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ABSTRACT
The altitudinal effects on the distributions of phyllosphere fungal assemblages in
conspecific plants remain poorly elucidated. To address this, phyllosphere fungal
communities associated with Mussaenda shikokiana were investigated at four sites
across a 350 m elevation gradient in a subtropical forest by employing Illumina
metabarcoding of the fungal internal transcribed spacer 2 (ITS2) region. Our results
demonstrated that phyllosphere fungal assemblages with a single host possessed high
taxonomic diversity and multiple trophic guilds. OTU richness was significantly
influenced by elevation. The elevation gradient also entailed distinct shifts in the
community composition of phyllosphere fungi, which was significantly related to
geographical distance andmean annual temperature (MAT). Additionally, comparison
of phyllosphere fungal networks showed reduced connectivitywith increasing elevation.
Our data provide insights on the distribution and interactions of the phyllosphere fungal
community associated with a single host along a short elevation gradient.

Subjects Ecology, Mycology
Keywords Phyllosphere fungi, Biodiversity, Elevation gradient, Mussaenda shikokiana, High-
throughput sequencing

INTRODUCTION
The fungal kingdom represents one of the largest and most diverse eukaryotic lineages with
estimates of around 5.1 million extant species (Blackwell, 2011; Truong et al., 2017). Fungi
function as important ecosystem components that govern global carbon cycling, plant
pathology, development and reproduction (Tedersoo et al., 2014). Although fungi directly
impact ecosystem functions, only a fraction of the total fungal species have been described
(Truong et al., 2017). Therefore, it is essential to obtain adequate taxonomic and ecological
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knowledge of members of the fungal lineage to advance basic ecology and to recognize
and predict the future consequences of environmental changes (Bryant et al., 2008; Geml
et al., 2014).

The distribution pattern of species communities along altitudinal gradients is a
fundamental theme of ecology and biogeography, mainly because altitudinal gradients
are often characterized by different climatic conditions and complex changes in abiotic
and/or biotic factors over short geographic distances (Bryant et al., 2008; Ren et al., 2018;
Yao et al., 2017). Although there is a long history of studies that have been conducted
on the elevational patterns of vascular plants and animals (Bryant et al., 2008), similar
studies have only recently been made possible for microbial communities with the
advent of culture-independent molecular techniques (Datlof et al., 2017; Lanzen et al.,
2016; Wainwright et al., 2017; Zhang et al., 2018c). Several studies of the elevation patterns
of fungal communities showed no consistent conclusions. In a tropical montane cloud
forest, Looby, Maltz & Treseder (2016) documented increasing alpha-diversity of soil
fungi and a significant shift in the community composition with increasing elevation. A
similar elevational pattern was observed in soil fungal communities in the Italian Alps
(Siles & Margesin, 2016). However, opposite patterns of species richness were found for
ectomycorrhizal fungi in the Hyrcanian forests of northern Iran (Bahram et al., 2012) and
for arbuscularmycorrhizal fungi in a Tibetan alpine grassland (Liu et al., 2015). In addition,
a unimodal pattern, with a mid-elevation peak in diversity, was detected in ectomycorrhizal
fungal communities on the northwest slopes of the Fuji mountains (Miyamoto et al., 2014).
In a study conducted in the Cairn Gorm mountains in Scotland, Jarvis, Woodward &
Taylor (2015) found that elevation did not influence ectomycorrhizal fungal richness
of Scots pine, but strongly influenced community composition. Along gradients in the
Changbai mountains in China, neither the species richness nor community composition
of soil fungi were significantly correlated with elevation (Shen et al., 2014). These different
distribution patterns may partly be explained by difference in environmental variables,
including edaphic qualities (Geml et al., 2014; Jarvis, Woodward & Taylor, 2015; Shen et al.,
2014; Siles & Margesin, 2016), mean annual temperature and precipitation (Bahram et al.,
2012). However, most studies focused only on soil or root associated fungal assemblages,
and few studies have investigated the altitudinal effects on the distribution of phyllosphere
fungi (Cordier et al., 2012).

In natural environments, microorganisms usually live within complex ecological
networks rather than existing in isolation (Faust & Raes, 2012). Co-occurrence patterns,
which describe how species within a community coexist, are omnipresent and are crucial
for understanding the structure of microbial communities and for revealing the potential
interactions between microbial taxa (Kay et al., 2018; Ma et al., 2016). Network analysis,
which can identify and describe taxon co-occurrence patterns in large datasets, has proven
to be a powerful method that has been recently applied for characterization of bacterial
communities across a wide variety of habitats (Baldassano & Bassett, 2016); including
soil (Barberan et al., 2012; Jiao et al., 2016), ocean (Milici et al., 2016), gut (Liggenstoffer
et al., 2010; Zhang et al., 2018b; Zhang et al., 2014), activated sludge (Ju et al., 2014), and
mammalian milk (Li et al., 2017). These studies have uncovered previously unknown
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co-occurrence patterns, thereby offering new insight into the distribution of species
associations. Several processes may be responsible for inter-taxa associations including
niche differentiation, shared environmental requirements and phylogenetic relatedness
(Kay et al., 2018; Zhang et al., 2018a). Relative to bacterial communities, there have been far
fewer studies conducted using high throughput sequencing data to detect the co-occurrence
patterns of fungal communities. By analyzing community composition of arbuscular
mycorrhizal fungi across Europe, Bouffaud et al. (2016) suggested that closely-related taxa
are more likely to co-occur than distantly-related species. Moreover,He et al. (2017) found
greater linkage in soil fungal networks when the seasonal precipitation was manipulated,
suggesting that inter-species interactions may be intensified to adapt to differences in water
availability. In addition, a study conducted on the networks of fungal communities in soils
where there has been a prolonged potatomonoculture demonstrated scale-free, small world
and modular properties (Lu et al., 2013). Scale-free network usually share an important
property: a few fungi have a tremendous number of connections to other fungi, whereas
most fungi have just a handful. Small world network usually showed small average path
length and high clustering coefficient, which indicated that the fungus in this community
has close interaction. Modularity is one measure of network structure. Networks with
high modularity have dense connections between the nodes within modules but sparse
connections between nodes in different modules.

Phyllosphere fungi, which occupy leaves superficially or intracellularly without causing
visible symptoms, are important factors affecting plant health and ecosystem function
(Drake, White Jr & Belanger, 2018; Gomes et al., 2018; Jumpponen & Jones, 2009). For
example, Phyllosphere fungi can protect host plants from pathogen damage (Arnold et
al., 2003; Mejia et al., 2008), enhance tolerances against herbivores (Albrectsen et al., 2010;
Estrada, Wcislo & Van Bael, 2013; Hartley & Gange, 2009), and play an essential role in
the initial decomposition of leaves following senescence (Guerreiro et al., 2018; Kembel &
Mueller, 2014; Voriskova & Baldrian, 2013). Although the elevational distribution patterns
of phyllosphere fungal communities have been previously described in the Gave Valley
of the French Pyrenees (Cordier et al., 2012), such an examination of the elevational
co-occurrence patterns of phyllosphere fungi in a subtropical climate has not yet been
performed.

Mussaenda shikokiana Makino is a mostly autogamous plant species that is widely
distributed throughout the warmer parts of China and Japan (Chen, Luo & Zhang, 2013).
The floral diversity andpollination biology ofM. shikokianahas been described in a previous
study (Chen, Luo & Zhang, 2013), but little is known about the community structure of
its phyllosphere fungal assemblages. To assess this, we used Illumina MiSeq sequencing
data of fungal ribosomal internal transcribed spacer 2 (ITS2) to analyze the changes in the
composition and inter-taxa interactions of the phyllosphere fungal communities inhabiting
M. shikokiana along an altitudinal gradient in a subtropical forest. Specifically, we tried to
address the following questions: (1) How does the richness and community composition
of the phyllosphere fungal assemblage change in response to the elevation gradient? (2)
Does the network topology of the fungal community shift significantly with elevation?
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MATERIALS AND METHODS
Study site and sampling
This study was conducted in the Laoshan Nature Reserve of Jingxiu, which is located in
Guangxi province, China. This region possesses a subtropical moist climate and abundant
vegetation. The annual mean rainfall is 1,824 mm, and the mean annual temperature is
17.0 ◦C with the lowest and highest temperatures in January (13.8 ◦C) and July (21.7 ◦C),
respectively. Here, M. shikokiana, an erect shrub that possesses yellow hermaphrodite
flowers and thinly papery leaves, occurs at the southern margin of its range at a mean
altitude of 1000 m above sea level (Chen, Luo & Zhang, 2013; Chen, Luo & Zhang, 2014).
The leaves ofM. shikokiana contains several biologically active compounds that significantly
stimulate immune activity andhas been used as aChinese folkmedicine (Takeda, Nishimura
& Inouye, 1977). Sampling was conducted at four different altitudinal stands (838 m, 934
m, 1,078 m and 1,185 m), each of which contained a high proportion of this species.
Mean annual temperature (MAT) and mean annual precipitation (MAP) for each site
were obtained from the WorldClim global climate data set with a resolution of 30 s
(http://worldclim.org/version2; Table S1). At each elevation, we selected five individuals
(>10 m apart from each other) that were in the fruiting stage (September; 2014). Nine
mature and asymptomatic leaves from the middle of three current-year shoots were
randomly collected from each individual plant, and immediately placed in sterile plastic
bags containing sufficient silica gel for quick drying. The samples were then brought back
to the laboratory and stored at −80 ◦C until DNA extraction.

Illumina MiSeq sequencing preparation
Homogenization and mechanical cell disruption of the freeze-dried samples were carried
out by grinding with liquid nitrogen using sterilized mortars and pestles. The resulting
powder was then transferred to tubes with CTAB (2% CTAB, 100 mM Tris–HCl, 1.4 M
NaCl, 20 mM EDTA, pH 8.0) extraction buffer preheated to 68 ◦C. DNA extraction was
performed following the protocol modified by Cota-Sanchez, ReMarchuk & Ubayasena
(2006). Briefly, an equal volume of chloroform–isoamylol mixture was added to each
tube and mixed thoroughly to form an emulsion. The mixture was spun at 13,000 g for
12 min and the aqueous phase was removed into a fresh centrifuge tube. The aqueous
phase containing DNA was re-extracted using chloroform:isoamyl alcohol (24:1) until no
interface was visible. DNA was then precipitated with an equal volume of isopropanol.
The resulting genomic DNA was precipitated at 10,000 g for 3 min and the DNA pellet
was washed with 70% ethanol three times. Finally, the DNA pellet was resuspended in
100 µL TE buffer. A NanoDrop spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA) was used to quantify the extracted DNA.

To amplify the fungal ITS2 region of the nuclear ribosomal repeat unit, a semi-
nested PCR approach was employed. Initial amplification of the entire ITS region was
accomplished with conventional primers ITS1F (CTTGGTCATTTAGAGGAAGTAA)
(Gardes & Bruns, 1993) and ITS4 (TCCTCCGCTTATTGATATGC) (White et al., 1990).
The first round of amplification was carried out in 25 µL reaction volumes containing final
concentrations of 0.2 mM dNTP, 0.4 µM of each primer, 2.5 mM MgSO4, 5 ng template
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DNA and 1 unit KOD-Plus-Neo DNA polymerase (TOYOBO, Osaka, Japan). Thermal
cycling conditions for this amplification were as follows: 30 cycles of 94 ◦C (1 min), 56 ◦C
(50 s), and 68 ◦C (1 min) after an initial denaturation at 94 ◦C (4 min), and followed
by a final extension at 68 ◦C for 10 min. The PCR products were diluted 50 times and
1 µL of each dilution was used as the template for the second amplification of the fungal
ITS2 region. The primer fITS7 (GTGARTCATCGAATCTTTG) (Ihrmark et al., 2012) and
reverse primer ITS4 extended with a unique sample identification barcode were used for
the second stage of PCR reaction, which was performed under the same amplification
conditions. Negative PCR controls (in which the template DNA was replaced with sterile
water) were used to evaluate whether there was contamination during the entire extraction
and PCR process. Each sample was amplified in triplicate to minimize PCR biases and
the three replicate products were mixed in equal volumes into a general sample that was
purified by using an Ultra-Clean PCR cleanup kit (Mo Bio, Carlsbad, CA, USA). The
samples were pooled with an equal molar amount (100 ng) from each sample and adjusted
to 10 ng µl−1. The library was applied to an IlluminaMiSeq PE250 platform for sequencing
using the paired end ( 2× 250 bp) option.

Bioinformatics workflow
The trimming, sorting and quality filtering of reads were processed using the QIIME
Pipeline (Caporaso et al., 2010). All sequences were demultiplexed into samples based
on unique identification barcodes. FLASH-1.2.8 software (Magoc & Salzberg, 2011) was
used to combine overlapping paired-end reads. The ITS2 region from the remaining
sequences was identified and extracted using the fungal ITSx software (Bengtsson-Palme et
al., 2013). Chimeras were detected and eliminated using the UCHIME program (Edgar et
al., 2011) referenced with the UNITE database ( https://unite.ut.ee/; (Koljalg et al., 2013).
Non-chimera sequences that passed the filtering processes were binned into operational
taxonomic units (OTUs) at a 97% similarity cutoff using the UPARSE pipeline (Edgar et al.,
2011). All singletons OTU were excluded from the dataset. Subsequently, the taxonomic
identity of each OTU was determined based on BLAST search against the UNITE reference
database, and a BLAST e-value <1e−was a criterion for matching. Further, OTUs occurring
in only one sample and OTUs with <10 reads were removed because those rare sequences
may have been derived from contaminations or PCR/sequencing errors (Toju, Tanabe
& Ishii, 2016). For downstream analyses, each sample was rarefied to the minimum
sequencing depth by randomly selecting subsets of reads implemented in the MOTHUR
program (Schloss et al., 2009).

Community analyses
To evaluate the comprehensiveness of the sampling strategy, the taxa accumulation
curves for each site were calculated by employing the ‘‘specaccum’’ function in the vegan
R package (Harrison et al., 2016; Oksanen et al., 2016). Vectors representing horizontal
spatial structure were obtained by an analysis of principal coordinates of neighbor matrices
(PCNM) (Borcard & Legendre, 2002) based on the geographical coordinates using the
‘‘PCNM’’ package (Legendre et al., 2010). Linear regression models were used to test the
relationship between fungal OTU richness and elevation.
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To identify the effects of elevation, PCNM vectors, and climate factors on phyllosphere
fungal OTU richness, we first constructed generalized linear mixed models (GLMM)
included elevation site as a random effect. However, we found that random factors
explaining no variation in the data, so we switched to construct generalized linear
models (GLM). These models were then examined by analysis of variance (ANOVA)
tests. Moreover, the effects of those factors on fungal community structure was assessed
by permutational multivariate analysis of variance (PERMANOVA) with site as the
random effect using the vegan R package (9999 random permutations). Non-metric
multidimensional scaling (NMDS) was performed with the Bray–Curtis distance based on
aHellinger-transformedmatrix. Subsequently, the ‘‘envfit’’ function of the vegan R package
was used to fit the elevation variable into theNMDSplot. Altitudinal distances, geographical
distance and Bray-Curtis dissimilarity matrices were analyzed for correlations to evaluate
the distance-decay rates, and Mantel tests were employed to assess the significance of the
distance-decay regressions from zero (9999 random permutations) (Oono, Rasmussen
& Lefevre, 2017). The appropriate trophic categories (symbiotroph, pathotroph and
saprotroph) of each OTU were inferred by searching against the FUNGuild data base
(Nguyen et al., 2016b).

To further investigate the phyllosphere fungal taxonomic distribution, significant
taxonomic differences between the four elevation sites were identified using Linear
Discriminant Analysis (LDA) effect size (LEfSe) (Segata et al., 2011), which introduces
the non-parametric factorial Kruskal–Wallis (KW) sum-rank test (α= 0.05) to identify
taxa having significant differential abundances between four elevation stands (employing
one-against-all comparisons) (Bokulich et al., 2014). A logarithmic LDA score of 3.0 was
set as the threshold for discriminative features.

To identify the indicator OTUs for each elevation site, LEfSe analysis and Legendre’s
INDVAL analysis were combined as per Hubbard et al. (2018). Legendre’s INDVAL
procedure was performed in R using the ‘‘labdsv’’ package (Sapkota et al., 2015). The
fungal OTUs with an indicator value >0.25 and a significant P values (P < 0.05) were
considered indicator species (Dufrene & Legendre, 1997; Sapkota et al., 2015). However,
OTUs with low abundance hold little indicator information (Rime et al., 2015). To avoid
random effects caused by rare OTUs, only those with >500 reads were defined as true key
players (Eusemann et al., 2016).

Network analyses
To remove poorly represented OTUs and reduce network complexity, only abundant
OTUs with a proportion of the total sequences over 0.02% were kept in the OTU table. The
co-occurrence network was inferred based on the Spearman’s Rho between the pairwise
OTUsmatrix constructed by the psych R package (Revelle, 2017). The P-values for multiple
testing were calculated by using the false discovery rate (FDR) controlling procedure as per
Benjamini & Hochberg (1995). A valid co-occurrence event was considered to be robust if
the correlation coefficient r >|0.6| and if it was statistically significant at P < 0.05 (Widder
et al., 2014). Network images for each elevation site were generated with Gephi (Bastian,
Heymann & Jacomy, 2009). To describe the topology properties of the co-occurrence
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networks, the feature set (number of positive correlations, number of negative correlations,
number of vertices, average degree, average path length, centralization betweenness,
diameter, centralization degree and clustering coefficient) was calculated with the igraph
R package (Csardi, 2006). Network diameter is a measure of how integrated the network
is (Proulx, Promislow & Phillips, 2005). A network that has multiple fractured components
would have a smaller average diameter (Lawes et al., 2017). Spearman correlations and
significance tests (level at p< 0.05) between those properties were calculated and plotted
using the corrplot R package (Taiyun & Viliam, 2017).

RESULTS
Data characteristics
In total, 451,726 raw reads were obtained using Illumina MiSeq sequencing of the ITS2
amplicon libraries. After a series of filterings, 256,258 high-quality reads were clustered
into 792 operational taxonomic units (OTUs) at a 97% sequence similarity cutoff. Finally,
the sequence number of each sample was rarefied to 4606, resulting in a normalized
dataset that contained 708 fungal OTUs. The abundance distribution of the OTUs was
highly skewed, with plentiful rare and only a small number of very abundant OTUs.
The 50 most abundant OTUs accounted for 72.4% of all sequences. The rarefaction and
species accumulation curves reached a saturation plateau, indicating that our sampling
and sequencing depths were sufficient to capture the majority of the phyllosphere fungal
OTUs at each elevation site (Fig. 1A). Fungal communities were strongly dominated by
members of the phylum Ascomycota (84.1% of all reads), followed by Basidiomycota
(13.9%). The relative abundance of Basidiomycota increased slightly with elevation. At
the class level, the most abundant OTUs were assigned to Dothideomycetes (47.0%),
Eurotiomycetes (19.3%), Sordariomycetes (12.3%) and Tremellomycetes (8.0%) (Fig. 2A).
Different community compositions between elevations were observed at this taxonomic
level (Fig. 2B). For example, the abundance of the Eurotiomycetes and Tremellomycetes
was higher at the highest elevation than at other sites, while Ustilaginomycetes species were
hardly found at 1,185 m. Among the 52 identified orders, the three most abundant were
Capnodiales (27.3%), Chaetothyriales (19.3%) and Pleosporales (11.9%). A total of 210
genera were classified, and Cladosporium (15.4%) was the most abundant genus in the M.
shikokiana phyllosphere fungal community. The taxonomic assignment of each OTU is
provided in Table S2.

At the genus level, 71.9% of OTUs (509 of 708) were assigned to functional groups
in FUNGuild database (Nguyen et al., 2016b). Dominant guilds were classified in seven
groups of trophic modes (Fig. 2B). Pathotrophic fungi were the highest in abundance
(29.5% of all sequences), followed by the pathotroph-symbiotroph group (19.8%), and
the saprotroph group (17.0%; Fig. 2C). Compositions of trophic guilds were also different
between elevations (Fig. 2D). The relative abundance of the pathotrophs was highest at
the lowest elevation, while the symbiotrophs were more abundant at the highest elevation
than at other sites.
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Figure 1 Fungal richness along the elevation gradient. (A) OTU accumulation curves of the phyllo-
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Variation in fungal richness and community composition
Fungal OTU richness increased significantly with increasing elevation (R2

= 0.243,
P = 0.016; Fig. 1B). The generalized linear model (GLM) also supported a significant
effect of elevation on M. shikokiana phyllosphere fungal richness (F = 6.484, P = 0.021;
Table S3). The nonmetric multidimensional scaling (NMDS) plot revealed a general
clustering according to elevation site, and the members of the 1,185 m stand were clearly
separated from the other clusters (Fig. 3A). The fit of the variable selected by the ‘‘envfit’’
function showed that patterns of community similarity were strongly structured by
elevation (R2

= 0.736, P = 0.001) followed by PCNM vector (R2
= 0.534, P = 0.003) and

MAT (R2
= 0.739, P = 0.001). The significant effects of those factors on the community

structure were further reflected in the results by the permutational multivariate analysis of
variance (PERMANOVA), as∼16.0%, 12.2% and 10.9% of community variation could be
explained by elevation, PCNM andMAT, respectively (Table 1). Furthermore, Mantel tests
indicated that fungal community dissimilarities were significantly positively correlated with
altitudinal distance (r = 0.570, P = 0.001; Fig. 3B) and geographical distance (r = 0.503,
P = 0.001; Fig. 3C), respectively.

The community compositions of phyllosphere fungi between the four elevation sites
were significantly different, as is shown by the linear discriminant analysis effect size
(LEfSe) cladogram (Fig. 4). These results indicate that many groups at different taxonomic
levels can be significantly distinguished along the elevation gradient. For example,
Sordariomycetes, Ustilaginomycetes, and Agaricomycetes appeared as main discriminant
clades at 838 m, 934 m, and 1,078 m, respectively. Eurotiomycetes and Lecanoromycetes
are the most differentially abundant fungal classes at 1,185 m. At the taxonomic order
level, Glomerellales, Diaporthales and Chaetothyriales were significantly enriched at
838 m; Ustilaginales was found to predominate at 934 m; Hysteriales, Sordariales,
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Microbotryales, Agaricales, Corticiales and Thelephorales were more abundant at 1,078 m;
and Chaetothyriales, Polyporales and Lecanorales presented differential abundances at
1,185 m.

Taken together, the LEfSe and INDVAL analyses detected a total of four indicator
OTUs (Mycosphaerella quasiparkii, Gibberella fujikuroi, Colletotrichum gloeosporioides
and Phyllosticta capitalensis) that were significantly associated with the phyllosphere
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munity composition. (A) Nonmetric multidimensional scaling (NMDS) ordination of variation in com-
munity structure (Bray–Curtis dissimilarity) of the phyllosphere fungal assemblages. The arrow represents
significant (P < 0.01) vectors chosen by the ‘‘envfit’’ function to fit the fungal communities. (B) Correla-
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(C) Correlations between geographical distance and Bray-Curtis dissimilarities of the phyllosphere fungal
community. Mantel test results are shown on the figures.
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Table 1 Relative importance of elevation and geographical distance on the phyllosphere fungal com-
munity composition as revealed by permutational multivariate analysis of variance (PERMANOVA).

Variable DF SS F-statistics R2 P value

Elevation 1 0.765 4.218 0.160 ***

PCNM 1 0.584 3.219 0.122 ***

MAT 1 0.519 2.861 0.109 ***

Residuals 16 2.900 0.608
Total 19 4.767 1.000

Notes.
DF, degrees of freedom; SS, sum of squares; PCNM, principal coordinates of neighbor matrices; MAT, mean annual tem-
perature.

***P < 0.001.

at 838 m; five indicator OTUs (Ustilago sp., Cladosporium sp., Meira sp. Hannaella sp.
and Chaetothyriales sp.) at 934 m; nine indicator OTUs (Plectosphaerella cucumerina,
Pseudopithomyces maydicus, Ramularia rumicis-crispi, Bulleribasidium variabile, Psiloglo-
nium sp., Pseudocercospora fici, Strelitziana mali, Phyllosticta sp. and Tetracladium sp.) at
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1,078 m; and eight indicator OTUs (Cryptococcus sp., Cyphellophora gamsii, Chaetothyriales
sp., Trichomerium foliicola, Periconia sp., Cryptococcus sp., Phyllosticta juglandis and
Wojnowiciella cissampeli) at 1,185 m (Fig. 5).
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Key topological properties of the co-occurrence networks
Co-occurrence patterns of the phyllosphere fungal communities were constructed for
each elevation site (Fig. 6). Statistically significant and strong correlations were visualized
as fungal association networks. Topological properties delineated the interaction pattern
nodes, and were used to distinguish differences between the network structures of the four
elevation groups. The clustering coefficient, which reflects how well nodes are connected
with neighboring ones, decreased significantly with increasing elevation (Fig. 7). This
indicated that the network became more discrete and sparser with increasing elevation.
The network diameters of the M. shikokiana phyllosphere fungal communities showed a
significantly decrease with elevation (Fig. 7). In total, over 98% of all correlations were
positive. However, the negative links were significantly positive related to elevation (Fig.
7), indicating an increasing mutual exclusion between the fungal species.

DISCUSSION
Overall taxonomic diversity and community richness
A taxonomically diverse assemblage of phyllosphere fungi (708 OTUs) was detected
in M. shikokiana, with taxa from numerous genera (210) and families (134). The
OTU richness was higher than that of the needle mycobiome of Picea glauca at the
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northern treeline in Alaska (Sapkota et al., 2015), but lower than that of the phyllosphere
fungal community of Fagus sylvatica in the French Pyrenees (Cordier et al., 2012). The
phyllosphere fungal communities were largely composed of Ascomycota and dominated
by members of Dothideomycetes, as previously reported in foliar fungal studies. For
example, Yang et al. (2016a) found that the phyllosphere fungi of Betula ermanii in the
Changbai mountains were dominated by Ascomycota, and in particular by members of
Dothidiomycetes. Harrison et al. (2016) also revealed that the majority of fungal OTUs
associated with the leaves of Sequoia sempervirens in the western United States were
assigned to the Dothideomycetes. Similar observations have been documented in the foliar
fungal communities of Eucalyptus grandis (Kemler et al., 2013), Picea glauca (Eusemann
et al., 2016), Picea abies (Nguyen et al., 2016a), Metrosideros ploymorpha (Zimmerman
& Vitousek, 2012) and Hopea ferrea (Izuno et al., 2016). However, different dominant
taxa were detected in Fagus sylvatica (Cordier et al., 2012; Siddique & Unterseher, 2016;
Unterseher et al., 2016), and several bryophytes species (Davey et al., 2013), indicating
different environmental filtration and host selection across distinct geographic origins and
plant species (Yang et al., 2016a; Peršoh, 2015; Rodriguez et al., 2009)).
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Most fungal taxa identified here could be assigned to different functional guilds.
The seven main ecological guilds (pathotroph, symbiotroph, saprotroph, pathotroph-
saprotroph, pathotroph-symbiotroph, saprotroph-symbiotroph and saprotroph-
pathotroph-saprotroph) were all found in our study. Many fungal species belong to
more than one of the ecological categories, which is very common in fungal kingdom.
For example, Fusarium culmorum could be a plant pathogen causing crown rot in cereals
(Hollaway et al., 2013), but also could be a symbiotic fungal endophyte conferring salt
tolerance to Leymus mollis (Rodriguez et al., 2008). Our result is consistent with a recent
study on the fungal endophytes of Fagus sylvatica, and suggest undeniable advantages
of high-throughput sequencing over traditional cultivation in terms of uncovering a
good representation of the major functional guilds as well as rare fungal taxa (Siddique,
Khokon & Unterseher, 2017). In addition to saprotrophic and symbiotrophic taxa,
numerous pathotrophic fungi (29.5%) were detected on M. shikokiana leaves. Several
indicator species, including Gibberella fujikuroi, Ramularia rumicis-crispi, Mycosphaerella
quasiparkii, Plectosphaerella cucumerina and Strelitziana mali also have been recorded
as fungal phytopathogens (De Vos et al., 2014; Petriacq, Stassen & Ton, 2016; Wardle &
Lindahl, 2014). In accordance with this, Sapkota et al. (2015) found that host-specific
pathogens lived in a ‘‘sea’’ of nonspecific fungi in the phyllosphere of six Poaceae
species. Notably, several endophytic fungi may be latent pathogens (Vacher et al., 2016).
Colletotrichum gloeosporioides, a significant indicator at 838 m, has previously been
reported as an endophytic and symbiotic fungus that serves as a biocontrol agent for
Theobroma cacao pathogens (Mejia et al., 2008), and is itself also an important plant
pathogen causing anthracnose (Phoulivong et al., 2010). Alvarez-Loayza et al. (2011) found
that high light environments can trigger the production of H2O2 by Diplodia mutila, a
common asymptomatic endophyte in Iriartea deltoidea, resulting in pathogenicity due to
constraining niche-space filling of the plant species.

Effects of elevation on fungal richness and community composition
Our results show that phyllosphere fungal richness and the community structure of fungi
associated with M. shikokiana are affected significantly by elevation. These findings agree
with the patterns of fungal endophytes ofB. ermanii in theChangbaimountains (Yang et al.,
2016b) and of F. sylvatica phyllosphere fungi in the French Pyrenees (Cordier et al., 2012).
Shifts in community composition along the elevational gradient were significantly related to
changes in temperature.Many studies showed that altitudinal distribution patterns of fungal
assemblages often associate with climatic variables and environmental factors that co-vary
with elevation. The variations in incidence and the abundance of F. sylvatica phyllosphere
fungi were significantly correlated with variation in average temperature (Cordier et al.,
2012). The endophytic community composition ofM. ploymorpha can be driven by rainfall
along elevation gradient (Zimmerman & Vitousek, 2012). The ectomycorrhizal fungal
richness on Mount Kinabalu in Malaysia is highest in the elevation zone with the most
available water (Geml et al., 2017). Jarvis, Woodward & Taylor (2015) also suggested that
significant climatic niche partitioning between ectomycorrhizal fungi is associated with a
single host along a short (300 m) elevation gradient. Therefore, variation in some climatic
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parameters that we did not record in this study—such as humidity, wind exposure or
UV radiation along the elevation gradient—may contribute to the distribution patterns
of phyllosphere fungi in M. shikokiana. The indicator species at the elevation of 1,185 m
include the yeasts Cryptococcus spp. and the melanized black yeast Cyphellophora gamsii,
all of which possess a strong ability to withstand UV radiation (Sapkota et al., 2015), which
corresponds to the fact that solar radiation is higher at higher elevations. In addition to
the importance of elevation site parameters in shaping fungal communities, abundant
research has suggested a significant interplay between phyllosphere fungi and their host
plants (Eusemann et al., 2016). Whipps et al. (2008) summarized that the development of
phyllosphere microbiota must become involved in the phenotypic traits (leaf chemistry,
physiology or morphology) exhibited by host plants. For instance, elevated leaf carbon
availability could significantly enhance the phyllosphere fungal richness of B. ermanii along
the elevation gradient due to broadening of niche space associated with the phyllosphere
environment (Yang et al., 2016b). Furthermore, some phyllosphere fungi are dormant
saprotrophs involved in the decomposition of senescent leaves (Vacher et al., 2016). The
significant indicator species at the highest elevation in our study, Cyphellophora gamsii, is
a saprotrophic fungus usually found in leaf litter (Crous et al., 2016; Madrid et al., 2016).
Leaf litter at higher elevations is usually more recalcitrant because of increased nutrient
limitation and leaf thickness; these features may facilitate the presence of specialized
fungi capable of breaking down recalcitrant organic matter (Looby, Maltz & Treseder,
2016). This pattern further supports a greater richness of fungi released to the soil
and air through decomposition, which may lead to increases in phyllosphere fungal
richness by horizontal transmission (Osono & Mori, 2003). In addition to altitudinal
distance, geographical distance also plays an important role in shaping phyllosphere fungal
community composition, indicating dispersal limitation or environment isolation over a
local scale (Hanson et al., 2012).

Co-occurrence networks of phyllosphere fungi
By providing a vivid and simplified version of the complex ecological interactions that
shapemicrobial communities, network analyses of the co-occurrence patterns of significant
taxa may help to deepen our understanding of the altitudinal distribution patterns of
phyllosphere fungal assemblages along elevation gradients (Eiler, Heinrich & Bertilsson,
2011). Our results showed that the phyllosphere fungal network of M. shikokiana shifted
between different elevation sites. Most of the correlations between fungal OTUs (838 m:
99%, 934 m: 99%, 1,078 m: 98%, and 1,185 m: 97%) were identified as co-occurrences
(positive correlations). Dominant positive associations suggest that most fungal taxa may
synergistically act or share similar ecological niches in the phyllosphere environment
(Zhang et al., 2018a). A prevalence of positive correlations has also been found in other
microbial networks (Aschenbrenner et al., 2017; Chow et al., 2014), although a much lower
proportion was found in soil fungal communities. It is possible that nutrient use efficiency
and mechanisms underlying fungal community assembly in soil are markedly different
from those in the phyllosphere (Peršoh et al., 2018).
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Although negative correlations, which suggest co-exclusion between two taxa, weremuch
rarer than positive ones, the number of negative links increased significantly with elevation.
This trend may indicate a more competitive relationship between phyllosphere fungi at
higher elevations. In phyllosphere microbial communities, competition for limited space
and nutrient resources, as well as the production of metabolic compounds and interference
with hormone signaling pathways, are the major mechanisms by which microbial
inhabitants inhibit each other (Vorholt, 2012). This result agrees with the finding that
networks of endophytic communities are almost unconnected inmore northern, temperate
regions (Guerreiro et al., 2018). Interestingly, many negative interactions occurred between
pathogenic members and other taxa; a similar finding has been reported in endophytic
fungal communities (Peršoh, 2013). This may help to maintain community stability
and plant health. Fokkema (1993) suggested that competition between pathogens and
saprotrophs acts as a natural occurring biocontrol process in the phyllosphere. This complex
microbial interaction might possess barrier effects enhancing the plant’s resistance to
pathogenic infections in the phyllosphere (Vorholt, 2012). Negative correlations can finally
result in a less stable network structure (Lawes et al., 2017). This increasing tendency of
negative correlations also could be partly responsible for less coherent and compact network
structure at higher elevation, as shown by clustering coefficients and diameters (Figs. 6
and 7). Lower elevations may provide more favorable conditions for fungal interaction
and niche sharing. Higher elevations are often associated with harsher environmental
conditions for plant growth, such as stronger ultraviolet exposure and lower temperatures
(Pauchard et al., 2009). The decrease in connectivity and integrity of the co-occurrence
networks may indicate a change towards stochastic assembly processes, prevention of biotic
communication, or shifts in biogeochemical pathways due to environmental stress (Lawes
et al., 2017).

CONCLUSIONS
In summary, this study reports high-throughput sequencing data that suggests that an
elevation gradient of only 350 m can entail significant shifts in OTU richness, community
composition, and co-occurrence patterns of phyllosphere fungi in a single host species. The
phyllosphere fungal assemblages inhabitingM. shikokiana show high diversity in taxonomic
classification and trophic stages. Fungal richness showed a pattern of monotonal increase
along an elevation gradient. In addition, elevation is a critical predictor of the fungal
community structure. Shifts in community composition along an elevation gradient were
clearly related to MAT, which is suggestive of significant temperature niche partitioning
among phyllosphere fungal species. A distance-decay pattern was also found in the fungal
assemblages. Co-occurrence networks became less centralized and more fractured with
increasing elevation. However, limited information on abiotic and biotic factors that
covary with elevation demands further investigation to determine the exact drivers and
mechanisms of this altitudinal partitioning.
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