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ABSTRACT
Viruses encoding a replication-associated protein (Rep) within a covalently closed,
single-stranded (ss)DNA genome are among the smallest viruses known to infect
eukaryotic organisms, including economically valuable agricultural crops and
livestock. Although circular Rep-encoding ssDNA (CRESS DNA) viruses are a
widespread group for which our knowledge is rapidly expanding, biased sampling
toward vertebrates and land plants has limited our understanding of their diversity
and evolution. Here, we screened terrestrial arthropods for CRESS DNA viruses
and report the identification of 44 viral genomes and replicons associated with
specimens representing all three major terrestrial arthropod lineages, namely
Euchelicerata (spiders), Hexapoda (insects), and Myriapoda (millipedes).
We identified virus genomes belonging to three established CRESS DNA viral
families (Circoviridae, Genomoviridae, and Smacoviridae); however, over half of
the arthropod-associated viral genomes are only distantly related to currently
classified CRESS DNA viral sequences. Although members of viral and satellite
families known to infect plants (Geminiviridae, Nanoviridae, Alphasatellitidae) were
not identified in this study, these plant-infecting CRESS DNA viruses and replicons
are transmitted by hemipterans. Therefore, members from six out of the seven
established CRESS DNA viral families circulate among arthropods. Furthermore,
a phylogenetic analysis of Reps, including endogenous viral sequences, reported to
date from a wide array of organisms revealed that most of the known CRESS DNA
viral diversity circulates among invertebrates. Our results highlight the vast and
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unexplored diversity of CRESS DNA viruses among invertebrates and parallel
findings from RNA viral discovery efforts in undersampled taxa.

Subjects Biodiversity, Entomology, Genomics, Microbiology, Virology
Keywords Invertebrate, Arthropod, CRESS DNA, ssDNA, Replication-associated protein (Rep),
Spider, Insect, Discovery, Virus, Endogenous

INTRODUCTION
Virus discovery remains an open-ended endeavor with estimates of more than 99% of
viruses within organisms remaining to be sampled (Geoghegan & Holmes, 2017).
Eukaryotic viruses infecting vertebrates, mainly mammals, and land plants are
overrepresented in public databases relative to those infecting invertebrates and unicellular
organisms (Mahmoudabadi & Phillips, 2018). Therefore, biased sampling has heavily
skewed our view of viral diversity and evolution and there is a need to explore
“non-traditional” organisms. Efforts investigating single-stranded (ss)RNA viruses in
undersampled taxa have identified arthropods, the most diverse and successful group
of animals on Earth (Stork, 2018), as a rich and untapped reservoir of novel viruses
(Li et al., 2015; Shi et al., 2016a). Moreover, discovery of divergent viruses in invertebrates
has prompted reevaluation of RNA virus evolution concepts and taxonomic frameworks
(Dolja & Koonin, 2018; Shi et al., 2016b, Shi, Zhang & Holmes, 2018b). Notably, these
studies have identified arthropods as the ultimate ancestral source of some vertebrate- and
plant-infecting RNA viruses (Shi et al., 2016a). Since arthropods may be central to the
evolutionary history of other viral groups, here we survey terrestrial arthropods
for the presence of ssDNA viruses with circular genomes, which follow positive-sense
ssRNA viruses as the second most abundant group of viruses infecting eukaryotes
(Mahmoudabadi & Phillips, 2018; NCBI, 2018). This study focuses on a subset
of eukaryotic ssDNA viruses with covalently-closed circular genomes that encode a
replication-associated protein (Rep).

Prior to 2009, eukaryotic circular Rep-encoding ssDNA (CRESS DNA) viruses were
thought to be restricted to plants (Geminiviridae andNanoviridae families) and vertebrates
(family Circoviridae), specifically pigs and birds (Lefkowitz et al., 2018). Since then,
metagenomic studies have revealed the cosmopolitan and diverse nature of eukaryotic
CRESS DNA viruses. CRESS DNA viruses have now been reported from a wide array of
organisms, ranging from primates (Kapusinszky et al., 2017; Ng et al., 2015) to unicellular
algae (Yoon et al., 2011), and ecosystems spanning aquatic (Dayaram et al., 2015a;Hewson
et al., 2013a; Labonté & Suttle, 2013; Lopez-Bueno et al., 2009), terrestrial (Kim et al., 2008;
Reavy et al., 2015), airborne (Whon et al., 2012) and man-made environments
(Kraberger et al., 2015; Rosario, Duffy & Breitbart, 2009; Rosario et al., 2018). The increased
detection and expanded diversity of CRESS DNA viruses has resulted in the establishment
of four new taxonomic groups by the International Committee for the Taxonomy of
Viruses, including three new families (Genomoviridae, Smacoviridae, Bacilladnaviridae)
and the Cyclovirus genus within the family Circoviridae, to accommodate these diverse
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viruses (Kazlauskas et al., 2017; Krupovic et al., 2016; Rosario et al., 2017; Varsani &
Krupovic, 2018). Moreover, many CRESS DNA viruses, which are predicted to represent
novel families, remain unclassified. In addition, the investigation of endogenous viral
sequences has revealed the ancient origin of CRESS DNA viruses by providing evidence
indicating that some of these viruses have been infecting diverse animal and plant hosts
for millions of years (Belyi, Levine & Skalka, 2010; Dennis et al., in press; Lefeuvre et al.,
2011). Although integration into host chromosomes may be incidental (Krupovic &
Forterre, 2015), CRESS DNA endogenous viral elements may influence host evolution
and biology by contributing to their genetic composition and, perhaps, providing new
functional capabilities (Belyi, Levine & Skalka, 2010; Feschotte & Gilbert, 2012).
Therefore, eukaryotic CRESS DNA viruses are a highly diverse group of viruses that
have implications well beyond their recognized agricultural and medical relevance.

All eukaryotic CRESS DNA viruses are minimalists; their small circular genomes
(<6 kb) encode <8 proteins, including a distinctive homologous Rep (Kazlauskas et al.,
2017; Rosario, Duffy & Breitbart, 2012). Another salient feature of most CRESS DNA viral
genomes is a conserved putative origin of replication (ori) marked by a nonanucleotide
motif at the apex of a predicted stem-loop structure where rolling circle replication
(RCR) is initiated (Rosario, Duffy & Breitbart, 2012). The presence of a capsid-encoding
ORF (open reading frame (ORF)) distinguishes CRESS DNA viruses from CRESS
DNA satellite molecules or replicons, such as those classified within the family
Alphasatellitidae (Briddon et al., 2018). Although these circular molecules do not encode
a capsid, a hallmark defining feature of viruses, these replicons have been considered
part of the “extended viral world” as these molecules represent successful genetic parasites
(Koonin & Dolja, 2014).

It has been hypothesized that CRESS DNA viruses may have evolved from
interactions between capsid protein genes from RNA viruses and bacterial plasmids
on several independent occasions (Koonin, Dolja & Krupovic, 2015; Krupovic, 2013).
The polyphyletic nature of CRESS DNA viruses, complemented by their high substitution
rates (Duffy & Holmes, 2009; Duffy, Shackelton & Holmes, 2008; Firth et al., 2009)
and predisposition to recombination (Lefeuvre et al., 2009; Martin et al., 2011), even
within the rep gene (Kazlauskas, Varsani & Krupovic, 2018; Krupovic et al., 2015),
have resulted in the emergence of a highly diverse viral group. This diversity is also
reflected by different genome architectures that, similar to RNA viruses (Li et al., 2015;
Shi et al., 2016a), suggest plasticity in CRESS DNA virus genomes. CRESS DNA viruses,
including viruses classified within the same genus (e.g., Begomovirus), can have
monopartite or multipartite genomes. Notably, multipartite genomes have only been
observed in plant-infecting CRESS DNA viruses. Based on the arrangement of major
ORFs relative to the putative ori, CRESS DNA genomes display eight genome
organizations, including those that only encode a Rep and might represent segments of
multipartite genomes or satellite molecules (Rosario, Duffy & Breitbart, 2012).
However, there does not seem to be a correlation between these genome organizations and
phylogenetic relationships amongst various CRESS DNA viruses (Quaiser et al., 2016;
Rosario et al., 2015a). The evolutionary history of some CRESS DNA viruses is further
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obscured by rampant gene fragment exchanges that have led to chimeric Rep
sequences that hinder taxonomic classification (Kazlauskas, Varsani & Krupovic, 2018).
Despite these limitations, the Rep remains the only tractable phylogenetic marker that can
be used to investigate evolutionary relationships among the highly diverse and
polyphyletic CRESS DNA viruses.

Most viral discovery studies focus on vertebrate hosts, primarily mammals, which limits
our perspective of viral diversity and evolution. The work presented here expands on
studies investigating CRESS DNA viruses in invertebrates, which have traditionally been
undersampled (Bettarel et al., 2018; Bistolas et al., 2017; Dayaram et al., 2013; Hewson
et al., 2013b; Kraberger et al., 2018; Rosario et al., 2012, 2015a; Wang et al., 2018).
We report 44 CRESS DNA genomes recovered from arthropods representing all
three major terrestrial arthropod lineages (Giribet & Edgecombe, 2012). By performing a
phylogenetic analysis of Reps from CRESS DNA genomes reported from a wide array
of organisms and those identified as endogenous viral elements, we demonstrate that
most of the previously described CRESS DNA viral phylogenetic diversity circulates
among invertebrates. In addition, database searches using newly detected Reps led
to the detection of an unreported endogenous cyclovirus-like element within a genome
scaffold from a rodent-infecting nematode. Although cycloviruses have been mainly
detected in feces from various mammals and homogenized tissues from insects (Rosario
et al., 2017), endogenous cyclovirus elements indicate that these viruses are able to
infect both arthropod (mites) (Dennis et al., 2018; Liu et al., 2011) and non-arthropod
parasitic invertebrates.

MATERIALS AND METHODS
Sample collection and processing
A variety of opportunistically sampled arthropods were screened for CRESS DNA viral
sequences (Table 1). Samples included members from all three major groups of terrestrial
arthropods including Hexapoda (Class Insecta; Orders: Hymenoptera, Coleoptera,
Odonata, Dermaptera, Diptera, Orthoptera, Lepidoptera, Ephemeroptera, Blattodea),
Euchelicerata (Class Arachnida; Order: Araneae), and Myriapoda (Classes: Diplopoda and
Chilopoda). All specimens were identified to the most specific taxonomic rank possible
through identification by experts or using DNA barcoding (see below) when taxonomic
identifications were not available. Samples were processed following methods used to
detect CRESS DNA viruses in marine invertebrates (Rosario et al., 2015a) and insects
(Dayaram et al., 2013; Rosario et al., 2012). Briefly, specimens were serially rinsed three
times using sterile suspension medium (SM) buffer [0.1M NaCl, 50 mM Tris–HCl (pH
7.5), 10 mM MgSO4] to remove debris. A small piece of tissue was dissected from
representative specimens and stored at
-20 �C for DNA barcoding. Each specimen or pooled sample composed of up to 10
specimens from the same species was homogenized in SM buffer through bead-beating
using 1.0 mm sterile glass beads in a bead beater (Biospec Products, Bartlesville, OK, USA)
for 60–90 s and homogenates were centrifuged at 6,000 � g for 6 min. Viral particles
were then partially purified from supernatants by filtering through a 0.45 mm Sterivex filter
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Table 1 Sample information and identified CRESS DNA genomes.

Year Location1 Species name (common name)2 Samples3 Identified genomes

2011 Kenya Crematogaster nigriceps (Arboreal ant) Pool (2) Arboreal ant associated circular virus 1

2011 Kenya Tetraponera penzigi (Arboreal ant) Pool (2) Arboreal ant associated circular virus 1

2011 Kenya Crematogaster mimosae (Arboreal ant) Pool Arboreal ant associated circular virus 1

2013 FL USA Solenopsis invicta (Fire ant) Pool Fire ant associated circular virus 1

2013 FL USA Xylosandrus amputates (Bark beetle) Pool Bark beetle associated circular virus 1

2014 Puerto Rico Dineuteus sp. (Water beetle)* Single (4) Water beetle associated circular virus 1

2013 Store Gryllus assimilis (Field cricket) Pool Cricket associated circular virus 1

2011 FL USA Romulea microptera (Lubber grasshopper) Single Grasshopper associated circular virus 1

2013 Nevis Lucilia rica (Blow fly)* Pool Fly associated circular virus 1

Fly associated circular virus 3

Fly associated circular virus 5

2013 St. Barts Fannia sp. (Dung fly)* Pool Fly associated circular virus 2

2013 Dom. Republic Lucilia retroversa (Blow fly) Pool Fly associated circular virus 4

2013 Guadeloupe Lucilia rica (Blow fly)* Pool Fly associated circular virus 6

2013 St. Barts Lucilia rica. (Blow fly)* Pool Fly associated circular virus 7

2015 NH USA Oxidus sp. (Greenhouse millipede)* Single Millipede associated circular virus 1

2017 Victoria BC Parasteatoda tepidariorum (Common house spider) Single Common house spider circular molecule 1

2017 Victoria BC Cybaeus signifer Single Cybaeus spider associated circular virus 1

2017 Victoria BC Cybaeus signifer Single Cybaeus spider associated circular virus 2

2017 Victoria BC Cybaeus signifer Single Cybaeus spider associated circular molecule 1

2017 Victoria BC Steatoda grossa (False black widow spider) Single False black widow spider associated circular virus 1

2017 Victoria BC Eratigena duellica (Giant house spider) Single Giant house spider associated circular virus 1

2017 Victoria BC Eratigena duellica (Giant house spider) Single Giant house spider associated circular virus 2

2017 Victoria BC Eratigena duellica (Giant house spider) Single Giant house spider associated circular virus 3

2017 Victoria BC Eratigena duellica (Giant house spider) Single (2) Giant house spider associated circular virus 4

2014 Puerto Rico Nephila sp. (Golden silk orbweaver)* Single Golden silk orbweaver associated circular virus 1

2017 FL USA Leucauge argyra (Longjawed orbweaver)* Single Longjawed orbweaver circular virus 1

2014 Puerto Rico Leucauge argyra (Longjawed orbweaver)* Single Longjawed orbweaver circular virus 2

2017 Victoria BC Pimoa altioculata (Pimoid spider)* Single Pimoid spider associated circular virus 1

2017 Victoria BC Pimoa altioculata (Pimoid spider)* Single Pimoid spider associated circular virus 2

Pimoid spider associated circular molecule 1

2017 Victoria BC Neriere litigiosa (Sierra dome spider)* Single Sierra dome spider associated circular virus 1

2017 Victoria BC Neriere litigiosa (Sierra dome spider)* Single Sierra dome spider associated circular virus 2

2017 Victoria BC Cybaeidae (Soft spider) Single Soft spider associated circular virus 1

2017 Victoria BC Cybaeus signifer Single Spider associated circular virus 1

2017 Victoria BC Segestria pacifica (Tubeweb spider) Single Spider associated circular virus 1

2017 Victoria BC Eratigena atrica (Giant house spider) Single Spider associated circular virus 1

2017 Victoria BC Parasteatoda tepidariorum (Common house spider) Single Spider associated circular virus 2

2017 Victoria BC Segestria pacifica (Tubeweb spider)* Single Spider associated circular virus 3

2014 FL USA Gasteracantha cancriformis (Spinybacked orbweaver)* Single Spinybacked orbweaver circular virus 1

2017 FL USA Gasteracantha cancriformis (Spinybacked orbweaver)* Single Spinybacked orbweaver circular virus 1

(Continued)
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(Millipore, Burlington, MA, USA) and nucleic acids were extracted from 200 ml of
filtrate using the QIAamp MinElute Virus Spin Kit (Qiagen, Hilden, Germany).

DNA barcoding was performed to identify any arthropods positive for CRESS DNA
viruses that were not taxonomically identified by experts. For this purpose, DNA was
extracted from tissue samples using the Quick-DNA Tissue/Insect Kit (Zymo Research,
Irvine, CA, USA) following the manufacturer’s instructions. The mitochondrial
cytochrome oxidase I (COI) gene was then amplified through polymerase chain reaction
(PCR) using the universal COI primers LCO1490 (5′GGTCAACAAATCATAAAGATA
TTGG3′) and HCO2198 (5′TAAACTTCAGGGTGACCAAAAAATCA3′) (Folmer
et al., 1994). A total of 50 ml PCR reactions contained the following: 1.5 mM MgCl2,
1� Apex NH4 Buffer, 0.5 mM primer LCO1490, 0.5 mM primer HCO2198, 5% DMSO,
1 mg/ml BSA, 1 U Apex Red Taq DNA Polymerase (Genesee Scientific, San Diego, CA, USA),
and 3 ml of template DNA. Thermocycling conditions consisted of an initial
denaturation at 95 �C for 2 min, followed by 35 cycles of 94 �C for 1 min, 48 �C for 1 min
incrementally decreasing the temperature by 0.1 �C each cycle, and 72 �C for 1 min,
with a final extension at 72 �C for 7 min. Mitochondrial COI gene PCR products were
commercially sequenced using LCO1490 and HCO2198 primers. Sequences were compared
against GenBank through BLASTn searches. Sequences sharing >95% identity with
sequences in the database were classified to species, whereas sequences with nucleotide
identities below this threshold were classified at the genus level.

Detection of CRESS DNA viral genomes and genome completion
Small circular templates, such as CRESS DNA genomes, were enriched by amplifying
DNA extracts through rolling circle amplification (RCA) using the Illustra TempliPhi
Amplification Kit (GE Healthcare, Chicago, IL, USA) (Haible, Kober & Jeske, 2006; Kim &
Bae, 2011). RCA products were digested using a suite of six-cutter FastDigest
restriction enzymes (Thermo Fisher Scientific, Waltham, MA, USA), including BamHI,

Table 1 (continued).

Year Location1 Species name (common name)2 Samples3 Identified genomes

2017 FL USA Gasteracantha cancriformis (Spinybacked orbweaver)* Single Spinybacked orbweaver circular virus 2

2017 FL USA Cyrtophora sp. (Tentweb spider) Single Tentweb spider associated circular virus 1

2017 Victoria BC Segestria pacifica (Tubeweb spider)* Single Tubeweb spider associated circular virus 1

2017 Victoria BC Dysdera crocata (Woodlouse hunter spider) Single Woodlouse hunter spider associated circular virus 1

2015 Kenya Odontotermes sp. (Fungus-farming termite) Pool Termite associated circular virus 1

Termite associated circular virus 3

Termite associated circular virus 4

2015 Kenya Odontotermes sp. (Fungus-farming termite) Pool (2) Termite associated circular virus 2

Notes:
1 Location abbreviations: FL, Florida; NH, New Hampshire; St. Barts, Saint Barthelemy; Dom. Republic, Dominican Republic; BC, British Columbia; Store, Carolina
Biological Supply.

2 Many specimens were taxonomically identified by sample providers. However, some specimens were identified through DNA barcoding and are indicated with an
asterisk (*).

3 Samples processed as individuals (Single) or pools (Pool) composed of up to 10 individuals from the same species are distinguished. Some CRESS DNA genomes were
recovered frommultiple individuals or pools (the number of samples that independently resulted in the identification of a given genome is specified within parenthesis).
Although some genomes represent the same viral species, genomes sharing less than 100% genome-wide pairwise identity that were recovered from independent
samples were submitted to GenBank and assigned individual accession numbers (see Table 3).
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EcoRV, PdmI, HindIII, KpnI, PstI, XhoI, SmaI, BglII, EcoRI, XbaI, and NcoI. Three
microliters of RCA product from each sample were digested with each enzyme in separate
reactions following the manufacturer’s instructions to obtain complete, unit-length
genomes. Products of the restriction digests were resolved on an agarose gel and fragments
ranging in size from 1 to 4 kb were excised and purified using the Zymoclean Gel DNA
Recovery Kit (Zymo Research, Irvine, CA, USA) for cloning. Since CRESS DNA
viruses have been identified as contaminants in commercial spin columns used for nucleic
acid extractions (Krupovic et al., 2015), negative controls containing SM Buffer alone
were processed alongside samples from DNA extractions through restriction enzyme
digests and, whenever applicable, PCR (see below).

In most cases, products resulting from blunt-cutting enzyme digestions were cloned
into the pJET1.2 vector using the CloneJET PCR Cloning kit (Thermo Fisher Scientific,
Waltham, MA, USA), whereas products resulting from enzymes producing sticky
ends were cloned using pGEM-3Zf(+) vectors (Promega, Madison, WI, USA) pre-digested
with the appropriate enzyme. However, if there were difficulties cloning into pre-digested
pGEM-3Zf(+) vectors, sticky-end digestion products were cloned into the pJET1.2
vector following the manufacturer’s sticky-end cloning protocol. Cloned digest products
were then Sanger sequenced using vector primers. If these preliminary sequences showed
significant similarities to CRESS DNA viral sequences based on BLASTn or BLASTx
searches (e-value < 0.001), complete genome sequences were obtained through primer
walking of cloned unit-length genomes or through inverse PCR using back-to-back
primers designed from preliminary sequences. For the latter, PCR products were cloned
using the CloneJET PCR Cloning kit and Sanger sequenced using vector primers and
primer walking.

CRESS DNA genome sequence analyses
Circular Rep-encoding ssDNA genome sequences were assembled in Geneious version
R7 (Biomatters, Auckland, New Zealand) with default parameters for de novo assemblies.
Major, non-overlapping ORFs >100 amino acids were identified and annotated using
SeqBuilder from the Lasergene software package version 11.2.1 (DNASTAR, Madison, WI,
USA) using the standard genetic code. Partial genes or genes that seemed interrupted
were screened for potential introns using GENSCAN (Burge & Karlin, 1997). Genomes that
did not contain a putative capsid-encoding ORF, based on BLASTx (Altschul et al., 1990) or
remote protein homology searches using HHpred (Söding, Biegert & Lupas, 2005),
were further investigated by looking at intrinsically disorder protein (IDP) profiles of non-Rep
encoding ORFs using the neural network based VL3 disorder predictor on DisProt
(Sickmeier et al., 2007). If non-Rep encoding ORFs contained a high proportion of disordered
residues within the first 100 amino acids, they were considered putative capsid proteins
(Rosario et al., 2015a). The potential ori for each genome was identified by locating the
canonical nonanucleotide motif “NANTATTAC” observed in most CRESS DNA genomes
(Rosario, Duffy & Breitbart, 2012), or similar sequences (Krupovic et al., 2016; Varsani &
Krupovic, 2018), and evaluating if the identified nonamer was found at the apex of a
predicted stem-loop structure using the Mfold web server (Zuker, 2003). Genome-wide and
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Rep amino acid sequence pairwise identities (PIs) were calculated using the Sequence
Demarcation Tool version 1.2 (Muhire, Varsani & Martin, 2014) to evaluate taxonomic
relationships among CRESS DNA genomes identified in this study and those found in
GenBank.

Phylogenetic analyses
To evaluate how the novel CRESS DNA sequences identified in this study compared to
previously reported CRESS DNA viral genomes, we constructed a phylogenetic tree
from Rep amino acid sequences recovered from a wide array of organisms. For this
purpose, Rep sequences were downloaded from GenBank in April 2018. These sequences
included Reps from members of six established CRESS DNA viral families, including
Geminiviridae (nine genera), Nanoviridae (two genera), Circoviridae (two genera),
Genomoviridae (nine genera), Bacilladnaviridae (four genera), and Smacoviridae (six
genera), as well as satellite molecules from the Alphasatellitidae (11 genera) and other
CRESS DNA viral genomes that remain unclassified. To reduce the number of sequences
in the analysis while still being able to assess diversity, Rep sequences representing
established taxonomic groups were clustered based on a 70% amino acid identity cut off
using CD HIT (Fu et al., 2012). However, if more than 20 sequences remained after
clustering for a given group, sequences were clustered using a 50% identity cut off. All
sequences outside of the established CRESS DNA families were grouped by organism
(e.g., rodent associated sequences) and sequences within each group were clustered using a
70% amino acid identity cut off. In addition to sequences representing exogenous viruses and
replicons, CRESS DNA-like endogenous viral sequences (CEVs) reported from various
organisms were included (Dennis et al., in press, 2018; Liu et al., 2011). Selected CEVs did not
contain any early stop codons or frameshifts. The final dataset contained 489 Rep sequences.

An alignment was performed using MUSCLE (Edgar, 2004) as implemented in
MEGA7 (Kumar, Stecher & Tamura, 2016) and manually edited by inspecting and
aligning sequences based on the presence of conserved RCR and superfamily 3 (SF3)
helicase motifs (Kazlauskas et al., 2017; Rosario et al., 2017; Varsani & Krupovic, 2017,
2018). The alignment was trimmed close to the RCR motif I and helicase arginine finger
motifs and final aligned sequences, including CEVs, were at least 200 amino acids in
length (Data S1). The alignment was used to construct an unrooted approximately-
maximum-likelihood (ML) phylogenetic tree using FastTree 2 (Price, Dehal & Arkin,
2010) with default parameters. The phylogenetic tree was edited using TreeGraph 2
(Stöver & Müller, 2010) to collapse branches with support below a given threshold of
Shimodaira–Hasegawa-like support and FigTree (http://tree.bio.ed.ac.uk/software/figtree/)
was used for tree visualization and editing. The same alignment and tree editing strategies
were used for all phylogenetic trees presented in this study.

Circular Rep-encoding ssDNA genome sequences representing species from established
CRESS DNA viral groups were further investigated for genera and/or species level
classification assignment. All species level assignments were based on current species
demarcation criteria for CRESS DNA groups (Table 2). However, some genomes with
similarities to members of the Genomoviridae and Circoviridae families seemed to
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fall outside existing genera; thus, further phylogenetic analyses were undertaken to
determine the assignment of these CRESS DNA viruses as putative members of these
families. Rep sequences representing members from each of the nine Genomoviridae
genera and closely related viruses, including geminiviruses, were aligned and a ML
phylogenetic tree was constructed using PhyML (Guindon et al., 2010) with the LG+G+I
substitution model. The ML tree was then rooted with viral sequences from members
of the Geminiviridae (Varsani & Krupovic, 2017). For the family Circoviridae, Rep
sequences representing members from the Circovirus and Cyclovirus genera as well as
closely related sequences and CEVs falling within this family were aligned. A midpoint
rooted ML phylogenetic tree was then constructed using PhyML with automatic selection
of substitution model through the Smart Model Selection using the Akaike Information
Criterion (Lefort, Longueville & Gascuel, 2017).

RESULTS
CRESS DNA viruses identified in all three major lineages
of terrestrial arthropods
More than 500 specimens representing a diversity of terrestrial arthropods were analyzed
for the presence of CRESS DNA viruses through RCA followed by restriction enzyme
digestion and cloning. Our efforts resulted in the detection of 44 unique (<80%
genome-wide PI) CRESS DNA genomes (Table 3). Consistent with known CRESS
DNA genomes, the genomes are small in size (<3.5 kb) and contain a putative ori marked

Table 2 Taxonomic classification framework for established CRESS DNA viral groups.

Family Genome-wide
pairwise identity1

Species demarcation criteria2 Reference

Alphasatellitidae 54% Geminialphasatellitinae, 88% Briddon et al. (2018)

Nanoalphasatellitinae, 80% Briddon et al. (2018)

Bacilladnaviridae Not reported 75%* Kazlauskas et al. (2017)

Circoviridae 55% 80% Rosario et al. (2017)

Geminiviridae 54% Becurtovirus, 80% Varsani et al. (2014b)

Begomovirus, 91% Brown et al. (2015)

Capulavirus, 78% Varsani et al. (2017)

Curtovirus, 77% Varsani et al. (2014a)

Glabovirus, 80% Varsani et al. (2017)

Mastrevirus, 78% Muhire, Varsani & Martin (2014)

Eragrovirus, not reported

Turncurtovirus, not reported

Topocuvirus, not reported

Genomoviridae 53% 78% Varsani & Krupovic (2017)

Nanoviridae Not reported 75% Lefkowitz et al. (2018)

Smacoviridae 55% 77% Varsani & Krupovic (2018)

Notes:
1 Refers to the lower limit of genome-wide pairwise identities (PIs) among members of a given viral family.
2 With the exception of the family Bacilladnaviridae, the species demarcation criteria (SDC) is based on genome-wide
PIs. The SDC may vary by subfamily (Alphasatellitidae) or genus (Geminiviridae) within a given family.

* The SDC for the Bacilladnaviridae is based on amino acid sequence PI of the replication-associated protein.
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by a conserved nonanucleotide motif at the apex of predicted stem-loop structure. Based
on the position of the ori relative to major ORFs, six out of the eight described
CRESS DNA genome organizations were detected. (Rosario, Duffy & Breitbart, 2012).
In addition to an identifiable Rep-encoding ORF, most (n = 34) of these CRESS DNA
genomes encode a putative capsid protein based on similarities to capsid proteins
found in public databases. A total of 10 of the detected genomes do not encode an ORF
with significant matches to known capsid proteins; however, the non-Rep encoding
ORFs in eight of these genomes have similar IDP profiles to those seen in other
CRESS DNA viruses, suggesting they encode a putative capsid protein (Data S2)
(Rosario et al., 2015a). The three genomes for which a capsid-encoding ORF could not be
identified were named as “circular molecules” to distinguish these replicons from bona
fide CRESS DNA viral genomes.

Half of the CRESS DNA genomes described here were identified in spiders (Class
Arachnida; Order Araneae), despite the fact that >70% of the samples processed in this
study were insects (Class Insecta; data not shown). The high prevalence of CRESS
DNA genomes in spiders is evenmore striking considering that most spiders were processed
individually, as opposed to many of the insect species for which multiple individuals were
pooled (Table 1). To our knowledge, these genomes represent the first exogenous
CRESS DNA viruses reported from spiders. CRESS DNA viruses were also widely detected
in insects with viral genomes retrieved from specimens representing five orders, including
ants (Hymenoptera), beetles (Coleoptera), flies (Diptera), grasshoppers and crickets
(Orthoptera), and termites (Blattodea). In addition, we detected a genome from a millipede
(Class Diplopoda) representing the first CRESS DNA virus associated with a member of
the Subphylum Myriapoda. The low number of CRESS DNA viruses identified from
members of the Myriapoda may be a consequence of uneven sampling since only seven
specimens from this group were processed. Similarly, groups for which no CRESS DNA
viruses were identified, including Odonata, Dermaptera, Lepidoptera, Ephemeroptera,
and Chilopoda, had low sample numbers (<10) (data not shown).

Terrestrial arthropods harbor diverse novel CRESS DNA viruses
Over half of the genomes (55%) identified in this study shared <70% genome-wide PI
with previously reported sequences (Table 3) and could not be assigned to an existing
CRESS DNA group. Phylogenetic analysis of Rep amino acid sequences retrieved from a
wide array of organisms illustrated the wide phylogenetic distribution of the
arthropod CRESS DNA viruses and replicons identified here (Fig. 1). Some of the
arthropod-associated CRESS DNA genomes falling outside of established taxonomic
groups were most closely related to isolates that have not been assigned to either genera or
families. We identified four genomes from spiders that were most closely related to a
circularisvirus reported from dragonflies (Rosario et al., 2012). Phylogenetic analysis
revealed other circularisvirus-like genomes retrieved from dragonflies (accession
KM598396, Dayaram et al., 2015b) and bat feces (accession KT732823, Male et al., 2016)
(Fig. 1). All of these circularisvirus-like genomes contained similar genomic features,
including unisense organization, similar size (∼1.9–2 kb), and a putative ori on the
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Rep-encoding strand (Table 3). In addition, circularisvirus-like genomes shared >57%
genome-wide PIs among each other, which is similar to genome-wide PIs reported for
established CRESS DNA viral families (Table 2). Conserved circularisvirus genomic
characteristics and genome-wide PIs may grant the formation of a new group of CRESS
DNA viruses.

Fire ant associated circular virus 1 (FaACV-1) has features characteristic of the
crucivirus group, members of which have been mainly reported from environmental
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Figure 1 Approximately maximum likelihood phylogenetic tree of replication-associated protein
(Rep) amino acid sequences representing CRESS DNA viruses, replicons, and CRESS DNA-like
endogenous viral (CEV) elements recovered from various organisms. Branch colors distinguish
sequences associated with various types of organisms. Clades containing Rep sequences falling within
established CRESS DNA viral groups including the Genomoviridae (Genomo), Geminiviridae (Gemini),
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tinguished, namely E. invadens (EntI), E. histolytica (EntH), and E. dispar (EntD). Reps identified in
this study are highlighted with schematics of terrestrial arthropods showing their source and broad
phylogenetic distribution. Branches with <80% Shimodaira–Hasegawa (SH)-like support were collapsed.
Arthropod silhouettes credit: Shutterstock vector library at https://www.shutterstock.com.
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samples (Diemer & Stedman, 2012; Krupovic et al., 2015; McDaniel et al., 2014; Quaiser
et al., 2016; Roux et al., 2013; Steel et al., 2016). Namely, the FaCV-1 genome contains a
Rep-encoding ORF most similar to that of CRESS DNA viruses and a putative capsid
protein with significant similarities to capsid proteins of ssRNA viruses from the family
Tombusviridae. FaCV-1 is most closely related to a crucivirus isolated from wastewater
(Table 3). Both FaCV-1 and the wastewater associated crucivirus have two major ORFs
arranged in ambisense orientation and share 55% genome-wide PI, suggesting that these
genomes may belong to the same viral family. However, currently there is no classification
framework for cruciviruses. In addition, we identified a molecule, cybaeus spider
associated circular molecule 1, containing a single ORF most similar to a Rep-encoding
ORF from a crucivirus identified from peatland (Quaiser et al., 2016). The findings
presented here suggest that cruciviruses circulate in insects and may be associated with
both terrestrial and aquatic (Bistolas et al., 2017; Hewson et al., 2013b) arthropods.

Although the aim of this study was to identify CRESS DNA genomes, four novel
circular molecules that did not encode a Rep were detected (Data S2). These included
two molecules, leaf-footed bug associated circular molecule 1 (LfBACM-1) and
Spider associated circular molecule 2 (SACM-2), that only contained a single major ORF
encoding a putative capsid. The small genome size (<1.2 kb) of these molecules is
reminiscent of capsid-encoding genomic segments from multipartite CRESS DNA viruses
from the family Nanoviridae (Gronenborn, 2004). Indeed, LfBACM-1 is most similar
to a genomic segment from a novel multicomponent CRESS DNA virus discovered
in the feces of fruit-eating bats (Male et al., 2016). However, the SACM-2 putative capsid
protein sequence is most similar to the capsid encoded by a presumably monopartite
CRESS DNA virus discovered from a sewage oxidation pond (Kraberger et al., 2015).
Surprisingly, the remaining two molecules, longjawed orbweaver circular molecule 1
(LjOrbCM-1) and giant house spider associated circular molecule 1 (GhSACM-1),
encoded a protein most similar to the large T antigen (LT) encoded by polyomaviruses.
The LjOrbCM-1 genome only contained the LT-encoding ORF, whereas GhSACM-1
encoded an additional major, non-overlapping ORF. However, the non-LT encoding
ORF of GhSACM-1 was not predicted to encode a structural protein based on homology
searches or IDP profiles. These four non-CRESS DNA molecules will not be discussed
further, but these findings are noteworthy since they support studies describing
capsid-encoding molecules potentially representing novel multipartite viruses associated
with unsuspected organisms (Male et al., 2016) and the presence of episomal polyoma-like
replicons in spiders (Buck et al., 2016).

Terrestrial arthropods harbor a diversity of species representing
new members of established CRESS DNA viral groups
The CRESS DNA genomes that could be assigned to previously reported taxa were
dominated by members of the family Genomoviridae, which included genomes
retrieved from spiders (n = 7), flies (n = 2), grasshoppers (n = 1), and termites (n = 1)
(Table 3). Phylogenetic analysis based on the Rep indicated that the newly identified
viruses belong to three genera (Gemycircularvirus, Gemykibivirus, and Gemykolovirus)
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within the family Genomoviridae (Fig. 2; Fig. S1). The majority of arthropod-associated
genomoviruses identified here belong to the genus Gemycircularvirus, which is the
genus containing the highest number of species within the family (Varsani & Krupovic,
2017). Based on the species demarcation criteria of 78% genome-wide PI (Table 2),
two of the seven identified gemycircularviruses represent new isolates from the
classified species dragonfly associated gemycircularvirus 1 and sewage derived
gemycircularvirus 4. The remaining five gemycircularviruses represent new species.
Spider associated circular viruses (SACVs) 1 and 2 represent a new gemycircularvirus
species that was identified in four species of spiders, with SACV-1 and -2 isolates
sharing 79–98% genome-wide PI. In addition to gemycircularviruses, we identified
two isolates, fly associated circular virus 2 (FlyACV-2) and cybaeus spider associated
circular virus 2 (CySACV-2), representing members of the genus Gemykibivirus.
CySACV-2 represents a novel gemykibivirus species, whereas FlyACV-2 is a variant
(92% genome-wide PI) of an unclassified species currently represented by a gemykibivirus
isolate reported from pig feces (Nádia et al., 2017). Lastly, grasshopper associated
circular virus 1 and tubeweb spider associated circular virus 1, represent two new species of
the genus Gemykolovirus.

In addition to viral genomes that clearly fall within the well-established family
Genomoviridae, we identified three genomes from fungus-farming termites that belong
to a group of unclassified viruses that appear to be intermediate between genomoviruses
and geminiviruses (Fig. 2). In a brief report noting the prevalence of these termite
associated circular viruses (TACVs) in African Odontotermes sp. mounds we indicated
that these genomes were most similar to members of the Genomoviridae (Kerr et al., 2018).
However, Rep phylogenetic analysis indicate that only TACV-2 belongs to the
Genomoviridae (genus Gemycirculovirus), while TACV-1, -3, and -4 represent a new group
of viruses. Furthermore, TACV-3 and -4 have top BLAST matches to geminiviruses
(Table 3), but these genomes cluster closer to genomoviruses than geminiviruses (Fig. 2).
There are a number of unclassified sequences retrieved from various environmental
sources that fall in a similar phylogenetic position with TACV-1, -3, and -4, which may
grant the formation of new taxonomic groups.

Members of the family Circoviridae, genus Cyclovirus, were detected in spiders (n = 2),
flies (n = 1), and ants (n = 1) (Table 3). Based on the species demarcation criteria of
80% genome-wide PI (Table 2), two of these genomes, arboreal ant associated circular
virus 1 (AaACV-1) and soft spider associated circular virus 1 (SoSACV-1), represent
novel cyclovirus species. Fly associated circular virus 1 (FlyACV-1) and spinybacked
orbweaver circular virus 2 (SpOrbCV-2) are new isolates of the classified species
cockroach associated cyclovirus 1 (CroACV-1) and dragonfly associated cyclovirus 3
(DfACyV-3), respectively. While FlyACV-1 seems to be a divergent variant of the
CroACV-1 species, sharing 85% genome-wide PI with this cyclovirus, SpOrbCV-2
shares 99% PI with DfACyV-3. Interestingly, DfACyV-3 was discovered from a
dragonfly collected in the same region in FL, USA (Rosario et al., 2012) as SpOrbCV-2,
indicating that this cyclovirus species has been circulating in the region for at least
7 years.
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In addition to the four cycloviruses, we identified a genome, fly associated circular virus
5 (FlyACV-5), which is most closely related to cycloviruses and shares the genomic
features characteristic of members in this genus, including genome organization, size,
and putative ori (Table 3). Genome-wide PIs between FlyACV-5 and known cyclovirus
species are within the accepted range for members of the Circoviridae (>55% genome-wide
PIs) (Rosario et al., 2017). However, phylogenetic analysis of Rep sequences from members
of the family Circoviridae did not support the placement of FlyACV-5 in either of the
established genera for this family (Fig. 3). FlyACV-5 was most closely related to a CRESS
DNA virus retrieved from bat feces, the Pacific flying fox feces associated circular DNA
virus-8 (PfffACV-8, accession KT732825) (Male et al., 2016). Since both FlyACV-5 and
PfffACV-8 have genomic features characteristic of the genus Cyclovirus and share genome-
wide PIs >55% with members of this genus, these genomes may represent a novel group
within the family Circoviridae. The phylogenetic analysis also revealed two cycloviruses,
namely SoSACV-1 (accession MH545516) and Pacific flying fox feces associated circular
DNA virus-2 (PfffACV-2, accession KT732786) that seem to be intermediate between
circoviruses and cycloviruses (Fig. 3). However, at present, these genomes have been
classified as cycloviruses based on their genome organization, which is a mirror image of
that observed in circoviruses (Rosario et al., 2017).

Two new members of the family Smacoviridae were identified in flies (Table 3).
Both isolates, fly associated circular viruses (FlyACV) -3 and -4, represent new species
belonging to the genus Porprismacovirus based on the species demarcation criteria
(Table 2) and genus demarcation threshold of 40% Rep amino acid sequence PI
(Varsani & Krupovic, 2018). Porprismacovirus is by far the genus with the highest number
of species in the family (Varsani & Krupovic, 2018). Although both FlyACV-3 and
-4 represent new species, FlyACV-3 is closely related to an unclassified smacovirus
isolated from macaque feces (Kapusinszky et al., 2017). Therefore, FlyACV-3 and the
unclassified macaque associated smacovirus represent variants of the same
Porprismacovirus species.

In addition to viruses most closely related to members of established CRESS
DNA taxonomic groups, we identified an isolate representing a cricket-infecting virus
that has not been classified. Cricket associated circular virus 1 (CrACV-1), identified in

Figure 2 Maximum likelihood phylogenetic tree of replication-associated protein (Rep) amino acid
sequences representing members of the family Genomoviridae and related CRESS DNA viruses.
Branch colors distinguish sequences associated with various types of organisms and environmental
sources. Bars on the right indicate clades representing genomovirus genera and unclassified sequences.
Clades containing Rep sequences representing Gemygorvirus, Gemyduguivirus, and Gemykrogvirus
species and members from the family Geminiviridae, which were used as an outgroup, were merged.
Genomovirus Reps identified in this study are named and highlighted with schematics of terrestrial
arthropods from which they were identified, including viruses associated with sierra dome spiders
(SdSACV), pimoid spiders (PiSACV), tubeweb spiders (TuwSACV), grasshoppers (GhACV), and ter-
mites (TACV). Viruses identified in multiple species of spiders are identified as spider associated circular
viruses (SACV). Branches with <70% Shimodaira–Hasegawa (SH)-like support were collapsed. A version
of the tree containing source information and accession numbers for all the sequences included in the
phylogenetic analysis is available in Fig. S1. Arthropod silhouettes credit: Shutterstock vector library at
https://www.shutterstock.com. Full-size DOI: 10.7717/peerj.5761/fig-2
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a store-bought cricket, represents an isolate of Achaeta domesticus volvovirus (Pham,
Bergoin & Tijssen, 2013a; Pham et al., 2013b). The four volvovirus genomes that have been
reported to date, including CrACV-1, have been recovered from commercial crickets and
share >99% genome-wide PI, thus representing a single viral species.

Detection of a cyclovirus endogenous element in a
non-arthropod invertebrate
Analysis of BLASTn matches for fly associated circular viruses (FlyACV) -6 and -7 in the
GenBank non-redundant database revealed weak matches to nematodes. Although
these initial BLAST matches were weak (query coverage < 15%), this prompted a search
in the WormBase Parasite database (Howe et al., 2017) using the FlyACVs putative
Rep sequences as queries. This search led to the detection of a previously unreported
CEV from Hymenolepis microstoma, commonly known as rodent tapeworm.
The H. micostoma CEV is embedded within a 251 kb genome scaffold (accession
LN902886) (Tsai et al., 2013). The GenBank record for this genome scaffold noted two
Rep-associated coding sequences (CDS) that were positioned next to each other. One of the
CDS contains a near full-length Rep (accession CDS32196), whereas the second one
(accession CDS32195) is interrupted at the SF3 Walker-A motif, at which point a partial
capsid is encoded in the same reading frame. Inclusion of the near full-length Rep from
H. microstoma in the phylogenetic analysis showed that this sequence falls within
the Cyclovirus genus (Fig. 3). Although CEVs have been previously noted from parasitic
helminths (Liu et al., 2011), this is the first cyclovirus CEV reported from nematodes.
Notably, the H. microstoma CEV Rep sequence is most closely related to a cyclovirus
sequence reported from rodents (accession KY370028). The putative endogenous capsid
sequence is most similar to a cyclovirus reported from cat feces (Zhang et al., 2014),
which is also closely related to the H. microstoma CEV and the rodent cyclovirus based on
the Rep (Fig. 3). Therefore, both the CEV Rep and capsid sequences indicate that
H. microstoma has been infected at some point by a cyclovirus. To our knowledge, this is the
first evidence indicating that non-arthropod invertebrates serve as hosts for cycloviruses.

DISCUSSION
Most CRESS DNA viral diversity circulates among arthropods
and other invertebrates
From the relatively small-scale survey presented here, it is clear that terrestrial arthropods
harbor an extensive diversity of CRESS DNA viruses. Combining our results with previous

Figure 3 Midpoint rooted maximum likelihood phylogenetic tree of selected replication-associated protein (Rep) amino acid sequences
representing members of the family Circoviridae and related CRESS DNA viruses. Branch colors distinguish sequences associated with
various invertebrate and vertebrate organisms. Bars on the right indicate clades representing the Cyclovirus and Circovirus genera. Rep sequences
representing CRESS DNA-like endogenous viral (CEV) elements are highlighted with an asterisk symbol. Cyclovirus Reps identified in this study are
highlighted with schematics of terrestrial arthropods and include viruses identified from flies (FlyACV), ants (AaACV), soft spiders (SoSACV) and
spinyback orbweavers (SpOrbCV). Reps representing unclassified genome sequences forming non-Circoviridae clades used as outgroups were
merged and are highlighted in gray (accessions: KX246259, KR528563, KM598407, KR528546, KM874290, KM874319, KM874343, KT945164).
Branches with <70% Shimodaira–Hasegawa (SH)-like support were collapsed. Arthropod silhouettes credit: Shutterstock vector library at
https://www.shutterstock.com. Full-size DOI: 10.7717/peerj.5761/fig-3

Rosario et al. (2018), PeerJ, DOI 10.7717/peerj.5761 19/36

http://www.ncbi.nlm.nih.gov/nuccore/LN902886
http://www.ncbi.nlm.nih.gov/nuccore/CDS32196
http://www.ncbi.nlm.nih.gov/nuccore/CDS32195
http://www.ncbi.nlm.nih.gov/nuccore/KY370028
http://www.ncbi.nlm.nih.gov/nuccore/KX246259
http://www.ncbi.nlm.nih.gov/nuccore/KR528563
http://www.ncbi.nlm.nih.gov/nuccore/KM598407
http://www.ncbi.nlm.nih.gov/nuccore/KR528546
http://www.ncbi.nlm.nih.gov/nuccore/KM874290
http://www.ncbi.nlm.nih.gov/nuccore/KM874319
http://www.ncbi.nlm.nih.gov/nuccore/KM874343
http://www.ncbi.nlm.nih.gov/nuccore/KT945164
https://www.shutterstock.com
http://dx.doi.org/10.7717/peerj.5761/fig-3
http://dx.doi.org/10.7717/peerj.5761
https://peerj.com/


reports, exogenous CRESS DNA viruses have now been reported in organisms from
four out of the five major branches of the Arthropod Tree of Life (Giribet & Edgecombe,
2012), including Euchelicerata (Class Arachnida) (Kraberger et al., 2018; Wang et al.,
2018), Hexapoda (Class Insecta) (Dayaram et al., 2013, 2015b; Kraberger et al., 2017;
Padilla-Rodriguez, Rosario & Breitbart, 2013; Rosario et al., 2012; Tikhe & Husseneder,
2017), Myriapoda (Class Diplopoda), and Crustacea (Classes Malacostraca,
Maxillopoda, Copepoda, Branchiopoda) (Bistolas et al., 2017; Dunlap et al., 2013;
Hewson et al., 2013b; Rosario et al., 2015a). To the best of our knowledge, no studies
have specifically looked for CRESS DNA viruses within the remaining major arthropod
branch, the Pycnogonida (sea spiders).

Spiders were identified as an unsuspected rich reservoir of CRESS DNA viral diversity,
harboring most of the genomes from distinct viral groups identified in this survey.
However, it should be noted that spiders are insectivores; thus, it is possible that the wide
array of CRESS DNA viral diversity they contain is partially the result of accumulating
CRESS DNA viruses from their insect prey. Similarly, a high diversity of CRESS DNA
viruses has been reported from dragonflies, which are also top insect predators (Dayaram
et al., 2013; Rosario et al., 2012). Since our methods might have recovered viruses
from dietary content, it is possible that generalist arthropod predators may contain a
broader range of CRESS DNA viruses than dietary specialists. Additionally, the discovery
of some CRESS DNA viruses in multiple arthropod species may be due to overlapping
diets. Phylogenetic analysis of the conserved Rep indicates that many of the diverse
CRESS DNA viruses found within the terrestrial arthropods and other invertebrates fall
outside established CRESS DNA viral families and do not form cohesive phylogenetic
groups. This observation suggests that the CRESS DNA viral diversity associated with
arthropods and other invertebrates has been grossly underestimated and that additional
sampling of these groups would continue to expand the CRESS DNA virosphere.
A more systematic survey targeting the same number of specimens from different
taxonomic groups and representing a wider geographic distribution, rather than the
opportunistic sampling effort shown here, may help elucidate which arthropod groups are
hot spots for CRESS DNA viral diversity.

The diversity of CRESS DNA genomes identified in this study spans the entire CRESS
DNA phylogenetic tree representing Reps recovered from a wide array of eukaryotic
organisms (Fig. 1). Moreover, the CRESS DNA diversity falling outside established
taxonomic groups that has been detected within arthropods and other invertebrates
overwhelms the diversity reported from vertebrate organisms and plants, despite the fact
that the latter groups have been heavily sampled. Members of the Alphasatellitidae,
Geminiviridae, and Nanoviridae families were not detected in our survey, which did
not include plant virus insect vectors. However, these plant-infecting CRESS DNA viruses
and satellite molecules have long been known to circulate among hemipteran vectors
(Hogenhout et al., 2008), which have been exploited to discover viral species found in a
given area (Ng et al., 2011; Rosario et al., 2015b, 2016). Therefore, arthropod-associated
viruses include members from five out of the six CRESS DNA viral families that have
been identified as monophyletic (Kazlauskas et al., 2017). The remaining established
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CRESS DNA family that was not identified in our survey, Bacilladnaviridae, includes
viruses infecting unicellular algae and has only been reported from aquatic environments
(Kazlauskas et al., 2017).

We identified novel viruses representing new members from the Genomoviridae,
Smacoviridae, and Circoviridae families. Genomoviruses were the most diverse group,
with 12 genomes recovered from spiders and insects from the orders Blattodea,
Coleoptera, Diptera, and Orthoptera. The arthropod-associated genomoviruses represent
at least three genera and highlight the ever growing diversity and wide distribution of
this group of viruses (Krupovic et al., 2016). Two CRESS DNA viral sequences representing
members of the Smacoviridae, which have been mainly recovered from feces from
various mammals (Ng et al., 2015; Steel et al., 2016; Varsani & Krupovic, 2018), were
recovered from blow flies (Diptera: Calliphoridae) collected in the Caribbean. The novel
fly associated smacoviruses, FlyACV-3 and -4, were recovered from blow flies collected
using a chicken carcass as bait (Yusseff-Vanegas & Agnarsson, 2017). Since blow flies
are known to feed on feces and tissues from various vertebrates, including mammals,
it is likely that FlyACV-3 and -4 represent dietary content. Nevertheless, the detection of
fly associated smacoviruses and a smacovirus in dragonflies (Dayaram et al., 2015b)
indicates that this group of viruses circulates within arthropods.

Members of the family Circoviridae present a unique distribution relative to all of
the other established CRESS DNA viral groups infecting multicellular organisms.
All of the Circoviridae members identified in this study represent the genus Cyclovirus.
Although cycloviruses have been identified in both vertebrates and arthropods, to date,
members of the genus Circovirus have mainly been reported from the former.
Moreover, this observation is consistent with CEV searches (Belyi, Levine & Skalka, 2010;
Dennis et al., in press; Liu et al., 2011) including a survey of more than 680 animal
genomes, ∼50% of which were invertebrates (Dennis et al., 2018). Viruses reported from
ticks are the only arthropod-associated CRESS DNA viruses belonging to the genus
Circovirus (Tokarz et al., 2018;Wang et al., 2018). Since ticks are hematophagous parasites
that feed exclusively on the blood of birds and mammals (Basu & Charles, 2017),
it is possible that tick associated circoviruses represent vertebrate-infecting viruses,
in particular avian circoviruses (Fig. 3). Interestingly, bona fide circoviruses have not been
reported from mosquitoes, a major group of blood-feeding arthropods of public health
relevance. However, this might reflect the scarcity of mosquito DNA viromes reported
to date. Despite these caveats, the available data suggests that cycloviruses circulate
in a wide array of invertebrates and mammals, whereas circoviruses are mainly restricted
to vertebrates and, perhaps, blood-feeding arthropod vectors.

In the Rep-based phylogeny, cycloviruses appear basal with respect to circoviruses
(Fig. 3). Based on the higher diversity of cycloviruses described to date and the wider
distribution of these viruses in both vertebrates and invertebrates, it is conceivable that
cycloviruses are ancestral to circoviruses. We also note that there is a group of cycloviruses
recovered from spiders and an insectivorous bat that seem intermediate between other
cycloviruses and the circovirus clade (Fig. 3). Moreover, we detected viral sequences
with cyclovirus genome organization from blow flies and an insectivorous bat that do not
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fall within the cyclovirus Rep clade that may represent a novel group within the
Circoviridae. Further sampling of CRESS DNA viruses found in arthropods and other
invertebrates may help resolve phylogenetic relationships among members of the
Circoviridae. Nevertheless, our phylogenetic analysis supports the idea that there are
distinct groups of cycloviruses (Dennis et al., 2018).

It appears that the complete phylogenetic breadth of CRESS DNA viral diversity
that has been reported to date circulates within arthropods and other invertebrates,
which is analogous to what has been noted for RNA viruses (Li et al., 2015; Shi et al., 2016a,
2018a). Few CRESS DNA Rep phylogenetic clusters are represented by viral sequences
recovered from vertebrates, plants, or fungi alone (Fig. 1). This observation includes
established CRESS DNA viral groups as well as novel sequences that have not been
assigned to taxonomic groups. In addition, the vast majority of CRESS DNA sequences
recovered from plants and fungi, including CEVs, fall near or within the closely
related Geminiviridae and Genomoviridae clades. Vertebrate-associated CRESS DNA
sequences that fall outside established groups have been mainly reported from fecal
samples and most are intermixed with sequences that have been reported from
invertebrates (Fig. 1). However, we identified one divergent clade that only included
sequences from CRESS DNA viral isolates recovered from mammal feces and may
represent a vertebrate-infecting lineage. More sampling, including blood or tissue samples
as opposed to fecal samples, is needed to confirm this possibility. Despite the presence of
plant-specific (Geminiviridae and Nanoviridae) and potentially vertebrate-specific viral
lineages (genus Circovirus), most of the CRESS DNA viral diversity identified in
vertebrates, plants and fungi is nested within the much broader genetic diversity of
invertebrate-associated viruses.

Related CRESS DNA viruses identified in disparate organisms
The phylogenetic analysis revealed many Rep sequences from disparate sources grouping
together in the same clade (Fig. 1). Even when looking at broad source classifications,
such as vertebrates, plants, arthropods and other invertebrates, few of the clades that fall
outside of the established CRESS DNA viral groups represent isolates retrieved from
similar sources. Moreover, the same “source intermixing” can be observed within
established CRESS DNA groups (Figs. 2 and 3). CRESS DNA viral isolates representing
members of the Genomoviridae are a notable example. Genomovirus genomes have been
recovered from plants, fungi, vertebrates and arthropods; however, there is no clear
separation of genomovirus groups based on the source (Fig. 2; Fig. S1). With such
phylogenetic distribution, it is tempting to speculate about potential cross-species
CRESS DNA virus transmission. However, since many CRESS DNA viruses have been
identified through molecular assays alone, it is difficult to predict the host for most of these
viruses, including those that fall within established CRESS DNA groups. Therefore,
we cannot make inferences regarding horizontal CRESS DNA virus transmission.
Furthermore, cross-species transmission between arthropod and vertebrate-infecting
viruses has been deemed unlikely (Dennis et al., 2018). Nevertheless, available data
suggest that closely related CRESS DNA viruses circulate among disparate organisms,
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providing opportunities for cross-viral species interactions that may lead to recombination
and the emergence of new viral species (Krupovic, 2013; Roux et al., 2013).

The detection of related CRESS DNA viruses in disparate eukaryotic organisms
might be partly explained by vectored viruses and/or viruses infecting hosts that interact
closely with other species in a similar niche. The two CRESS DNA viral families whose
members infect plants and were not identified in our survey, namely Geminiviridae
and Nanoviridae, are transmitted by hemipteran vectors where these viruses may
be found in high titers (Czosnek et al., 2017; Watanabe & Bressan, 2013). In contrast to
arthropod-borne animal-infecting RNA viruses and some vectored plant RNA viruses,
it is thought that CRESS DNA plant viruses do not replicate or express genes in their
vector (i.e., non-propagative transmission) (Dietzgen, Mann & Johnson, 2016).
However, there is evidence showing genetic changes of a nanovirus within its aphid
vector (Sicard et al., 2015). Moreover, some begomoviruses (family Geminiviridae) can
replicate within their whitefly vector (Czosnek et al., 2017) and alter the whitefly feeding
behavior to result in enhanced virus transmission (Liu et al., 2013). Therefore, there is
evidence for complex cross-kingdom interactions between plant-infecting CRESS DNA
viruses and their insect vectors.

In addition to recognized interactions between plant-infecting CRESS DNA viruses
and their hemipteran vectors, CRESS DNA viruses may be present in systems where
cross-kingdom species interactions are intertwined. We discovered CRESS DNA viruses
in organisms that have been previously investigated for their role in model symbiosis
systems, including fungus-insect and plant-insect systems. Interestingly, CRESS DNA
viruses discovered in both fungus-farming insects investigated here, including bark beetle
associated circular virus 1 (BbACV-1) and TACVs, were most closely related to members
of the Genomoviridae (Fig. 2). Infection assays with Sclerotinia sclerotiorum
hypovirulence-associated DNA virus 1 (SsHADV-1), the only genomovirus with a
confirmed host (Yu et al., 2010), suggest that some genomoviruses are able to infect
both fungi and insects. The primary SsHADV-1 host is a plant fungal pathogen;
however, the virus is able to replicate in a mycophagous insect that it potentially uses as
a transmission mechanism (Liu et al., 2016). Although we are not able to discern
if BbACV-1 and TACVs infect either the farmer (insect) or the crop (fungus) in these
ancient agricultural systems (Mueller & Gerardo, 2002), their discovery provides
two additional examples where genomovirus-insect-fungi interactions are tightly
connected.

Another notable example is the novel AaACV-1 cyclovirus, which was identified
multiple times in all three ant species tested from the whistling thorn (Vachellia (Acacia)
drepanolobium) ant-plant system in East Africa, with genomes recovered from each ant
species sharing >98% PI. The three ant species tested (Tetraponera penzigi, Crematogaster
nigriceps, and Crematogaster mimosae) live in an obligate mutualism with the acacia
tree throughout its range (Young, Stubblefield & Isbell, 1997), protecting their host plants
from mammalian herbivores, but also shaping aspects of the host environment such as
plant-associated fungal communities, in a species-specific manner (Baker et al., 2017).
Although the ants inhabit domatia (arthropod-occupied chambers) of the same acacia tree
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species, each tree typically hosts a single colony at any point in time (Palmer et al., 2000).
Opportunities for direct viral transmission between colonies of the same or different
species are therefore likely to be restricted to infrequent antagonistic interactions between
colonies occupying neighboring trees, so we did not expect to discover the same AaACV-1
virus in all three ant species. On the other hand, each tree typically hosts multiple
colonies sequentially over its lifetime, providing the ants with shelter in domatia and food
in the form of extrafloral nectar. The common host plant thus represents a good
candidate mechanism for the circulation of AaACV-1 in these three different ant species.
It remains to be determined what role, if any, AaACV-1 infection plays in this system.
Interestingly, an endogenous cylcovirus Rep has been identified in another arboreal ant
(Pseudomyrmex gracilis) (Fig. 3) (Dennis et al., 2018) suggesting that cycloviruses may be
common in complex ant-plant symbiotic systems (Clement et al., 2008).

Genomic fossil record supports widespread distribution
of CRESS DNA viruses among invertebrates
Evidence from CEVs supports that CRESS DNA viruses infect or have infected
a diversity of organisms, including hosts from four of the five supergroups of eukaryotes
(Belyi, Levine & Skalka, 2010; Dennis et al., in press, 2018; Liu et al., 2011). Here,
we took advantage of previously reported CEVs and put them in a phylogenetic context
with extant exogenous CRESS DNA viruses recovered from a wide array of organisms.
Analyzed CEVs only included Rep sequences that were over 200 amino acids in length
and did not contain any early stop codons or frameshifts. Therefore, analyzed CEVs
potentially represent relatively recent CRESS DNA viral infections or functional elements
co-opted by the host (Dennis et al., 2018; Liu et al., 2011). Notably, a CEV identified
in the germline of the brown recluse spider Loxosceles reclusa (sequence ID: CVe.
Loxosceles_reclusa.7, Dennis et al., 2018) is most closely related to the longjawed
orbweaver circular virus 2 (LjOrbCV-2, accession MH545529) identified here,
suggesting that viruses similar to LjOrbCV-2 infect spiders. Interestingly, all of the
CEVs reported from vertebrates clustered within the genus Circovirus, whereas those
reported from invertebrates were distributed across the CRESS DNA Rep phylogenetic
tree (Fig. 1). Similarly, CEVs found in fungal genomes clustered near the Genomoviridae
and Geminiviridae clades. Therefore, the available CEV data support that CRESS
DNA viruses infecting vertebrates, plants, and fungi show a limited phylogenetic
distribution compared to viruses found in invertebrates.

CRESS DNA-like endogenous viral sequences have revealed multiple insertions
from related as well as distinct CRESS DNA viruses in various vertebrate host
germlines (Dennis et al., in press). Multiple CEVs have also been reported from the same
invertebrate species, with up to 19 sequences identified in a given host (Dennis et al.,
2018) and our phylogenetic analysis supports that divergent CRESS DNA viruses can
infect the same invertebrate host species (Fig. 1). For example, we were able to include in
our analysis seven distinct Rep sequences previously identified as CEVs from brine flies
(genus Ephydra) (Dennis et al., 2018), representing two species, E. hidrans (n = 5)
and E. gracilis (n = 2). Surprisingly, none of the endogenized Rep sequences from brine
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flies clustered close to each other. The closest phylogenetic neighbors to Ephydra Rep
CEVs have been primarily recovered from aquatic invertebrates perhaps reflecting the
ecology of these unique dipterans (Class Insecta) that live at the interface between
aquatic and terrestrial habitats. Brine flies live in hypersaline alkaline lakes feeding on
benthic algae and, whereas the larval stages are underwater, adults are considered
terrestrial (Herbst, 1980). Note that one of the Ephydra CEVs clustered with a Rep
representing a CRESS DNA virus recovered from another dipteran in its terrestrial phase
(mosquitoes).

CRESS DNA-like endogenous viral sequences identified in parasitic invertebrates,
including protozoans and nematodes, also demonstrate infection by distinct CRESS DNA
elements. The presence of Rep-like sequences in the genomes of enteric protozoan
parasites, including Giardia and Entamoeba, were noted more than 10 years ago
(Gibbs et al., 2006). Further investigation of CEVs from these parasites showed that various
Rep elements are transcribed, at least in E. histolytica, suggesting that the Rep has
been co-opted for the benefit of the parasite (Liu et al., 2011). We were able to include
seven Rep CEVs previously detected in Giardia intestinalis (n = 2) (Gibbs et al., 2006) and
three species of Entamoeba (n = 5) (Fig. 1) (Liu et al., 2011). The two analyzed Rep
sequences from Giardia clustered together, whereas sequences from E. histolytica clustered
in two groups. Therefore, the unicellular parasite E. histolytica has been infected by
at least two distinct CRESS DNA elements. Although we were not able to include multiple
CEVs from the same nematode species, three out of four CEVs from parasitic
nematodes clustered together, suggesting that there is a nematode-infecting lineage of
CRESS DNA viruses or at least an ancestral one. Notably, extrachromosomal virus-like
elements encoding a Rep have been reported from a free-living freshwater nematode
(Rebrikov et al., 2002) and, thus, CRESS DNA-like elements may be more common in
nematodes than previously recognized.

Circular Rep-encoding ssDNA viral infection of parasitic organisms transmitted
through the fecal-oral route further exemplify the difficulties associated with predicting
potential hosts for viruses identified in feces. There is a possibility that CRESS DNA viral
sequences identified in vertebrate feces actually represent parasite-infecting CRESS DNA
viruses since some parasites are ubiquitous and can be found in high numbers in fecal
matter (Oates et al., 2012). For example, three of the CEVs from enteric protozoan
parasites clustered close to CRESS DNA viral sequences retrieved from mammal feces
(Fig. 1). Two of these were Giardia CEVs that clustered with FlyACV-6 and -7 identified
here and rodent associated viruses (Phan et al., 2011). Since blow flies feed on fecal
matter, FlyACV-6 and -7 may represent ingested viruses from feces that may infect either
rodents or a parasitic protozoan host. Similarly, we detected a CEV in a rodent-infecting
parasitic tapeworm, H. microstoma, whose Rep was most similar to cycloviruses
recovered from rodents and cat feces (Fig. 3). With the available information, it is difficult
to establish if the cat and rodent associated cycloviruses infect these mammals
or co-occurring parasitic organisms. Alternatively, it is an intriguing possibility that
parasitic eukaryotes can act as CRESS DNA viral vectors, which would result in tightly
connected CRESS DNA virus-eukaryotic parasite-host interactions.
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The detection of CEVs in a wide diversity of parasitic eukaryotes, including
nematodes, protozoans, and arthropods indicates that the role of parasitic organisms in
CRESS DNA viral ecology and evolution should be explored. Moreover, there are extant
exogenous CRESS DNA viruses circulating in ectoparasitic arachnids (mites and ticks)
(Kraberger et al., 2018; Tokarz et al., 2018; Waits et al., 2018; Wang et al., 2018).
The detection of divergent RNA viruses in parasitic nematodes has also highlighted the
need to further investigate the role of parasites in virus evolution (Shi et al., 2016a).
The scarcity of data regarding parasite-associated microbes, including viruses, has been
recognized and efforts are underway to try to address this knowledge gap (Dheilly et al.,
2017). Exploration of undersampled invertebrate taxa and non-fecal samples from
vertebrates will certainly provide more insights into the evolution of CRESS DNA
viruses. In turn, the discovery of divergent CRESS DNA viruses will inform efforts
investigating the genomic fossil record to better understand viral evolution and host
biology (Feschotte & Gilbert, 2012; Krupovic & Forterre, 2015).

CONCLUSION
Here, we described CRESS DNA viruses from terrestrial arthropods with a widespread
phylogenetic distribution, including members of yet unclassified viral groups.
The cosmopolitan distribution of CRESS DNA viruses, combined with the dynamic nature
of these viruses, which seem to commonly exchange genetic information (Kazlauskas,
Varsani & Krupovic, 2018; Quaiser et al., 2016), may help explain the unprecedented
diversity recognized within recent years. It is important to note that our analysis
underestimates the diversity within CRESS DNA viral genomes since we only included
genome sequences associated with specific organisms, as opposed to environments
(e.g., sewage, seawater), which would have added more than 200 Rep sequences to our
phylogeny. In spite of this, it is clear that arthropods and other invertebrates harbor
an extensive diversity of CRESS DNA viruses that dwarfs the genomic diversity observed in
vertebrates, plants, and fungi. CRESS DNA viruses are emerging as a dominant and
diverse group in the eukaryotic DNA viral world, with each report of novel genomes
expanding the boundaries of this group. In contrast to other eukaryotic DNA viruses,
CRESS DNA viruses are associated with a wide range of organisms across the tree
of life, reflecting their ancient evolutionary history. Viral discovery efforts in
undersampled taxa promise to reveal a more complete view of CRESS DNA virus
diversity that will elucidate evolutionary linkages among these successful “genetic
parasites” (Koonin & Dolja, 2014).
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