivers resulted to be herbivory, nitrogen concentration and stomatal length. 

32

33 INTRODUCTION

34 One of the major interfaces of biological interaction is between microbiota and plants. While many 

35 integrative studies exist, regarding description of bacterial taxa related to host plants and linking 

36 bacterial and plant communities across different spatial scales (e.g. symbiosis), temporal scales 

37 remain less unexplored. Plant functional traits are increasingly used in ecological research and are 

38 a promising avenue to link plant characteristics to environmental factor in interdisciplinary 

39 researches (Cornwell et al., 2008; Wellstein et al., 2011). Leaf environment is characterized by 

40 foliar functional traits that are hypothesized to affect the hosted microbiome. In the context of the 

41 leaf environment of deciduous trees and inhabiting endophytic bacteria, intra-annual dynamics are 

42 of special interest. 

43 Endophytic bacteria are ubiquitous inhabitants that colonize the inner parts of most 

44 terrestrial plant species beyond the epidermal cell layers (Lodewyckx et al., 2015; Santoyo et al., 

45 2016). Inside the plant, there are diverse ecological niches in which endophytic bacteria can 

46 survive and grow, i.e. within cells, in the intercellular space and in the vascular systems (Jacobs, 

47 Bugbee & Gabrielson, 1985; Bell et al., 1995). Endophytic bacteria are very important to the host 

48 plant as they can contribute to the maintenance of its growth and health by, e.g. promoting nutrient 
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49 acquisition and defense against pathogens (Hirano et al. 1982; Afzal, Khan & Sessitsch, 2014). 

50 This is particularly true for long-lived plant species such as trees and consequently they could 

51 affects forest ecosystems (Griffin & Carson, 2015; Griffin et al., 2016;  Griffin et al., 2017; Tashi-

52 Oshnoei, Harighi & Abdollahzadeh, 2017). Endophytic bacteria have often long-term ecological 

53 interactions with the host plants including symbiosis, mutualism and commensalism. They can 

54 either be obligate or facultative endophytes. Obligate endophytes are strictly associated with the 

55 host plant and they are eventually transferred vertically through plant generations (Santoyo et al., 

56 2016). Facultative endophytes originate from the surrounding environment and they are often 

57 included within epidermal cell layers (Hardoim, van Overbeek & van Elsas, 2008). More 

58 complicate is the definition of endophytic pathogens, since historically endophytes have been 

59 defined as non-harmful microorganisms (Hallmann et al., 1997). Recently the advances of 

60 molecular microbiology have shown the complex dynamics of pathogenesis possibly related to the 

61 physiologic behavior of entire microbial communities, rather than of a single strain (Fürnkranz et 

62 al., 2012; Erlacher et al., 2014). In this respect, harmful and beneficial endophytes could have in 

63 common several mechanisms to colonize and diffuse into plant tissues (Berg, Eberl & Hartmann, 

64 2005).

65 Different plant organs have diverse ways of colonization. Free-living soil microorganisms 

66 colonize roots (Bulgarelli et al., 2012; Edwards et al., 2015). Leaf endophytic bacteria, especially 

67 in case of tall trees, can be acquired from the leaf surface via stomata that represent apertures in 

68 the foliar tissue connected to the intercellular space (Ou et al., 2014; Carrell, Carper & Frank, 

69 2016; Griffin & Carson 2015). It has been hypothesized that leaves are a suitable surface for 

70 exchange with bacteria inhabiting the atmosphere (Bowers et al., 2009). Microbial communities 

71 inhabiting leaves, including endophytic bacteria, appear to be rather specialized, given that they 

72 share less than 1% of the bacterial species with soil (Kim et al., 2012).

73 While numerous publications are focused on leaf epiphytes (Hirano et al., 1982; Balint-

74 Kurti et al., 2010; Lopez-Velasco et al., 2011), leaf endophytic bacteria remain largely unexplored. 

75 Moreover, the possible role of plant functional traits for bacterial community dynamics represents 

76 a research gap. In detail, there are a few studies regarding the temporal dynamic and the 

77 environmental factors driving the endophytic bacterial communities associated with forest tree 

78 species. Previous works revealed that endophytes are subject to leaf age and leaf developmental 

79 stage in grapevine and in elm (Mocali et al., 2003; Bulgari et al., 2014). However, the potential 
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80 drivers affecting the endophytic bacteria composition behind leaf aging are still not well 

81 understood, especially in forest plants. To the best of our knowledge, no papers have been 

82 published so far about a possible linkage between endophytic community assemblages, seasonality 

83 and leaf plant traits. Since it well known that stomata represents the main door for bacterial leaf 

84 colonization (Underwood, Melotto & He, 2007), it is reasonable hypothesize that any changes of 

85 stomata morphology due to leaf ageing could provoke consequences on the final endophytic 

86 community composition. This could reflect the previous results of Mocali et al. (2003) and of 

87 Bulgari et al. (2014).

88 In our study, we aimed to test (i) if there is a temporal gradient associating leaf aging with 

89 bacterial turnover and (ii) if foliar plant traits are linked to bacterial community dynamics across 

90 time. For this reason, we tested two hypotheses: (i) seasonality affects endophytic bacterial 

91 community structure due to changes in foliar chemical composition, and (ii) there is a strict link 

92 between endophytic bacterial community structure and foliar traits because some traits, such as 

93 stomatal length, could favor the entering of bacterial cells into leaves. To assess the validity of our 

94 hypotheses, we investigated a sessile oak forest located in the on Alps in the Northern Italy through 

95 an entire growing season.

96

97 MATERIALS AND METHODS

98 Study site and sampling

99 The study area is located in the Monticolo nature reserve on the hillslopes of the Mitterberg at 550 

100 m a.s.l. in South Tyrol, Italy. The selected study site is representative of the present oak forest, 

101 dominated by sessile oak (Quercus petraea (Matt.) Liebl.) with few specimens of Scots pine (Pinus 

102 sylvestris L.) in the tree layer as well as of Sweet chestnut (Castanea sativa Mill.) and Manna ash 

103 (Fraxinus ornus L.) in the understory. The forest grows on acidic shallow soil above porphyry 

104 bedrock on a west-south-west oriented slope. We selected five individuals of sessile oak within 

105 the study site, i.e. a circular plot of 15 m radius (706 m²) representing relatively homogeneous site 

106 conditions within the slope. From each tree, we selected three branches taking eight leaves from 

107 the same branch, which were used to assess the endophytic bacteria as well as the foliar functional 

108 traits. Branches were chosen to have the maximum distance between them, i.e. an angle of 120°C 

109 between two adjacent branches. In detail, we used three leaves for the functional traits 

110 measurements and five leaves for the determination of the endophytic bacterial microbial 
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111 community. We sampled three subsequent seasons in the year 2014, i.e. spring (June 5th), summer 

112 (August 25th) and autumn (October 20th). A total of 120 leaves per season was collected, 45 leaves 

113 were used for the analysis of functional traits while 75 for the analysis of endophytes.

114 We measured six functional traits related to important plant functions, i.e. specific leaf area 

115 (SLA), leaf nitrogen content (N), leaf carbon content (C), C:N ratio, stomatal number (STNR) and 

116 stomatal length (SL). SL is a measure for the size of stomata (Taiz & Zeiger, 2002). For each 

117 season, we determined the SLA of the leaves following standard protocols (Pérez-Harguindeguy 

118 et al., 2013). For each leaf, the area was measured the sampling day using a scanner (CanoScan 

119 Lide, Canon, Cernusco sul Naviglio, Italy). Subsequently, leaves were oven dried at 70°C for 72 

120 hours to obtain their dry weight and the SLA, measured in mm² mg-1, was calculated (Pérez-

121 Harguindeguy et al., 2013). N and C were determined using an elemental analyzer (Flash 2000 

122 Organic Elemental Analyzer, Thermo Scientific, Milan, Italy) pooling together the three leaves of 

123 each branch. 

124 To measure stomatal characteristics, we applied the clear nail polish method described by 

125 Hilu & Randall (1984) obtaining epidermal impressions of the abaxial surface of each leaves that 

126 were examined under an optical microscope (Leica DMLS, Leica Biosystems, Nussloch, 

127 Germany) connected to a digital camera. The images were analyzed through the image processing 

128 software DeltaPix InSight, (DeltaPix, Smorum, Denmark). The stomata were counted on three 

129 fields of view per leaf on a standard counting area at 400 x magnification to determine the stomatal 

130 density as number of stomata (STNR) for each standard counting area. On each counting area, the 

131 length of the guard cells of stomata (SL) was measured for 15 randomly selected stomata. 

132 Additionally, the percentage of consumed leaf area was estimated to describe leaf-level 

133 herbivory. We considered only those leaves exhibiting types of insect-mediated damages that 

134 would not affect SLA, i.e. hole feeding, margin feeding and sucking (Labandeira et al., 2007). 

135 Insect-mediated damage types have been recorded using the classification of Labandeira 

136 et al. (2007) for herbivory, i.e. hole feeding, margin feeding, skeletonization, surface feeding, 

137 piercing and sucking, oviposition, mining and galling. As a further damage-type, leaf-rolling was 

138 recorded.

139

140 DNA extraction and Automated Ribosomal Intergenic Spacer Analysis (ARISA)
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141 Leaves used for microbiological analysis were processed within 4 hours as follows (Hrynkiewicz 

142 K., personal communication): Five leaves for each replicate were disinfected with 70% ethanol 

143 twice each for 3 min. Leaves were then washed with sodium hypochlorite (1.5%) and TWEEN® 

144 20 for ten minutes, three rinses in sterile, distilled shaking water. Disinfected leaves were grinded 

145 to a fine powder under liquid nitrogen using a sterile mortar and pestle. The disinfected samples 

146 were stored at -20°C. Triplicates of the water used in the last rise were used as negative for PCR 

147 amplification and plated on a LB and TSA medium to verify the disinfection protocol. Absence of 

148 PCR amplification products was observed. Furthermore, absence of bacterial colonies was 

149 observed in all the plates after 10 days of incubation at 30°C.

150 DNA was extracted using the Qiagen DNeasy PowerPlant Pro Kit (Qiagen, Milan, Italy) 

151 accordingly to the user’s manual. Extracted DNA was stored at -80°C. The quality and the size of 

152 the soil DNA were checked by electrophoresis on 1.2% agarose gel with a marker (Eurogentec 

153 Smart Ladder, Belgio). The absorbance (260 nm) of 2 µl of DNA was used to evaluate the 

154 concentration of DNA by NanoVue Spectrophotometer (GE Healthcare, Little Chalfont, UK). 

155 The 16S-23S rRNA Internal Transcribed Spacer (ITS)-PCR was performed using the 

156 primers ITSF and ITSReub labeled with 6-FAM according to the chemical and thermal 

157 amplification protocol of Cardinale et al. (2004). Capillary electrophoresis was done by STAB 

158 Vida Lda. (Caparica, Portugal). Data were investigated via Peak Scanner Software 1.0 (Applied 

159 Biosystems, Monza, Italy) and the downstream matrix was normalized and analyzed according to 

160 Borruso, Zerbe & Brusetti (2015).

161

162 Data analysis

163 PAST software (Hammer, Harper & Ryan, 2001) was used for the statistical analysis. ANOVA 

164 was used to test for differences in the endophytic bacterial richness between seasons. Canonical 

165 correspondence analysis (CCA) of the endophytic microbial community structure in dependence 

166 of functional leaf traits and season was performed. Non-Parametric Multivariate Analysis of 

167 Variance (NPMANOVA) with Bonferroni corrected p-value was applied to investigate differences 

168 among the endophytic bacterial communities across the three seasons using Bray-Curtis 

169 dissimilarity distance.
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170 Linear discriminant analysis (LDA) effect size (LEfSe) algorithm was used to identify taxa 

171 preferentially abundant in each season using default parameters. Briefly, the algorithm identifies 

172 the indicator bacterial taxa specialized within the 3 seasons (Segata et al., 2011).

173 Given the nested design of the experiment, the variation of leaf functional traits across the 

174 three seasons was investigated applying linear mixed effect models in R (R Development Core 

175 Team 2014 version 3.1.2), using nlme package (Pinheiro et al., 2017). For SLA, SL, STNR, N, C, 

176 C:N and herbivory we analyzed each trait as response variable, season as fixed variable and, as 

177 random factor, we nested the branches from which we sampled the leaves in the respective trees. 

178 We log transformed the data that did not satisfied the assumption of variance normality tested with 

179 Shapiro test. 

180

181 RESULTS

182 Functional leaf traits and insect-mediated damage types

183 Figure 1 and Table 1 shows the results of functional leaf traits investigated in this study across the 

184 three sampling seasons. Leaf N and C were significantly lower in autumn than in spring and 

185 summer (p < 0.01). The C:N ratio and the level of herbivory were significantly higher in autumn 

186 than in spring and summer (p < 0.01). SL was significantly higher in spring compared to summer 

187 and autumn (p < 0.01). Among the insect mediated damage types searched in our plots, the 

188 herbivory-mediated damage was due to the damage-types of hole feeding, margin feeding and 

189 sucking. STNR and SLA did not show significant differences across the seasons (p > 0.05). 

190

191 Bacterial community structure

192 An average of 82 ± 15 peaks per sample representing bacterial richness, ranging from 200 bp to 

193 1200 bp, were found. No significant results in terms of number of peaks across the three seasons 

194 were found (spring 82 ± 9; summer 86 ± 19 and autumn 79 ± 14; ANOVA p-value: n.s.). 

195 NPANOVA showed significant differences between the bacterial community structure of spring 

196 and of autumn (p < 0.001), while the bacterial community structures of summer did not cluster 

197 apart representing a bridge between the two seasons (Table 2). Scattered peaks in between the 

198 range 550-850 bp were mostly found in spring and autumn, causing the separation between these 

199 two seasons. The LDA showed that 13 ARISA peaks were responsible of the discrimination of 

200 spring with respect to the other seasons, 14 peaks were typically discriminant for summer, and 9 
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201 for autumn. Most of those peaks were situated in the 550-880 bp slot, confirming the NPANOVA 

202 results (Table 3).

203

204 Canonical correspondence analysis (CCA)

205 Canonical correspondence analysis (CCA) was used to investigate the effects of functional leaf 

206 traits and the level of herbivory on endophytic bacterial communities across the seasons. 

207 Differentiation is illustrated by the first and second axes in the CCA (29.7% and 25.3%, 

208 respectively) and the leaf features fitted into the CCA. The CCA ordination diagram (Figure 2) 

209 revealed first, that community structure variation appeared along season (temporal sequence) and, 

210 second, the existence of relationships between plant foliar traits and endofoliar microbiota across 

211 the temporal sequence. In detail, the community variation is related mainly to the level of 

212 herbivory, N and SL, and less to STNR, C and SLA (length of vectors in the ordination diagram; 

213 Figure 2).

214

215 DISCUSSION

216 We explored the seasonal diversity behavior via fingerprinting ARISA of the of leaf endophytic 

217 bacterial communities. ARISA is a corroborate technique used to investigate bacterial structure 

218 variations and the correlations with environmental parameters (Esposito et al., 2013; Borruso, 

219 Zerbe & Brusetti 2015; Pioli et al., 2018) with a comparable robustness as Next Generation 

220 Sequencing (van Dorst et al., 2014). Differently by other fingerprinting techniques such as the 

221 Length Heterogeneity-PCR or the Denaturing Gradient Gel Electrophoresis of the partial 16S 

222 rRNA genes, ARISA can investigate the bacterial community at a deeper taxonomic resolution. 

223 Actually, ARISA can reach the subspecies level (Danovaro et al., 2006), via detection of the length 

224 polymorphisms of the internal 16S-23S ribosomal DNA spacers within the several copies of 

225 ribosomal operons in a bacterial cell (typically from 1 to 10 copies; Gürtler, 1999). Although the 

226 endophytic bacterial communities did not show significant differences in alpha diversity across 

227 the three seasons, their beta diversity differed mainly between spring and autumn (Table 2 and 

228 Figure 2). These results support the idea of an intimate association between endophytes and the 

229 leaf, seen as a dynamic micro-ecosystem that selects for different specific microbial communities 

230 along time. Regarding which taxa contribute to the observed difference between seasons, even if 

231 the attribution of single ARISA peaks to specific taxa cannot be conclusive due to the real 
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232 possibility that a peak could be represented by several taxa from different phyla, a putative raw 

233 taxon attribution could be done. For instance, according to some authors, many Gram negative 

234 bacterial species harbor ITS with tRNA genes (Triplett et al., 1999; Ranjard et al., 2000). Their 

235 spacers usually range between 500 and 800 bp (Gürtler & Stanisich, 1996). On the other side Gram 

236 positive bacteria harbor shorter ITS, while rhizobia have very long spacers, often longer than 1000 

237 bp (Gürtler & Stanisich, 1996). The length range between 500 and 600 bp is what had been 

238 observed in our case differentiating spring to autumn. We could hypothesize that seasons have an 

239 effect on the diversity of Gram negative bacteria. A different answer of Gram negative bacteria 

240 rather than Gram positive bacteria due to different environmental pressures had already been 

241 observed in other plant-related compartments, such as rhizosphere (Ciccazzo et al., 2014). 

242 Leaves have been traditionally considered as “short-lived environment”, where specialized 

243 bacteria can dynamically colonize new niches and leave others according to the leaf continuous 

244 modifications over seasons (Vorholt, 2012). Bulgari et al. (2014) hypothesized that the endophytic 

245 communities in Vitis vinifera should remain stable across the seasons in absence of bacterial plant 

246 pathogens such as phytoplasma. However, this is in contrast with our findings and those of other 

247 researchers. Influence of the seasonality on endophytic microbial community composition 

248 associated with different tree species (i.e. Acer negundo, Ulmus pumila, and U. parvifolia) were 

249 also found by Shen & Fulthorpe (2015). Moreover, others observed that the bacterial community 

250 composition in the phyllosphere was primarily driven by temporal changes and community 

251 succession (Copeland et al., 2015). In order to shed light on the processes behind community 

252 changes, we explored the role of leaf functional traits in bacterial structure dynamics. In fact, 

253 previous studies investigated the effect of migration and community succession in the phyllosphere 

254 microbiome and suggested that colonization, persistence, and succession of the community may 

255 be key-factors driving the phyllosphere microbiome (Redford & Fierer, 2009; Shade, McManus 

256 & Handelsman, 2013; Maignien et al., 2014; Copeland et al., 2015). The relevance of 

257 environmental conditions such as temperature optima of the bacteria or the changing physiology 

258 of tree host species have been discussed for their possible effects (Jansson & Douglas, 2007). 

259 However, previous studies did not look deeper into possible drivers in terms of plant functional 

260 characteristics behind the observed dynamical processes of the microbiome.

261 Given that we found a clear endophytic seasonal variation, it is highly interesting to 

262 understand better the potential leaf-level drivers behind the compositional variation. In fact, based 
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263 on our results, we suggest that foliar characteristics related to leaf-level herbivory, nutrient 

264 contents and stomatal length aperture affect directly the bacterial community composition over 

265 time. 

266 As a matter of fact, herbivory could be an effective way to inoculate microbial insects 

267 symbionts, commensals and pathogens into plant tissues. It is the case, for instance, of 

268 phytoplasmas inoculated into grapevine by Hemiptera-like leafhoppers (Gonellaet al., 2008; Alma 

269 et al., 2018). In our forest plots, several herbivory traces have been recorded during the 

270 experiments. In general, the majority of insect species causes single distinct damages on leaves 

271 (Labandeira et al., 2007). From a survey of herbivory types on Quercus petraea leaves in the forest 

272 of Monticolo, we detected seven types of recurring damages, i.e. margin feeding (detected in the 

273 90% of the observed leaves), surface feeding (61%), hole feeding (45%), sucking (31%), 

274 skeletonization (12%), mining (12%) and leaf rolling (9%). This number of herbivory damage 

275 types justifies the perception of a relatively high insect diversity since it has been shown that there 

276 is a quantitative relation between the richness of damage types and the insect species richness 

277 (Carvalho et al., 2015). Phloem-feeding insects could act as inoculating vectors of entire bacterial 

278 communities between different plant individuals, moving bacterial strains from a tree to another 

279 (Lòpez-Fernàndez et al., 2017). It is reasonable to hypothesize that, as insect abundance and 

280 diversity may change due to season variation (Grimbacher et al., 2018), also the endophytic 

281 bacterial communities potentially transmissible among tree individuals change, hence contributing 

282 to our observed results.

283 In addition, stomata are the major door for the leaf colonization by foliar bacterial 

284 pathogens (Underwood, Melotto & He, 2007; Melotto,Underwood & He , 2008). To counteract 

285 the entrance of potential pathogens, plants have evolved a number of mechanisms to detect and 

286 remove pathogenic bacterial cells from their tissues, regulating to some extent the access of 

287 bacteria through stomata (Gimenez-Ibanez et al., 2017). This is due to the ability of plants in 

288 detecting specific molecular signals such as bacterial lipopolysaccharides, flagellins or elongation 

289 factors (Underwood, Melotto & He, 2007). Consequently, plants close the majority of their leaf 

290 stomata. However, bacteria may overcome this mechanism of defense, entering into the leaf 

291 intercellular spaces by taking advantage of those stomatal guard cells that are not able to react to 

292 the presence of bacterial signals (Underwood, Melotto & He, 2007). We observed that SL 

293 influenced the shaping of the endophytic community structure, especially in spring (Fig. 2). This 
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294 observation could mirror the entrance of specific as well as unspecific bacterial strains into leaves 

295 when the leaves were growing. Actually, Gailing et al (2008) found that in Quercus robur the 

296 variability of stomatal number is genetically determined. Additionally, Turner & Heichel (1977) 

297 demonstrated for Quercus rubra that SL reaches it maximum before leaves developed their 

298 maximum areas in late spring. It is plausible that bacteria enter into the leaf as soon as it has 

299 flashed, and then a sort of successional dynamic is established until reaching an equilibrium once 

300 the stomata shape are fixed. The difference in SL between spring leaves from summer and autumn 

301 leaves may depend by the contraction of the leaf pool available for measurements caused by the 

302 loss of the leaves that occur both naturally during the vegetative season (Brooke et al., 1996) and 

303 because of the detected herbivory.

304 Finally, leaf nutrient contents and their changes can influence bacteria (Kembel et al., 

305 2014). It has been shown that endophytic bacterial taxa able to fix nitrogen occur in oak species 

306 (Tashi-Oshnoei, Harighi & Abdollahzadeh, 2017), in the wild poplar Populus trichocarpa leaves 

307 (Doty et al., 2016), and in Pinus flexilis needles (Moyes et al., 2016), helping plants establishment 

308 and growth in N-limited environment. Eventually, a drop in leaf nitrogen content could challenge 

309 bacterial shifts towards nitrogen-fixing taxa and in contrast to denitrifying bacteria. 

310 Our results of diminishing nutrients such as C and N with leaf aging is in line with other 

311 studies (Li et al., 2017), while other functional traits related to the stomata, such as STNR and 

312 SLA did not vary significantly along season. Another study on leaf traits of seven different woody 

313 species grown under experimental conditions shed light on their seasonal variation (Römermann 

314 et al., 2016). The results of this study highlight that SLA and stomatal size were robust traits across 

315 season in terms of small intraspecific variation. In comparison, our species Q. petraea also has 

316 stable STNR and SLA levels. However, as explained above, the changes in SL most likely reflect 

317 changes in the leaves’ pool of the forest as the leaves’ pool was diminished by herbivory and 

318 browsing that led to leaf loss after the spring season. Moreover, herbivory, that increases over 

319 season due to elongated exposure time, can have a direct impact on endophytic bacteria as well as 

320 an indirect effect by influencing other leaf characteristics. For example, the open structures of the 

321 leaf, limited to the size and number of stomata in intact leaves, are largely modified by herbivory 

322 that exposes further leaf tissue. Due to the increasing rate of changes that can be assumed with 

323 aging (Suzuki et al., 1987; Chavana-Bryant et al., 2017), we expect that leaf characteristics exert 

324 a differential impact during aging on the bacterial community.
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325

326 Conclusions

327 Based on our findings, we suggest that herbivory, nitrogen content, and size of stomatal 

328 aperture at the leaf level are main drivers affecting the endophytic bacterial community 

329 composition in oaks growth in alpine forest environments. We argued that herbivory and stomata 

330 length are the main doors from where bacteria enter to colonize the leaf. Consequently, the 

331 endophytic community assemblages switch during the progression of seasons, when the stomatal 

332 length increases during the leaf germination and elongation, and when the chemical characteristics 

333 of the leaf are different from those in autumn.
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553 Figure and Tables captions

554

555 Figure 1 Differences of foliar traits (N = nitrogen, C = carbon, C:N = carbon/nitrogen ratio, SLA= 

556 specific leaf area, SL = stomatal length, STNR = stomatal number per reference area, HERB = 

557 level of herbivory) among three seasons (spring, summer, autumn). Significant differences 

558 according to linear mixed effect models followed by post-hoc test are indicated by different lower 

559 case letters. Graphics without letters were not significant. Detailed results of linear mixed effect 

560 models are given in Table 3.

561

562 Figure 2 CCA analysis of endophytic communities across a temporal sequence (spring: blue dots; 

563 summer: green dots; autumn: red dots) and plant foliar traits. CCA was calculated with the 

564 following plant foliar traits: HERB = level of herbivory; STNR = number of stomata; SLA = 

565 specific leaf area; SL = length of stomata; N = leaf nitrogen content; C = leaf carbon content. 

566

567 Table 1 Results of linear mixed effect models for each trait . A: leaf nitrogen content; B: leaf 

568 carbon content; C: C:N ratio; D: specific leaf area (SLA); E: stomatal length (SL); F: stomatal 

569 number /STNR): G: herbivory level. Each single trait was analyzed as response variable, season 

570 as fixed variable and branches nested in the respective trees as random variable. The basic level 

571 (intercept) corresponds to the spring season.

572

573 Table 2 P value results from Non-Parametric MANOVA (NPMANOVA) with Bonferroni 

574 corrected p value among endophytic bacterial communities across the three seasons (Bray-Curtis 

575 dissimilarity).

576

577 Table 3 OTU biomarkers characterizing each single season on the basis of the Linear Discriminant 

578 Analysis effect size.
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Figure 1

Differences of foliar traits among the three analyzed seasons

Differences of foliar traits (N = nitrogen, C = carbon, C:N = carbon/nitrogen ratio, SLA=

specific leaf area, SL = stomatal length, STNR = stomatal number per reference area, HERB

= level of herbivory) among three seasons (spring, summer, autumn). Significant differences

according to linear mixed effect models followed by post-hoc test are indicated by different

lower case letters. Graphics without letters were not significant. Detailed results of linear

mixed effect models are given in Table 3.
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Figure 2

CCA analysis of endophytic communities across the three seasons

CCA analysis of endophytic communities across a temporal sequence (spring: blue dots;

summer: green dots; autumn: red dots) and plant foliar traits. CCA was calculated with the

following plant foliar traits: HERB = level of herbivory; STNR = number of stomata; SLA =

specific leaf area; SL = length of stomata; N = leaf nitrogen content; C = leaf carbon content.
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Table 1(on next page)

NPMANOVA of the endophytic community structures

P value results from Non-Parametric MANOVA (NPMANOVA) with Bonferroni corrected p value

among endophytic bacterial communities across the three seasons (Bray-Curtis dissimilarity).
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1 Table 1 Results of linear mixed effect models for each trait (N = leaf nitrogen content, C = leaf 

2 carbon content, C:N = C:N ratio, SLA = specific leaf area, SL = stomatal length, STNR = stomatal 

3 number, HERB = herbivory level). Each single trait was analyzed as response variable, season as 

4 fixed variable and branches nested in the respective trees as random variable. The basic level 

5 (intercept) corresponds to the spring season.

6

Trait Fixed 

effect

Value Std.Error DF t-value p-value

N (Intercept) 2.04 0.07 28 30.67 0.00

Summer -0.07 0.09 28 -0.85 0.41

Autumn -0.57 0.09 28 -6.51 0.00

log(C ) (Intercept) 3.86 0.00 28 882.56 0.00

Summer -0.01 0.00 28 -1.68 0.10

Autumn -0.02 0.00 28 -4.90 0.00

log(C:N) (Intercept) 3.16 0.05 28 69.09 0.00

Summer 0.03 0.06 28 0.54 0.59

Autumn 0.33 0.06 28 5.82 0.00

SLA (Intercept) 13.98 0.99 28 14.05 0.00

Summer -0.84 1.26 28 -0.66 0.51

Autumn 0.97 1.26 28 0.77 0.45

SL (Intercept) 25.69 0.58 28 44.00 0.00

Summer -1.66 0.31 28 -5.44 0.00

Autumn -1.49 0.31 28 -4.87 0.00

STNR (Intercept) 55.48 3.87 28 14.35 0.00

Summer 2.37 1.72 28 1.38 0.18

Autumn 0.81 1.72 28 0.47 0.64

log(HERB) (Intercept) 2.08 0.13 28 16.29 0.00

Summer 0.39 0.17 28 2.30 0.03

Autumn 0.88 0.17 28 5.16 0.00

7
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Table 2(on next page)

Linear mixed effect models for each leaf trait

Results of linear mixed effect models for each trait (N = leaf nitrogen content, C = leaf

carbon content, C:N = C:N ratio, SLA = specific leaf area, SL = stomatal length, STNR =

stomatal number, HERB = herbivory level). Each single trait was analyzed as response

variable, season as fixed variable and branches nested in the respective trees as random

variable. The basic level (intercept) corresponds to the spring season.
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1 Table 2 P value results from Non-Parametric MANOVA (NPMANOVA) with Bonferroni 

2 corrected p value among endophytic bacterial communities across the three seasons (Bray-Curtis 

3 dissimilarity).

4

Seasons Summer Autumn

Spring 0.0804 0.0009

Summer / 0.2484

5

6
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Table 3(on next page)

LEfSe analysis showing the main OTU biomarkers characterizing each single season.

OTU biomarkers characterizing each single season on the basis of the Linear Discriminant

Analysis effect size.
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1 Table 3 OTU biomarkers characterizing each single season on the basis of the Linear Discriminant 

2 Analysis effect size.

3

OTU Season LDA-score p-value

OTU620 Autumn 3.22 0.033

OTU660 Autumn 3.51 0.016

OTU713 Autumn 3.26 0.043

OTU833 Autumn 2.93 0.043

OTU582 Autumn 4.05 0.000

OTU600 Autumn 3.24 0.035

OTU1160 Autumn 2.83 0.039

OTU640 Autumn 3.09 0.034

OTU850 Autumn 3.06 0.035

OTU222 Spring 4.38 0.000

OTU454 Spring 4.00 0.000

OTU671 Spring 3.07 0.043

OTU530 Spring 3.15 0.004

OTU286 Spring 3.18 0.007

OTU361 Spring 3.90 0.000

OTU213 Spring 2.95 0.014

OTU547 Spring 3.65 0.043

OTU238 Spring 3.68 0.050

OTU383 Spring 3.23 0.043

OTU474 Spring 3.68 0.043

OTU654 Spring 4.36 0.004

OTU519 Spring 3.79 0.024

OTU350 Summer 3.08 0.008

OTU575 Summer 3.27 0.042

OTU573 Summer 3.54 0.030

OTU316 Summer 2.98 0.014

OTU842 Summer 2.67 0.043

OTU598 Summer 3.13 0.015

OTU662 Summer 3.16 0.030

OTU666 Summer 2.87 0.014

OTU529 Summer 3.17 0.004

OTU995 Summer 2.91 0.014

OTU727 Summer 2.79 0.043

OTU1119 Summer 2.70 0.014

OTU564 Summer 2.79 0.043

OTU634 Summer 2.82 0.043
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