

Sexual dimorphism in the Arachnid orders

Callum McLean Corresp., 1, Russell J Garwood 2,3, Charlotte A Brassey 1

Corresponding Author: Callum McLean Email address: callum.mclean@stu.mmu.ac.uk

Sexual differences in size and shape are common across the animal kingdom. The study of sexual dimorphism can provide insight into the sexual- and natural-selection pressures experienced by a group of organisms. Arachnids are diverse, comprising over 100,000 species, and ecologically significant, playing a vital role in controlling insect populations around the world. They also exhibit some of the more extreme forms of sexual dimorphism in the animal kingdom, with the males and females of some species differing dramatically in body shape and/or size. Despite this, research on arachnid sexual dimorphism has primarily focused on specific clades as opposed to observing traits across arachnid orders, the smallest of which have received comparatively little attention. This review provides an overview of the research to date on the trends and potential evolutionary drivers for sexual dimorphism and sexual size dimorphism (SSD) in individual arachnid orders, and across arachnids as a whole. The most common trends across Arachnida are female-biased SSD in total body size, male-biased SSD in relative leg length, and sexual dimorphism within the pedipalps. However, the evolution of sexually dimorphic traits within the group is difficult to elucidate due to uncertainty in arachnid phylogenetic relationships. We also highlight gaps in our current understanding, and suggest areas for future research.

School of Science and the Environment, The Manchester Metropolitan University, Manchester, United Kingdom

² School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

³ Natural History Museum

1	Sexual Dimorphism in the Arachnid Orders
2	Callum J. McLean ^{1*} , Russell J. Garwood ^{2,3} , Charlotte A. Brassey ¹
3	
4	¹ School of Science and the Environment, Manchester Metropolitan University, M1 5GD
5	² School of Earth and Environmental Sciences, University of Manchester, M13 9PT
6	³ Earth Sciences Department, Natural History Museum, London SW7 5BD, UK
7	*Corresponding author: <u>callum.mclean@stu.mmu.ac.uk</u>
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Abstract

Sexual differences in size and shape are common across the animal kingdom. The study of sexual dimorphism can provide insight into the sexual- and natural-selection pressures experienced by a group of organisms. Arachnids are diverse, comprising over 100,000 species, and ecologically significant, playing a vital role in controlling insect populations around the world. They also exhibit some of the more extreme forms of sexual dimorphism in the animal kingdom, with the males and females of some species differing dramatically in body shape and/or size. Despite this, research on arachnid sexual dimorphism has primarily focused on specific clades as opposed to observing traits across arachnid orders, the smallest of which have received comparatively little attention. This review provides an overview of the research to date on the trends and potential evolutionary drivers for sexual dimorphism and sexual size dimorphism (SSD) in individual arachnid orders, and across arachnids as a whole. The most common trends across Arachnida are female-biased SSD in total body size, male-biased SSD in relative leg length, and sexual dimorphism within the pedipalps. However, the evolution of sexually dimorphic traits within the group is difficult to elucidate due to uncertainty in arachnid phylogenetic relationships. We also highlight gaps in our current understanding, and suggest areas for future research.

3435

33

Introduction

Sexual dimorphism (SD), the difference in morphological, physiological and behavioural traits between males and females, is ubiquitous in nature. Common hypotheses to explain sex-specific divergence in body size and shape relate to sexual selection, intraspecific niche divergence and female fecundity pressures (Shine, 1989; Andersson, 1994).

40

41 Documenting and describing the occurrence of sexually dimorphic traits can provide important 42 insights into the evolution of morphology. Amongst vertebrates, for instance, the occurrence of 43 SD is well documented. In mammals, it has been quantified in 1370 species, representing around 44 30% of known mammalian species (Lindenfors, Gittleman & Jones, 2007). Datasets of similar size 45 have been used to quantify SD in reptiles (1341 species, Cox et al. 2007) and birds (Owens & 46 Hartley, 1998). In contrast, the SD literature pertaining to invertebrates is more fragmented 47 (Abouheif & Fairbairn, 1997), particularly within arachnids. Whilst a limited number of studies include large interspecific datasets (e.g. Head, 1995, 554 species) their taxonomic breadth, relative 48 49 to size of the group, pales in comparison to those in the vertebrate literature. Although such studies 50 can highlight trends within specific groups, they provide only limited insight into trends across 51 arachnids as a whole, primarily due to its diversity: the group comprises over 100,000 species 52 (Cracraft & Donoghue, 2004). 53 Research into arachnid SD to date has largely focused on the spiders (Arachnida: Araneae). This 54 is driven by interest in their large sexual size dimorphism, a subset of SD, which pertains solely to 55 size differences in segments or body size between sexes. Interest in SSD in spiders stems from orb 56 weaving spiders, which have the largest proportional weight difference between females and males 57 of all studied land animals (Foellmer & Moya-Larano, 2007). Hence, research has probed the 58 causes of this size disparity, and in particular the degree to which spiders follow Rensch's Rule 59 (which states that if SSD is male-biased within a group, SSD will increase with the increased body 60 size of a species; the converse if true is SSD is female-biased in a group, see Araneae section; 61 Rensch, 1950). A focus on this question and group has left other arachnid orders relatively 62 understudied, in terms of SD.

65

66

67

69

71

74

75

76

77

80

81

82

85

The lack of study is unfortunate, as arachnids constitute an interesting group for learning more 64 about SD, due to their wide range of morphologies, habitats and life histories. Indeed, SD is present in numerous forms throughout the arachnids, including the occurrence of exaggerated weapons (Santos, Ferreira & Buzatto, 2013), asymmetry (Proctor, 2003), extreme size dimorphism and/or other forms of polymorphism (e.g. Opiliones, Schizomida, and Acari). The wide range of potential 68 causes and expressions of dimorphism allow the influence of sexual selection and niche partitioning within the group to be assessed in great depth. 70 Recent advances make a review of SD in arachnids timely and important. Rigorous statistical testing has become commonplace in the last decade, with recent papers not only commenting on 72 sexual differences, but also quantifying their significance (e.g. Foellmer & Moya-Larano, 2007; 73 Zatz et al. 2011; Santos et al. 2013). Furthermore, high-resolution imaging has facilitated the study of smaller organisms, and the adoption of geometric morphometric (GMM) techniques has allowed for sexual shape dimorphism to be quantified across a number of groups (e.g. humans, Franklin et al. 2007; reptiles, Kaliontzopoulou et al. 2007; spiders Fernández-Montraveta & Marugán-Lobón 2017). Advances in phylogenetic methods have also made it possible to reconstruct the 78 plesiomorphic state of sexually dimorphic traits, and the order of character acquisition in their 79 evolution, thus providing novel data to help understand the drivers of SD (e.g. Hormiga et al. 2000; Baker & Wilkinson 2001; Emlen et al. 2005) In light of these new approaches, here we present the first review of SD across Arachnida. In particular, we have focused on collating data on the smaller arachnid orders, for which there is no 83 pre-existing synthesis of sexual dimorphism. We begin by considering common methodological 84 issues encountered throughout the arachnid SD literature. We move on to chart both SSD and shape dimorphism across eleven modern orders, and touch on potential drivers in the evolution of

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

86 sexually dimorphic arachnid traits. We conclude with discussion of shared patterns in SD across

87 Arachnida, and make suggestions for the direction of future research. As this review is of general

interest to all researchers interested in the development of SD and morphology, all arachnid

89 specific terms are defined or described as fully as possible.

Considerations when studying sexual dimorphism in arachnids

Across the animal kingdom, metrics for quantifying SSD differ considerably between groups. In mammals, SSD is synonymous with dimorphism in body mass (Weckerly, 1998; Lindenfors et al., 2007). In contrast, in reptiles and fish SSD is often studied using body length (Cox et al., 2007; Halvorsen et al., 2016), in amphibians through snout-vent length (Kupfer, 2007), and in birds using wing length (Székely et al., 2007). Mass is infrequently reported for arachnids. A primary challenge when reporting arachnid SSD is therefore identifying a linear reference character which reliably represents 'overall' body size in both sexes. Body length inclusive of opisthosoma, for example, may increase with feeding and is, to some degree, a measure of hunting success (as further outlined in sections Araneae and Solifugae). As a result, total body size in arachnids is often taken as carapace length or width (e.g. Weygoldt, 2000; Legrande and Morse, 2000; Pintoda-Rocha et al, 2007; Zeh, 1987a) However, carapace metrics can still be confounded by other shape variables (Vasconcelos et al. 2014; Fernández-Montraveta & Marugán-Lobón, 2017), and for example - the presence of unusual gland features, which modify the shape of the carapace (Heinemann & Uhl, 2000). A number of potentially problematic reference characters are highlighted in the following review.

SD in arachnids is often considered within the context of allometric scaling and support, or lack thereof, for Rensch's rule. Once a suitable reference character has been identified, advanced

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

statistics can clarify when allometry is present, yet the choice of regression type bears consideration. Type-I (ordinary least squares) regression is recommended when variation in the dependent variable is more than three times that of the independent variable (Legrende, 1998), yet allometric studies of organismal morphology frequently do not meet these criteria. Applying Type-I models in instances where variance in the dependent and independent variables are similar can result in an underestimation of the regression coefficient (Costa-Schmidt & de Araújo, 2008) and potentially hide allometric growth. Yet in situations when measurement error is low and measurement repeatability is very high, this underestimation is found to be negligible (Kilmer & Rodríguex, 2017). Furthermore, whilst many sexually dimorphic traits show positive allometry, sole focus on allometric scaling should be avoided. Bonduriansky (2007) found that many such characters - even those used as weapons in competition - scale isometrically, or with negative allometry, across a range of bird, fish and insect taxa. An emphasis on recording shape, as well as size, allometry is thus the best way to determine the presence and causes of SD. Furthermore, whilst many sexually dimorphic traits show positive allometry, sole focus on allometric scaling should be avoided. Bonduriansky (2007) found that many such characters - even those used as weapons in competition - scale isometrically, or with negative allometry, across a range of bird, fish and insect taxa. An emphasis on recording shape, as well as size, allometry is thus the best way to determine the presence and drivers of SD. When addressing the evolutionary drivers behind sexually dimorphic traits, it is important to avoid framing hypotheses around one sex (Weygoldt, 2000). For example, when studying SSD in orbweaving spiders, the bulk of recent research has focused on the benefits of small body size in males (e.g. Moya-Laraño et al. 2002; Foellmer & Moya-Larano 2007; Grossi & Canals 2015). However, within a broader phylogenetic context, female gigantism is often considered more important in the

development of size disparity (Hormiga, Scharff & Coddington, 2000). It is thus important to consider the advantages of differing morphologies from the perspective of both sexes.

SD challenging. For a recent overview of arachnid phylogeny, see Giribet (2018). Taxonomy may also be problematic, most notably when considering male polymorphism, as present in a number of arachnid groups (Clark & Uetz, 1993; Gaud & Atyeo, 1996; Santos et al., 2013; Buzatto & Machado, 2014). Assigning multiple male morphs to the corresponding female is challenging. Indeed, male polymorphism is likely to be more common than reported, but remains due to the difficulties of placing differing morphs into the same species. This may further complicate the study of sexual dimorphism, particularly if sexes exhibit niche partitioning.

Finally, we note that caution is required due the inconsistent application of terminology within arachnology. Terms such as *setae* (referring to a stiff hair or bristle) and *flagellum* (a slender 'whip-like' appendage or body tagma) are used throughout arachnid literature to refer non-homologous structures. For example, the flagellum refers to a cheliceral appendage in solifuges and to a structure on the posterior opisthosoma in schizomids (Harvey, 2003). Conversely, homologous structures may be given different names across arachnids. The segments of the leg often carry different names between groups despite being homologous, and in the case of Amblypygi, homologous pedipalp segments are assigned differing names depending on author (Weygoldt, 2000). Where ambiguity in terminology exists, we provide descriptions of body segments where terminology alone may not describe position and form.

Aim and survey methodology

A literature survey was conducted in Google Scholar using the scientific name of an arachnid order (for example "Uropygi") and all common names ("whip scorpion", "vinegaroon") and derivatives,

with AND (the Boolean operator indicating that returned results should contain this and the subsequent term) then "sexual dimorphism". Google Scholar was chosen over other literature databases (Web of Science) as the specified search terms may occur anywhere within the text, as opposed to only the title, abstract and keywords. Each returned paper was examined to determine if it contained pertinent information. Particular effort was made to identify and incorporate studies that quantified sexual dimorphism, especially those with statistical support. If no evidence of sexual dimorphism was provided, but a further citation was given, that citation was assessed. Additionally, arachnid workers' personal paper collections were used to access further documents that did not appear in Google Scholar or citations. A full list of papers included, the form of dimorphism illustrated, and the type of reporting used (qualitative vs. quantitative) is provided in the Supplementary Material. We highlight here that "sexual dimorphism" refers to the condition in which males and females differ in their characteristics *beyond* primary sexual organs. Penis and spermatophore morphology, for example, are beyond the scope of this study.

Standard Figure Abbreviations

Each section is accompanied with figure charting general trends of SSD within the order. Figures follow a standard configuration: body parts coloured red indicate male-biased SSD, green indicates a female bias, and purple mixed sex bias. Legs are numbered 1-4, chelicerae are marked "C" and pedipalps are marked "P"; male (\circlearrowleft) or female (\Lsh) symbols denote SSD in overall body size. Order specific abbreviations are defined in figure captions. Symbols denote SSD in overall body size

174 Acari

Description and Phylogeny

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

Acari, the subclass that contains mites and ticks, is the most speciose arachnid group with around 55,000 reported species (Zhang, 2011), although it is thought that this represents only a fraction of a potential 1 million extant species (Walter & Proctor, 1999). Acari have colonised almost all terrestrial and marine environments and have also adopted modes of life including herbivory, predation, parasitism and scavengry (Vacante, 2015). Morphologically, Acari are distinct from the rest of the arachnids through their tagmosis, and the presence of a gnathosoma - a structure formed by the chelicerae, pedipalps, and mouth, which form a functional unit separated from the rest of the body by a region of flexible cuticle. There are two major clades within Acari, the Parasitifomres and the Acariformes. They are differentiated morphologically by the stigmata arrangements; in Parasitiformes there are 1-4 dorsolateral or ventrolateral stigmata behind the coxa of leg II, which are absent in Acariformes (Vacante, 2015). There is debate about monophyly of Acari; multiple recent analyses have suggested that the two major clades are split making Acari paraphyletic. For example, Garwood et al.'s (2017) morphological phylogeny places Parasitiformes as the sister group to a clade including Acariformes and solifuges; molecular phylogenies elsewhere agree with these results (Pepato, da Rocha & Dunlop, 2010). However, other molecular studies places Acariformes as the sister group to pseudoscorpions, with this clade being the sister group to all other arachnids including Parasitiformes (Sharma et al., 2014). Earlier morphological phylogenies have also placed Acari as a sister group to Ricinulei (Lindquist, 1984; Shultz, 2007).

Sexual Dimorphism and Potential Drivers

The majority of literature concerning the SD in Acari focuses on the major acariform group Oribatida (e.g. Behan-Pelletier & Eamer 2010; Behan-Pelletier 2015a, b). SD in feather mites has

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

also been explored (Proctor, 2003). Within Orbatida, secondary sexual characters are generally considered rare (Behan-Pelletier & Eamer, 2010). SSD in overall body length is typically present but not pronounced in Orbatida: females are larger (see Figure 1), but male and female often overlap in size (Behan-Pelletier & Eamer, 2010). The most commonly SD is found in the dermal gland system (Behan-Pelletier & Eamer, 2010) with markedly different arrangements of the dermal porose areas reported between sexes (Norton and Alberti. 1997; Bernini & Avanzati 1983). These structures are used to spread sex hormones (Norton and Alberti, 1997) and male dermal glands can be associated with integumental structures on the carapace such as raised tubercles (Behan-Pelletier & Eamer, 2010). Body shape dimorphism is reported in some mite species. In Cryptoribatula euaensis, the female carapace takes the semicircular form typical of the family Oripodidae, whereas the male carapace is pear shaped (Behan-Pelletier & Eamer, 2010). The arrangements of plates comprising the exoskeleton can differ between sexes in Oribatida, as can the occurrence of setae and other integumental structures (Behan-Pelletier & Eamer, 2010, Behan-Pelletier and Eamer, 2015b). In extreme cases the idostoma, the body segment that attaches to the legs, can even be bifurcated (Proctor, 2003). In several groups of feather mites, body shape is non-symmetrical across the sagittal plane in males (Protor, 2003; Proctor & Knee, 2018). In those taxa characterised by male polymorphism (where males occur in multiple morphotypes, often reflecting different mating strategies; e.g. Radwan 1993; Ra'Anan & Sagi 1985; Tsubaki 2003), males can be both symmetrical and asymmetrical (Proctor, 2003). The evidence for SSD in leg length is limited, and appears to favour males. In two species of Ameronothrus, leg length exceeds body width in males, whilst the opposite is true for females (Søvik, et al. 2004; Behan-Pelletier & Eamer, 2010). This may not represent true SSD in leg length

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

as females also have a larger body size in this species (Søvik, et al. 2004). Male-bias SSD in the third leg length has also been documented (Gaud & Atyeo 1996). Furthermore, male legs are often modified with flanges, lobes, leg clamps, adanal discs, or pincers (Proctor, 2003). Setal arrangement also varies between sexes, with male orbatids having modified setae on the legs that are absent in females (Behan-Pelletier & Eamer, 2010; Behan-Pelletier, 2015b). Within the gnathosoma, male pedipalps are enlarged relative to female conspecifics. In some species of Astigmata, males also have pedipalp branches unseen in females of the same species, and in the most extreme cases these appear antler-like (Proctor, 2003). Chelicerae are also enlarged in some male feather mite species (Proctor, 2003). There also a number of prodorsal modifications present exclusively in males of some acarid species, which are hypothesised to help the male push female towards their spermatophore (Behan-Pelleiter and Eamer, 2015b). This suggest the influence of sexual selection acting through a form of sexual coercion. Potential drivers for dimorphism in Acari are difficult to determine given the relative lack information on life history. A correlation between habitat and SD has been discussed in Oribatida, as the majority of sexually dimorphic species occur in non-soil environments (Behan-Pelletier & Eamer, 2010), despite Acari as a whole being more speciose within soil (Behan-Pelletier & Eamer, 2010). Likewise, SD in the glandular system has been linked to habitat, as sex pheromones emitted from dermal glands are potentially more important for attracting a mate in drier environments (Norton and Alberti, 1997). Dimorphism in the nymphs of Kiwi bird (Aves: Apterygiformes) mites has also been attributed to their environment, with males living in feathers and females living in cutaneous pores, being one of the few unequivocal examples of niche partitioning between species in arachnids (Gaud & Atyeo, 1996).

Mating has been hypothesised to play a role in the elaboration of the third legs of male feather mites. The lobes, flanges and setae on the legs potentially help males to align with the female spermaduct opening (Gaud & Atyeo, 1979), and sexual selection could drive the development of the modifications. Elsewhere, heteromorphic 'fighter' males of *Caloglyphus berlesei* use their enlarged third legs to kill other rival males (Radwan, 1993) and monopolise females. In contrast, non-fighter males which do not kill off rival males are more successful in larger colonies under laboratory conditions (Radwan, 1993); factors such as population density may therefore influence mating behaviour and thus sexual- and male-dimorphic morphology.

Research into SD among mites and ticks has thus far been limited in taxonomic scope. Advances in high-resolution 3D imaging could assist future research into SD in smaller mites. We believe mites present an interesting study organism for interrogating the interplay between morphology and mating strategies. For example, many oribatid mites can and do reproduce via parthenogenesis (Behan-Pelletier & Eamer, 2010); the extent to which species that reproduce in this manner exhibit SD is as yet unknown.

Amblypygi

Description and Phylogeny

Amblypygi, or whip spiders, are an arachnid order comprising ca. 220 species (McArthur et al., 2018). Amblypygids live in tropical regions, preferring rainforests and caves, and are obligate predators (Weygoldt, 2003). Members of the order have a distinct morphology, their most recognisable trait being raptorial pedipalps exceeding twice the individual's body length in some taxa (Weygoldt, 2000). Amblypygids also possess antenniform first legs known colloquially as whips, which are adorned with sensory devices thought to allow mechano- and chemoreception

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

(Igelmund, 1987). Amblypygi also lack a terminal flagellum which differentiates them from Thelyphonida (whip scorpions and schizomids - we follow here the convention of the International Society of Arachnology and consider Thelyphonida a clade comprising the orders Uropygi and Schizomida; Weygoldt 2000). Recent morphological and molecular phylogenies consistently place amblypygids in a clade with thelyphonids (Shultz, 2007; Garwood & Dunlop, 2014; Sharma et al., 2014; Garwood et al., 2017).

Sexual Dimorphism and Potential Drivers

Female-biased SSD in overall body size, as measured by carapace width, is common in across Amblypygi (McArthur et al, 2018), potentially relating an increased capacity for egg production at larger body sizes (Armas, 2005) via fecundity selection. Male-biased SSD in pedipalps is widespread across the group, but the level of dimorphism varies greatly between species (McArthur et al, 2018; see Figure 2). In *Damon variegatus* and *D. gracilis*, pedipalp tibia length scales similarly in males and females across early instars. However, after the fourth nymphal stage, the pedipalp tibia displays greater positive allometry relative to carapace length in males (Weygoldt, 2000; see Figure 3). A similar growth pattern has been identified in the pedipalp tibia of Phrynichus deflersi arabicus (Weygoldt, 2003), Phrynus marginemaculatus and Heterophrynus batesii (McArthur et al., 2018); male-bias SSD in pedipalp length has also been observed in adults of several other species (e.g. Charinus mysticus, Sarax huberi), albeit with smaller sample sizes (e.g. Vasconcelos et al. 2014; Seiter et al. 2015). Pedipalp spines may also be sexually dimorphic in Amblypygi. Both male and female adult *Euphrynichus bacillifer* possess spines transformed into rounded apophyses, yet these are both larger, and carry more glandular pores, in males. P. exophthalmus also has a blunt apophasis on the pedipalp in the male but not the female (Weygoldt, 2000). The function of the apophyses and their associated glandular pores remains unclear

288 (Weygoldt, 2000). SD in the number of pedipalp spines has also been reported in *Charinus* 289 jibaossu (Vasconcelos, et al., 2014). 290 Recent work has suggested that territorial contest could be a driving force behind pedipalp SSD. 291 Field observations of *Phrynus longipes* have found that the majority of territorial contests (82.8% 292 in trials) are decided purely via display (Chapin & Reed-Guy, 2017). In these trials, the winner 293 was always the individual with the longest pedipalp femur length, creating a selective pressure for 294 longer pedipalps. However, investment in pedipalps is a high-risk strategy, as in those interactions 295 that escalate to contest and cannibalism, the winner is best predicted by body size (Chapin & Reed-296 Guy, 2017). A recent study has also reported that the level of SSD across amblypygid species 297 decreases with distance from the equator (McArthur et al., 2018). This may indicate climatic 298 controls on mating strategy, as has been demonstrated in Opiliones (Machado et al., 2016). Further 299 research is required however. 300 The antenniform first pair of legs has also been observed to be dimorphic in a number of species 301 across the group, and statistically demonstrated in *P.marginemaculatus* and *H.batesii* (McArthur et al., 2018). Male-male confrontation follows a common pattern across Amblypygi; initially, 302 303 males 'fence' by turning side-on to one another and repeatedly touching antenniform legs, before 304 unfolding their pedipalps, turning face on and charging (Weygoldt, 2000). Males also use whips 305 to display to females and caress the female before mating (Weygoldt, 2000). Whip legs are also 306 thought to have chemoreceptive functions (Weygoldt, 2000) that could hypothetically aid in mate 307 search, although no link has yet been draw between whips and the ability to locate potential mates. 308 It would therefore appear that SSD in whip length is driven by sexual selection though male contest 309 and potentially female mate choice.

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

Body segments can also show dimorphism, although it is rare in the group (Weygoldt, 2000). Shape dimorphism can be observed in C. jibaossu, with the male having wider carapace relative to length than females (Vasconcelos, et al., 2014). McArthur et al (2018), also reported widespread female biased dimorphism in carapace width, although it was being considered a proxy for overall body size. In Damon medius and D. variegatus, females possess a pleural fold along the ventrolateral and posterior opisthosomal margins; in gravid females, this fold surrounds the eggs to form a brood pouch (Weygoldt, 2000). On the underside of the opisthosoma, female Phrynichidae possess an area of red-gold hair around the posterior margin of the genital opening that is otherwise absent in males (Weygoldt, 2000). SD in Amblypygids is understudied relative to the larger arachnid orders. Several publications report little or no dimorphism within species (e.g. Rahmadi et al. 2010; Giupponi & Kury 2013). By necessity, these rely on small sample sizes: amblypygids are seldom seen in the wild and are thus difficult to collect (Weygoldt, 2000). As a result, quantitative tests are either not possible, or low in statistical power. Furthermore, subtle sexual character dimorphism (e.g. differences in pedipalp dentition) are easily overlooked in studies that rely on linear metrics. Future work will benefit from revisiting existing amblypygid collections, and utilising advances in imaging and 3D morphometrics.

Araneae

Description and Phylogeny

Araneae — or spiders — are the archetypal arachnid, and the order comprises over 47,500 species (World Spider Catalogue, 2018). Spiders are found in almost all terrestrial habitats. They are always predatory and possess weapons that are absent in other arachnids, such as the ability to administer venom via the chelicerae, and the ability to spin silk using opisthosomal spinnerets.

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

Araneae are members of a clade containing Amblypygi and Uropygi; their sister group is thought to be either Amblypygi (Wheeler & Hayashi, 1998) or Pedipalpi as a whole (a clade comprising Amblypygi, Uropygi and Schizomida; Shultz, 2007; Sharma et al., 2014; Garwood et al., 2017).

Sexual Dimorphism and Potential Drivers

Spiders are typically characterised by female-biased SSD, with females outweighing male conspecifics by up to two orders of magnitude (see Figure 4, Foellmer & Moya-Larano, 2007). In web-building spiders, female body length frequently exceeds that of males (Head, 1995; Vollrath, 1998), and can be twice that of males (Hormiga, Scharff & Coddington, 2000). Extreme femalebiased SSD is particularly prevalent in the families Thomisidae and Araneidae (Hormiga, Scharff & Coddington, 2000). The bulk of research concerning SD in spiders has concentrated on the prevalence of female-bias SSD and the potential driving factors underlying such extremes in total body size. The so-called 'giant females vs. dwarf males' controversy (Coddington, Hormiga & Scharff, 1997) has been discussed in detail elsewhere (see Moya-Larano et al., 2002; Foellmer & Moya-Larano 2007), and is not covered further in the present review. Likewise, the degree to which total body size SSD in Araneae is consistent with the predictions of Rensch's rule has been the subject of considerable study. The current consensus appears to be that SSD actually increases with body size in spiders characterised by female-bias SSD (Abouheif & Fairbairn, 1997; Prenter et al., 1999) counter to Rensch's rule, with male and female body size showing relatively uncorrelated evolution (Foellmar & Moya-Laraño, 2007). Furthermore, interesting exceptions to female-biased SSD do exist; for example, the aquatic spider Argyroneta aquatica displays malebias SSD in total body length (Schütz & Taborsky, 2003). Linyphia triangularis also subverts the general trend with males having wider cephalothoraxes than females (Lang, 2001), and male wolf

PeerJ

355 spiders (Allocosa brasiliensis) are larger than females in cephalothorax length (Aisenberg et al., 356 2007). 357 It should be noted that the above studies consider body size SSD within the context of body length 358 (e.g. Head 1995; Elgar 1991). Body length is subject to change based on hunting success, resulting 359 in potential overestimation of female body size in particular, as they tend to feed more over their 360 life span (Legrand & Morse, 2000). Carapace width is unaffected, however, and remains roughly 361 constant within an instar stage (Legrand & Morse, 2000), and may therefore become the preferred metric in future studies of SSD in spiders. 362 363 However, the use of carapace width as a predictor of body size can also be problematic in instances 364 when the prosoma itself shows SD. In *Donacosa merlini* (Lycosidae), GMM analysis found the 365 male carapace to be statistically wider and more anteriorly protruding than that of the female relative to overall size (Fernández-Montraveta & Marugán-Lobón, 2017). Fernández-Montraveta 366 367 & Marugán-Lobón (2017) also report differences in the relative sizes of the prosoma and 368 opisthosoma, which is suggested to results from the larger female opisthosoma creating a fecundity 369 advantage by stowing more eggs, with other studies finding strong correlation between female 370 carapace size and clutch size (Pekár, 2011; Legrande & Morse, 2000). Statistically significant SSD 371 in carapace width and height is also present in the linyphiid *Oedothorax gibbosus* (Heinemann & 372 Uhl, 2000). This results from a large gland located within the male cephalothorax that supplies a 373 nuptial secretion to females during courtship (Vanacker et al., 2003). The presence of this gland 374 is also male dimorphic, and morphs that lack the gland have a smaller carapace. This likely 375 indicates a divergence in male mating behaviour (Heinemann & Uhl, 2000).

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

SD in the pedipalps of spiders must be considered with caution. Within Araneae, the male pedipalp is principally adapted to transfer spermatophores to the female reproductive tract. As such, they effectively function as genitalia, and sex-based differences are examples of 'primary' sexual dimorphism. Unlike other arachnid groups, secondary SD in the pedipalps is rare in spiders. However, males of some burrowing wolf spider taxa (Allocosa alticeps and Allocosa brasiliensis) possess palpal spines that are absent in the corresponding cursorial females (Aisenberg et al., 2010). Contrary to other burrowing wolf spider taxa, males of these species burrow while females engage in active mate search, and modifications to male pedipalps are thought to improve burrowing performance (Aisenberg et al., 2010). Male-bias SSD in leg length relative to total body size is commonly observed in Araneae (Foellmer & Moya-Larano, 2007). Hypotheses for its adaptive significance fall into two broad categories: locomotion and display. Increased leg length has been linked to a theoretical increase in climbing and bridging speed (Grossi & Canals, 2015), whilst other authors have argued for the role of sexual cannibalism in imposing a selective pressure towards longer legs to aid in escape (Elgar et al. 1990). Male-bias SSD in leg length has also been correlated with active mate searching, where male wolf spiders involved in active mate searching possess longer legs relative to those of females (Framenau, 2005). Interestingly, in wolf spider taxa in which females actively search for mates, female-biased SSD in leg length becomes common, though examples of this reverse in SSD bias are thought to be uncommon (Aisenberg et al., 2010). In contrast, the legs of male salticids (jumping spiders) are commonly elongated and ornamented with setae for the purpose of display. Male peacock spiders possess elongated third legs relative to females, which are used in a ritualised courtship dance, often tipped with white bristles (Girard & Endler, 2014). Males of the species *Diolenius phrynoides* also show extreme lengthening of the

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

first legs, which are adorned with ridges of setae on the tibia unlike those of the female; again for use in display (Peckham & Peckham, 1889). Elongation of the forelegs in male wolf spiders has likewise been related to courtship (Kronestedt, 1990), supported by the presence of heavily pigmented bristles in the male Schizocosa ocreata (Scheffer et al., 1996). This species displays 'drumming' behaviour, where males beat their legs against the ground in order to attract prospective mates. In situations where the substrate hinders the transmission of said drumming, females prefer males with intact bristles, providing evidence they also play a visual role in courtship displays (Scheffer et al., 1996). Intersexual contest could also drive dimorphism in the legs of some species. Fighting behaviour using the legs as weaponry has been observed between males in the genera *Modisimus* and *Blechroscelis*, with males typically using their legs to push against the opponent (Eberhard & Briceno, 1985). Spider chelicerae are also characterised by SSD, although the direction of dimorphism is less consistent than in the pedipalps or legs. Unlike isometric females, male Z. rufipes chelicerae exhibit positive allometric growth in length relative to carapace length, with the resultant enlarged chelicerae in adult males thought to be involved in courtship display (Faber, 1983). Taxa in which males present nuptial gifts to prospective mates are also characterised by male-bias SSD in absolute cheliceral size, although the structures do scale with isometry (Costa-Schmidt & de Araújo, 2008). In wolf spiders though, female chelicerae have been reported to be statistically larger than males (Walker & Rypstra, 2002). Increased dentition on the chelicera base is also seen in males of some species (Peckham and Peckham, 1889), the purpose of this is unclear. Given that chelicerae are used in male-male competition - and fighting success is a good predictor of mating success (Rovner, 1968; Watson, 1990) – intrasexual selection might also underlie the hyper-allometric growth of male chelicerae (Funke & Huber, 2005). Alternatively, SSD in

422 Myrmarachne palataleoides chelicerae has been attributed to differing forms of prey capture 423 between males and females, in which the relatively longer chelicerae of males are used to spear 424 and dispatch prev in the absence of venom, which appears only in female conspecifics (Pollard, 425 1994). 426 Dimorphism in wolf spider chelicerae has been correlated to dietary differences between the sexes, 427 in turn relating to their respective reproductive roles. Females are known to catch significantly 428 more prey items, and show statistically significant female-biased dimorphism in cheliceral paturon length, width and fang width (Walker & Rypstra, 2002). Little evidence of habitat niche divergence 429 430 between sexes exists, indicating female-biased SSD in chelicerae was likely a response to 431 increased feeding induced by the energetic cost of rearing young (Walker and Rypstra, 2002). 432 Female-biased SSD in chelicerae in the ant-eating spider Zodarion jozefienae also appears to be 433 related to trophic niche partitioning. Due to the increased energetic demands of fecundity, females 434 prey on larger morphs of *Messor barbarous* ants than males (Pekár et al., 2011). 435 Sexual body character dimorphism in ornamentation, patterning and colouration are also common 436 across Araneae. Female orb-weaving spiders have a highly ornamented carapace comprising 437 spines and bright colours, which are otherwise lacking in males (Peckham & Peckham, 1889). In 438 the spiny orb-weaving genera *Micrathena* and *Chaetacis*, elongate abdominal spines have evolved 439 independently in females on eight separate occasions, and may exist as anti-predator structures for 440 the usually larger and thus more conspicuous females (Magalhaes & Santos, 2012). In salticids 441 however, males are characterised by increased colouration. Male Habronattus decorus, for 442 example, possess a purple opisthosoma and brighter colours on the legs and prosoma than their 443 black and white female counterparts do (Peckham & Peckham, 1889). Further SD is visible when 444 some taxa are viewed under ultraviolet (UV) light. For example, only male Cosmophasis

445 *umbratica* have body parts that reflect UV light (Lim & Li, 2006). Salticids are capable of detecting 446 light well within the UV spectrum (Peaslee & Wilson, 1989), and female C. umbratica exhibit a preference for UV-reflecting mates as opposed to those with UV-reflecting capabilities masked 447 448 (Bulbert et al., 2015). Such research highlights the importance of considering other potential 449 modalities for dimorphism that are less obvious to the human observer (Huber, 2005). 450 In Theraphosidae (tarantulas), SD occurs in both the size and composition of urticating setae (hairs 451 expelled when the spider is threatened, causing respiratory distress in vertebrates; Bertani & 452 Guadanucci, 2013). Longer urticating setae have been reported in males compared to females of 453 numerous species, and statistically significant differences identified in Avicularia avicularia 454 (Bertani & Guadanucci, 2013). Setae composition is also sexually dimorphic, with females of three 455 different genera possessing only Type-I setae (shorter hairs thought to defend against other 456 invertebrates; Bertani & Guadanucci, 2013). In contrast, males possess both Type-I and Type-III 457 setae, the latter being a longer seta used to ward off vertebrates. Differences in setal composition 458 may relate to the males' requirement to search for mates, placing them at greater risk of 459 encountering vertebrate predators (Bertani & Guadanucci, 2013). Spiders are by far the most-studied arachnid order in terms of SD, and particularly SSD. Research 460 461 in this group has benefitted from a number of novel approaches, including advanced imaging 462 techniques (e.g. studies in UV reflectivity and histological sectioning), kinematics and 463 biomechanical testing. Additionally, sample sizes are often far in excess of those generated on 464 non-Araneae arachnids. The application of such techniques to other arachnid orders may prove 465 useful in future research.

Palpigradi

Description and Phylogeny

Palpigradi, or micro-whip scorpions, are one of the least studied arachnid orders (see Supplementary Table). There are 78 extant species (Harvey, 2003). They are primarily found in leaf litter and caves across the tropics (Condé, 1996). Diagnostic features include a long, segmented terminal flagellum coupled with tri-segmented chelicerae (Harvey, 2003), and they typically average 1-1.5 mm in total length (Ax, 2000). Palpigradi have been placed: in Tetrapulmonata with Amblypygi, Araneae, Uropygi and Schizomida (Shultz, 1990; Wheeler & Hayashi, 1998); as a sister group to Acariformes (Van der Hammen, 1989; Regier et al., 2010), solifuges (Giribet et al., 2002) or the rest of Arachnida (Shultz, 2007). The most recent studies have placed Palpigradi as the sister group to Parasitiformes (Sharma et al., 2014) or to the remaining arachnids (Garwood & Dunlop, 2014; Garwood et al., 2017).

Sexual Dimorphism and Potential Drivers

To date, SSD in overall body size has not been reported in Palpigradi (see Figure 5), and expression of SD occurs predominantly in setal arrangements. In *Eukoenenia chilanga*, males have more setae on the opisthosomal sternites, ventral sclerotized plates making up opistosomal segments, X and XI (Montaño-Moreno & Francke, 2013). The number of setae also differs on other opistosomal segments, with male *E. mirabilis* possessing 31 setae on sternite VI compared to six or seven in the female (Condé, 1991). Setae are generally thicker and more cylindrical in males (Barranco & Mayoral, 2007; Souza & Ferreira, 2012).

Dimorphism in the palpigrade glandular systems have also been observed. In *E. lawrencei*, females possess three large glandular masses that protrude under segment VII compared to two glands in

the males (Condé, 1991). The extra glands in females may play a role in reproduction (Condé, 1991), though this is not elaborated on. The degree to which the above differences are statistically significant remains untested, however, and previous studies are limited by small sample sizes.

Further work is needed for the patterns and drivers of SD in Palpigradi to be understood. As far as we are aware, the mating habits of Palpigradi have never been reported, and relatively little is known of their ecology and behaviour. An improved understating mating and courtship, in particular, will prove important for identifying the potential drivers of observed dimorphism.

Pseudoscorpiones

Description and Phylogeny

Pseudoscorpions, occasionally referred to as book scorpions (or sometimes false scorpions), are represented by over 3300 species (Garcia et al., 2016). Members of the order are found in a wide range of terrestrial environments, typically in the tropics and subtropics, although occasionally as far north as arctic Canada (Muchmore, 1990). Pseudoscorpions appear superficially similar to scorpions, possessing pedipalp claws and a segmented opisthosoma, although they lack the tail and telson seen in true scorpions. They also differ from scorpions in size; the largest pseudoscorpion reaches 12mm in total body length (Beier, 1961) yet most measure approximately 1mm (Schembri & Baldacchino, 2011). Some morphological studies place pseudoscorpions as the sister group to scorpions (Pepato, da Rocha & Dunlop, 2010; Garwood & Dunlop, 2014; Garwood et al., 2017) and others to solifuges (Legg, Sutton, & Edgecombe, 2013; Giribet et al., 2002; Shultz, 2007). Molecular studies, in contrast, have placed them as the sister group to acriform mites (Sharma et al., 2014).

Sexual Dimorphism and Potential Drivers

Overall body size dimorphism is well documented in pseudoscorpion groups; in Cheiridioidea, a		
group containing Chernetidae (Murienne et al., 2008), males are consistently smaller than females,		
measured by carapace length (Zeh, 1987a). Zeh (1987a) notes that male-biased SSD is rare in		
Chernetidae, finding just eight species that exhibit reverse SSD in the 45 that were tested (Zeh,		
1987a).		
Sexual size dimorphism in pseudoscorpion pedipalps is present in a number of species. Males in		
the family Chernetidae typically have larger pedipalp claws than the females (see Figure 6; Zeh		
1987a, b). This is highly variable however: male claw silhouette area ranges from 60-150% of that		
in females (see Figure 7; Zeh, 1986). Furthermore, the direction and extent of dimorphism can		
vary significantly within a genus. It is not uncommon, to find both strong male-biased and female-		
biased SSD in claw size within a genus (see Figure 7, Zeh, 1987b). Regression analysis also reveals		
that the SSD in male claws seems to increase relative to female body size (Zeh, 1986). However,		
we note that this trend is not normalised to body size; therefore, whilst absolute difference in claw		
size increases, this could be primarily due to changes in body size.		
Several pseudoscorpion groups engage in 'pairing', a ritualised dance in which the male grasps		
the female's pedipalp claws before depositing a spermatophore (Weygoldt, 1966). Zeh (1987a)		
has suggested pairing may be a major control on dimorphism, particularly in pedipalp claws.		
Furthermore, male-male aggression has been correlated to pedipalp SSD. Male pseudoscorpions		
often fight one other using the pedipalp claws (Weygoldt, 1966; Thomas & Zeh, 1984), and		
experimental work suggests chela size, not body length, is a good predictor of the victor in such		

contests. Notably, it has also been reported that males with larger chelae produce more spermatophores than those with smaller chelae, suggesting they may have greater mating success (Zeh, 1986). A weak but significant relationship between the level of SSD observed and population density in Chernetidae has been reported, with this correlation increasing in specimens taken from nest areas (Zeh, 1986).

SD in pseudoscorpions is therefore well documented. Studies have included extensive statistical testing on morphometric characteristics, and the selective pressures driving SD are comparatively well understood. SSD has been particularly well described in Chernetidae, yet substantially less is known of other pseudoscorpion families. This is where significant gaps in the current body of knowledge lie.

Opiliones

Description and Phylogeny

Opiliones, commonly known as harvestmen, are the third largest arachnid order comprising over 6500 species (Kury, 2013). The greatest diversity in harvestmen is in the tropics, though their range stretches into the high-latitudes (Pinto-da-Rocha et al., 2007). A common characteristic of harvestmen is annteniform second pair of legs, which carry both sensors for detecting vibrations and chemoreceptors (Willemart & Chelini, 2007). Synapomorphies of the group include the position of the gonopore, the presence of a penis or spermatopositor for direct copulation, and the presence of repugnatorial glands (Pinto-da-Rocha, Machado & Giribet, 2007). The majority of recent phylogenetic analyses have placed Opiliones as the sister group to a clade comprising pseudoscorpions and scorpions (Shultz, 2007; Pepato, da Rocha & Dunlop, 2010; Garwood et al., 2017). However, molecular analyses trees do not agree, placing Opiliones as the sister group to a

clade including spiders, Pedipalpi, scorpions, Ricinulei and Xiphosura (Sharma et al., 2014), although the authors note the impact of long branch attraction (Sharma et al., 2014).

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

Sexual Dimorphism and Potential Drivers

'Total' body size is typically taken as dorsal scute, the dorsal prosomal shield, length in Opiliones (e.g. Willemart et al. 2009; Zatz 2010). While this is generally seen as a good metric for quantifying overall body size, some publications report differences in body size based on a number of other characteristics. SSD is reported in numerous opilionid groups: Females in the families Nipponopsalidiae, Sclerosomatidae and the genus Crosbycus are larger than males (although few males are known in the latter) (Pinto-da-Rocha et al., 2007). The metric used to quantify SD in this instance is not clear, however. Larger body size in females has also been reported in Longiperna concolor and Promitobates ornatus, based on dorsal scute length (Zatz, 2010). Conversely, in Cranaidae and Oncopodidae the carapace is much larger in males than females (Pinto-da-Rocha et al., 2007). Hence, whilst statistical testing is limited within the Opiliones, this qualitative work suggests the direction of SSD might be variable across the group. Modification of the tergites, sclerotized upper sections of arthropod segments, is observed in a number of species. In Pettalidae, tergites around the anal region in males possess grooves and ridges that are absent in females; in extreme cases tergites in this region become divided (Pintoda-Rocha et al., 2007). Levels of scolerization can also differ between sexes, as does body patternation (Pinto-da-Rocha et al., 2007; Taylor, 2004). The drivers behind this type of dimorphism are unclear.

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

SD and SSD in specific appendages is more strongly supported within Opiliones. In Longiperna concolor (Gonyleptidae), for example, the fourth leg pair displays male-bias SSD in length (see Figure 8, Zatz, 2010). Leg length is also bimodal in males of this species: 'major' male morphs show positive allometry, whilst others display isometry, creating short-legged 'minor' individuals (males that lack the exaggerated features of the 'major' male and appears more like females; Zatz et al., 2011). Such male dimorphism has been correlated to the presence of intraspecific male fighting, with the fourth leg of L. concolor being used in contest between 'major' morphs (Zatz et al., 2011). 'Minor' males, in contrast, avoid contest and employ a tactic of 'sneaking' into harems in order to steal copulations with the females (Buzatto & Machado, 2008; Munguía-Steyer et al., 2012; Muniz & Machado, 2015). Willemart et al. (2009) identify five characters in N. maximus that show positive allometry in males, but not in females. All are involved in male-male contest. These include apophyses on the leg four coxae and trochantae, and a dorsal-proximal spine on the femur of the fourth leg, all of which are involved with a phase of fighting termed 'nipping' (Willemart et al., 2009). The apophyses take a much simpler form in females (Willemart et al., 2009). The curvature and diameter of the males' fourth femur is also characterised by positive allometry, potentially creating an advantage in the 'pushing' phase of contest in which males use their fourth legs to attempt to move their opponent (Willemart et al., 2009). Similarly, SSD and male dimorphism co-occur in the second leg of Serracutisoma proximum (Buzatto & Machado, 2008; Buzatto et al., 2011). In this species, male 'major' morphs use the second leg to tap opponents in a ritualised territorial contest (Buzatto & Machado, 2008), with the winner of such contests either holding, or taking over the contested territory and hypothetically increasing their resource holding potential. Yet field observation, coupled with statistical testing, has revealed no significant difference in second leg length or body size between the winners and

598 losers of territorial contests (Buzatto & Machado, 2008). Males with longer second legs do control 599 larger harems, however, but do not hold preferential territories (Buzatto & Machado, 2008). 600 Chemical communication has also been correlated to sex in Opiliones. Tegumental gland openings 601 located on the tarsus of the first, fourth and occasionally third leg, or the femur of leg one, are 602 present in males but not females (Willemart et al., 2010; Proud & Felgenhauer, 2013; da Silva 603 Fernandes & Willemart, 2014). Males rub the glandular pores on surfaces, and control the flow of 604 pheromones excreted (da Silva Fernandes & Willemart, 2014; Murayama & Willemart, 2015). Meanwhile, female *Dicranopalpus ramosus* possess greater numbers of sensory structures 605 606 (campaniform and falciform setae) on their tarsi relative to males (Wijnhoven, 2013); suggesting 607 females may have an enhanced ability to detect chemical cues left by males. Males do however 608 possess sensilla chaetica, which are also thought to have a chemoreceptive function (e.g. Spicer, 609 1987; Kauri, 1989; Willemart et al., 2009), suggesting that chemical secretions may also play a 610 role in warding off rival males (da Silva Fernandes & Willemart, 2014). 611 Male-bias SSD is also statistically supported in the pedipalp length of *Phalangium opilio*, and SD 612 is observed through mechanoreceptors identified solely on the male appendage (Willemart et al., 613 2006). Males of this species fight by pushing against each other and rapidly tapping their pedipalps 614 against the opponent. Pedipalp SSD is thought to determine the strength and frequency of taps 615 (Willemart et al., 2006). The appendages are also used to hold the legs of females during 616 copulation, suggesting male palps have adaptations for multiple functions (Willemart et al., 2006). 617 Likewise, male-bias SSD is reported in the length of the chelicerae in some families (Metasarcidae, 618 Cranaidae and Oncopodidae; Pinto-da-Rocha et al. 2007). In P. opilio, male chelicerae also have 619 a horn-like projection protruding upwards in a dorsal direction from the second cheliceral segment 620 (Willemart et al., 2006). During contest, males align their chelicerae and push against one another,

621 with the 'horns' providing a surface for the opponent to push against (see Figure 9). Cheliceral 622 horns are also placed over the female dorsum post copulation, again suggesting multiple functions 623 (Willemart et al., 2006). In species characterised by extreme male polymorphism such as 624 Pantopsalis cheliferoides, sexual dimorphism is also reported in chelicerae length, with the 625 smallest male morph typically possessing reduced chelicerae relative to the female (Painting et al., 626 2015). 627 It is clear that male-male contests and differing mating strategies are a key control on SD in 628 harvestmen, yet recent work has suggested a more fundamental control on whether males aim to 629 hold territory or favour scramble competition, and thus the potential level of dimorphism observed. 630 Opilionid breeding season length is best predicted by the number of months experiencing 631 favourable climatic conditions, particularly temperature (Machado et al., 2016). In climates that 632 consistently experience monthly mean temperatures of over 5°C along with the requisite amount 633 of precipitation, the breeding season is long and males prefer to hold territory. In cooler climates 634 the breeding season is much shorter, and scramble competition is preferred (Machado et al., 2016). 635 The greatly exaggerated contest structures characterised by male-biased SSD are therefore 636 typically only seen in warmer climates (Machado et al., 2016). 637 It should also be noted that SD and male dimorphism often co-occurs in harvestmen, having been 638 attributed to similar selective pressures offset by intralocus sexual and tactical contest (Buzatto & 639 Machado 2014, and references therein). Several studies have differentiated between 'major' male morphs with exaggerated traits and more 'female-like' 'minor' morphs. Whilst such studies do not 640 641 strictly quantify sexual dimorphism, information on male dimorphism can still be informative with 642 regard to alternative mating strategies and the morphological differences between females and

male 'major' morphs. For further information on male dimorphism, we refer readers to Buzatto and Machado (2014), which details male dimorphism in the group.

In conclusion, a male bias in the size of legs, chelicerae and other structures that appear to be related to intrasexual selection are well supported in Opiliones. The common direction of SSD in total body size remains unclear, however, due to ambiguous data with poor statistical support, though it is possible that it varies across the order. Given the large number of studies pointing towards male-male contest as a primary driver in SD in harvestmen it might be expected that, like mammals that exhibit male-male contest, SSD is biased in the direction of males (e.g. Smuts & Smuts 1993). However, though contest is clearly a driver for the exaggerated morphologies of 'major' males, comparatively little work appears to have been dedicated to how 'minor' males, where contest is not a factor, differ from females. Identifying a reliable proxy for overall body size and statistically testing SSD should also be a priority. A potentially suitable proxy may be the width of the cephalothorax, although given this segment is well fused to neighbouring segments; it may prove difficult to reliably identify in some groups (G. Machado, *pers. comm.*).

Ricinulei

Description and Phylogeny

Ricinulei, or hooded tick spiders, are the least speciose arachnid order comprising only 58 described species (Prendini, 2011). Ricinulei appear to inhabit damp tropical environments such as wet leaf litter and caves (e.g. Gertsch 1971; Cokendolpher & Enríquez 2004; Cooke 1967; Tourinho & Azevedo 2007). Features of the group include a locking ridge between the prosoma and opisthosoma, and, uniquely, a hood that can cover the mouthparts. No consensus exists on the placement of Ricinulei, which ranges between studies from being the sister group to a clade

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

including Acari and solifuges (Garwood et al., 2017), or a clade with Acari (Shultz, 2007; Pepato,

da Rocha & Dunlop, 2010) to a sister group to Xiphosura (Sharma et al., 2014).

Sexual Dimorphism and Potential Drivers

There is little evidence of SSD in overall Ricinulei body size, although male specimens of Pseudocellus pachysoma have also been found to possess a shorter and more granulated carapace than females (Teruel & Schramm, 2014). In Cryptocellus lampeli, the carapace is broader in females than it is long, whilst the opposite is true in males (Cooke, 1967). Dimorphism is present in the third leg across the group, where a copulatory organ is present in males (Legg, 1976). The organ derives from modified metatarsal and tarsal podomeres (Pittard & Mitchell, 1972). Of particular note is the close correspondence between the margins of the male metatarsal dorsum and a flange on the female's IV coxae (Legg, 1976), which become attached during mating (Legg, 1977). It is possible that the seemingly co-evolving leg structures could be an example of the 'lock and key' hypothesis (Masley, 2012). Adaptations related to copulation in males are thought to be taxonomically informative in the group (Tuxen, 1974), but whether these structures contribute to reproductive isolation is yet to be tested. Cooke and Shadab (1973) report that the shape of the abdominal sclerites and the number of tubercles can also show significant SD, but do not expand on these statements. Tubercles can also be found on the pedipalps (Legg, 1976). Male-bias SSD has also been documented in the legs of Ricinulei (see Figure 10). Based on a small sample size, Legg (1976) found all the legs of male R. hanseni to be longer than those of females relative to body length. In the second leg, male femoral diameter can be twice that of conspecific females, and the patella of males is also longer and more curved (Pittard and Mitchell, 1972). In P.pachysoma, the male first leg is thicker, and has a small conical spur with a coarse granulated

687	texture on its inner surface (Teruel & Schramm, 2014). This pattern has been correlated to the
688	complex mating behaviour of Ricinulei, during which males may climb on top of females (Cooke,
689	1967; Legg, 1976) and engage in an extended period of 'leg play', where males caress and tap
690	females with legs, before copulation occurs (Cooke, 1967; Legg, 1977). This may indicate that
691	female mate choice drives the elongation of male legs.
692	The retractable 'hood' (cucullus) covering the mouth and chelicerae also differs between sexes. It
693	is both wider and longer (Pittard, 1970) in male C. foedus than females, and is sometimes more
694	reflexed at its edges. The cucullus is hypothesised to play a role in mating, the male cucullus acting
695	as a wedge to help unlock the ridge between the prosoma and opisthosoma in females, whilst
696	Ricinoides afzeli females use the cucullus to stabilise eggs during transport (Pittard, 1970). This
697	suggests that female mate choice and differing reproductive roles may drive cucullus dimorphism.
698	The cucullus also has non-reproductive functions, aiding in capturing prey and holding food during
699	consumption (Pittard, 1970), and is therefore also likely under the pressure of natural selection.
700	Male biased chelicerae SSD has also been reported, but the driver of this dimorphism is unclear
701	(Legg, 1976)
702	To date, most documented instances of SD in Ricinulei are qualitative, and little morphometric
703	data exists to provide statistical support of these conclusions. Future studies would benefit from
704	revisiting previously described collections (e.g. Cooke & Shadab 1973) and applying
705	morphometric analyses, allowing the occurrence/extent of SD to be more rigorously quantified.

706 Schizomida

707

Description and Phylogeny

Schizomida, or short-tailed whip scorpions, comprise just over 230 described species (Reddell & Cokendolpher, 1995). Schizomida are primarily tropical in distribution and tend to be found away from bright light, with some species being troglodytes (Humphreys, Adams & Vine, 1989). Schizomids have been found in desert environments (Rowland and Reddell, 1981) and on the underside of ice and snow covered rocks (Reddell & Cokendolpher, 1991), illustrating their climatic range. Morphologically, Schizomida resemble whip scorpions, except their prosoma, which is divided into two regions (Barnes, 1982) and lacks eyes. Due to these morphological similarities, Schizomida are almost universally thought to be the sister group of Uropygi (Giribet et al., 2002; Shultz, 2007; Legg et al. 2013; Garwood & Dunlop, 2014; Sharma et al., 2014).

Sexual Dimorphism and Potential Drivers

The most consistent sexually dimorphic trait within schizomids is the flagellum (a projection from the terminal opisthosoma), which often varies in shape between sexes. The male flagellum is generally enlarged and bulbous, whereas the female is typically elongate (Harvey, 2003). It has been postulated that the flagellum might play a role in sex and species recognition during mating (Sturm, 1958, 1973). Details of courtship and mating are limited to one species (*Surazomus sturmi*), in which the female uses her mouthparts to grip the male flagellum during courtship (Sturm, 1958, 1973). Given that many schizomids have secondarily lost their eyes (Harvey, 1992), it is certainly possible that the grasping of the male flagellum plays a role in both sex and species recognition during courtship. It has been noted, however, that, flagellum dimorphism is absent in other taxa (Rowland & Reddell, 1980), with males of the family Protoschizomidae often possessing an elongate flagellum similar to that of females (Rowland & Reddell, 1979a). Instead, Protoschizomidae species lacking dimorphism in the flagella tend to show narrowing of the distal

730 body segments in males; elongation is seen in pygidial segments X-XII and/or terminal body 731 segments V-XII (Rowland & Reddell, 1979a). 732 SSD is also present in the schizomid pedipalp: males of many species have significantly longer 733 pedipalps than their female counterparts (see Figure 11, Harvey, 2001; Santos et al., 2013; 734 Monjaraz-Ruedas & Francke, 2015). In dimorphic species such as Rowlandius potiguar, male 735 pedipalp length is also highly variable relative to prosoma length compared to females (see Figure 736 12, Santos et al., 2013). This has been attributed to the co-occurrence of male dimorphism, where 737 both a long and a short pedipalp male morph are present, the latter having pedipalps similar in 738 shape and size to the female (Santos et al., 2013). Male pedipalp elongation occurs largely in the 739 femur, patella and tibia (Rowland & Reddell, 1979a, 1981). 740 In contrast to Opiliones, where male dimorphism has been correlated with male-male fighting 741 (Buzatto et al., 2011; Zatz et al., 2011), evidence for direct combat in schizomids is lacking. 742 Furthermore, the male pedipalp does not play a direct role in copulation (Sturm, 1958, 1973). 743 However, observations of the courtship of *Hubbardia pentapeltis* suggests that males stretch out 744 their pedipalps and use them to pick up small twigs before displaying them for females (JM Rowland, pers comm from Santos et al, 2013). Further work is required to confirm this within 745 746 Rowlandius and other genera. If this were confirmed it would suggest that female mate choice may 747 be driving dimorphism. 748 SD in shape is also present in the schizomid pedipalps. Species of the *Mexicanus* species group (a 749 clade defined by Rowland 1975, containing members of the genus *Schizomus*) show both SD and 750 male dimorphism: some males have a large pedipalp with a tibial spur, which is absent in males 751 with smaller pedipalps and females (Rowland & Reddell, 1980).

SD in schizomids is far from consistent, its presence/absence varying at both a family and genus level (Rowland & Reddell, 1979a, b, 1980, 1981). Even within a single species, the extent of SD varies in response to the environment. Cave dwelling individuals of *Schizomus mexicanus* are more strongly sexually dimorphic than those of epigean populations, for example (Rowland & Reddell, 1980). Whilst compelling evidence has been put forward in support of sexual selection driving schizomid dimorphism (Santos et al., 2013), a paucity of wild behavioural data limits further understanding. Future research on the potential pressures schizomids face *in situ* is therefore necessary.

Scorpiones

Description and Phylogeny

Scorpions are one of the more diverse arachnid orders comprising around 1750 described species (Kovarik, 2009). They have colonised a wide range of terrestrial environments, with a northernmost occurrence of 50°N (Polis & Sissom, 1990). Scorpions are unique amongst arachnids in possessing a long metasoma (tail) terminating in a venomous sting. Significant uncertainty exists regarding the placement of the group within the arachnid phylogeny. Recent morphological analyses have suggested they could be the sister group of harvestmen (Shultz, 2007), the sister group to a clade of solifuges and pseudoscopions (Wheeler & Hayashi, 1998; Giribet et al., 2002), the sister group to Opiliones and pseudoscorpions (Garwood et al., 2017), or the sister group to pseudoscorpions (Pepato, da Rocha & Dunlop, 2010). Molecular phylogenies variously place the order as closest to Ricinulei and Pedipalpi (Sharma et al., 2014), or as the sister group to Pseudoscorpions, solifuges and harvestmen (Giribet et al., 2002). One placement that has gained recent traction is Arachnopulmonata, a clade that includes scorpions and pantetrapulmonata (spiders and pedipalpi), having being recovered from molecular studies (Sharma et al., 2014) and

779

the groups within the clade seeming to have morphological similarities in their vascular systems

SSD in scorpions is relatively consistent across the group (see Figure 13). Females typically have

777 (Klußmann-Fricke & Wirkner, 2016; see also Giribet 2018).

Sexual Dimorphism and Potential Drivers

780 a larger carapace than males, which is thought to be a reliable indicator of overall body size (e.g. 781 Koch 1977; Sánchez-Quirós et al. 2012). Nevertheless, the extent of SSD can vary considerably. 782 Australo-papuan scorpions are characterised by extreme SSD, with the carapace of females on 783 average 40% longer than that of males. In contrast, some species show less than 1% difference in 784 carapace length between sexes (Koch, 1977; Polis & Sissom, 1990). Reverse SSD is also 785 occasionally observed in some scorpion clades; for example, male *Liocheles australaisae* carapace 786 length is on average 28% greater than that of females (Koch, 1977). Female-biased SSD appears 787 to be related to fecundity selection, with clutch size being strongly correlated with maternal body 788 size (Outeda-Jorge et al., 2009). 789 Scorpion SSD has also been reported based on total body length *inclusive* of tail. Kjellsvig-790 Wearing (1966) found males of *Tityus tritatis* to be longer in overall body length than females. We 791 note that this length metric is likely a poor proxy for total body size, as the metasoma of male 792 scorpions (segments comprising the tail exclusive of the telson), is often elongated (Koch, 1977; 793 Carlson et al., 2014; Fox et al., 2015); a trait most marked in the genera Centruoides, Hadogenes, 794 Isometrus and Hemiscorpius (Polis, 1990). This elongation is achieved by lengthening of existing 795 metasomal segments relative to females (Carlson et al, 2014), rather than the addition of segments. 796 As such, total body length performs worse than carapace length as a predictor for body mass, due 797 to the confounding factor of SSD in the tail. The telson itself is not sexually dimorphic in the

798 majority of species, but there are some exceptions (Polis & Sissom, 1990). In Heterometrus 799 laoticus the telson is longer in males (Booncham et al, 2007). Other structural modifications can 800 be found in males of Anuroctonus, Chaerilus, and Hemiscorpius (Polis & Sissom, 1990; Lourenco 801 & Duhem, 2010) and there is even some evidence of dimorphism in venom glands in scorpions 802 that exhibit sexual stinging (Sentenská et al., 2017). 803 The extent to which tail SSD is reflected in behavioural differences between male and female 804 scorpions remains unclear. Lengthening of the male metasoma has no impact on either sprinting 805 performance (by acting as a counterweight) or sting performance (defined as the number of discrete 806 stings when antagonised within a given time period; Carlson et al. 2014). It may be that the 807 increased length of the male metasoma is related to 'sexual stinging', in which males sting their 808 prospective mates (often in the arthrodial membrane adjacent to the pedipalp tibia) to subdue the 809 female and facilitate mating (Angermann, 1955, 1957; Francke, 1979; Tallarovic et al., 2000). The 810 male metasoma may also be used to 'club' or massage the female during mating (e.g. Alexander 811 1959; Polis & Farley 1979a). 812 The limbs of scorpions are also characterised by SSD, with male Centruroides vittatus possessing 813 significantly longer legs relative to total body size than females (see Figure 14). This translates to 814 a 30% sprint speed increase over females of the same body size (Carlson et al.2014); limb 815 elongation has therefore been linked to the documented male 'flight' versus female 'fight' response 816 to predation (Carlson et al., 2014). Similar locomotory benefits could potentially also apply to 817 males seeking out sedentary females prior to mating; longer legs could also aid 'leg play' during 818 mating (Polis, 1990).

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

In common with other arachnids (e.g. Schizomida, Amblypygi), marked dimorphism is present in the pedipalps, which carry claws (chelae) in scorpions. Chelae in males are often described as elongate or gracile compared to females, although the opposite is observed in some genera (e.g. Buthus, Scorpio and some Titus; Polis 1990). The degree to which male chelae really are larger than females after controlling for body size remains a point of contention, however. Whilst both the fixed and movable fingers of male chelae are longer and wider than females in absolute terms across numerous species (e.g. Caraboctonus keyserlingi, Pandinus imperator, Diplocentrus sp.; Carrera et al., 2009), no analyses normalise against body length. This largely reflects the above difficulties (as discussed in 'Scorpions' paragraph 2 and 3) in identifying a reliable reference character for overall body size (Fox et al., 2015). In contrast, dimorphism in chelae shape is more strongly supported. In a number of species, the movable finger of females is more curved than that of the males (Carrera et al., 2009), and dentition (processes on the inside surface of the chelae) differs between sexes in the Buthidae family (Maury, 1975). Pedipalp dimorphism has previously been hypothesized to play a role in mating; during courtship, many scorpions act in a 'courtship dance' involving the male and female grasping chelae prior to mating (e.g. Alexander 1959; Polis & Farley 1979a). Dimorphism in pedipalp chelae dentition, in particular, is thought to aid the male's grip of the female during mating (Maury, 1975). Sex differences in mode of life have also been proposed as potential drivers of dimorphism in the scorpion pedipalp chelae and chelicerae (Carrera et al, 2009). Males are more active during the mating season than females (Polis & Sissom, 1990) and excavate burrows more frequently than females (Carrera et al., 2009); in contrast, females build specialised burrows for maternal care (Polis, 1990). Interspecific morphological differences associated with burrowing are common

842	behind SD.
843	Finally, marked sexual dimorphism is also observed in the pectines (a ventral wing-shaped
844	structure with numerous teeth, used a sensory organ). Females have smaller pectines than males,
845	and the angle between the two wings is greater (Polis, 1990). In an ontogenetic study of
846	Paruroctonus mesaensis, male pectines grew at a much faster rate when the animal reached sexual
847	maturity, potentially indicating the organ may be subject to sexual selection (Polis & Farley,
848	1979b). Multiple authors have also found statistically significant differences in pectine length
849	between species (Booncham et al., 2007; Fox et al., 2015). Pectines function as both mechano-
850	and chemoreceptors. It has been hypothesised that males use their larger structures to track
851	chemical trails left by females, and thus find mates (Melville, 2000). Several authors have also
852	suggested that males have more pectinal teeth than females (e.g. Alexander 1959; Williams 1980;
853	Mattoni 2005).
854	In summary, SSD is less extreme in scorpions than many other arachnid groups, yet several
855	anatomical regions do reliably exhibit sex differences. On average, females are larger in total body
856	size, whilst males possess longer legs, elongate and gracile chelae, a slender metasoma, and
857	enlarged pectines. Reverse SSD is present in the chelae and metasoma in some groups (Polis &
858	Sissom, 1990). Future research should aim to map the phylogenetic distribution of such traits in
859	order to better understand how life history and habitat preference may result in differential

(Polis, 1990; Prendini, 2001), but burrowing has yet to be systematically investigated as a driver

861

862

863

860

Solifugae

Description and Phylogeny

selection operating on males and females.

Solifuges, known as camel spiders, comprise approximately 1000 species (Punzo, 1998a). The order is largely limited to arid environments, although some species are found in rainforests and their margins (Harvey, 2003). The occurrence of sensory racquet organs on the ventral surface of the coxae on leg IV differentiate Solifugae from other arachnids; other notable morphological features include enlarged chelicerae, elongate leg patellae relative to other arachnids, and the presence of trachea instead of book lungs (Harvey, 2003). There is some debate over their phylogenetic position within arachnids. Some studies report solifuges as the sister group to pseudoscorpions (Shultz 2007; Giribet et al. 2002) while others place them in a clade with Acariformes (Pepato, da Rocha & Dunlop, 2010, Garwood et al. 2017). Recent molecular work has placed solifuges as the sister group to a clade including Xiphosura, Ricinulei, Scorpiones, Pedipalpi, Araneae and Opilones (Sharma et al., 2014).

Sexual Dimorphism and Potential Drivers

Body length SSD is present in solifuges. Males are typically slightly smaller in body size, more slender in form, and have longer limbs than females (see Figure 15; Punzo, 1998b; Peretti & Willemart, 2007). Female-biased SSD likely relates to a fecundity advantage, with body size tightly correlating to clutch size in *Eremobates marathoni* (Punzo, 1998a). It has been suggested that the longer legs of male Solifugae could relate to extended mate searches or use in mating (Wharton, 1986). Racquet organs are also larger in males (Peretti and Williemart, 2007), and their hypothesized function as chemoreceptors may increase male capacity to detect pheromones and aid mate searches (Punzo, 1998a). This - combined with the fact that male pedipalps are used to 'massage' the female during mating (Heymons, 1902; Junqua, 1962) - may explain why all male limbs are elongated relative to overall body size.

Amongst arachnids, solifuges are best recognised by their large chelicerae. Numerous studies report SD in the chelicerae (see Supplementary Material), yet often fail to distinguish the effects of *shape* and *size* dimorphism from one another. Indeed, a commonly reported metric of solifuge chelicerae is their aspect ratio, with male chelicerae characterised by a greater length:width ratio than those of females (Punzo, 1998a; Peretti & Willemart, 2007). Whilst aspect ratio can itself be an important metric, often affecting function (e.g. Kruyt et al. 2014; Yeh & Alexeev 2016), the degree to which the 'slender' chelicerae of males are also dimorphic in total size is yet to be addressed in the literature. Calculations based on mean values presented by Punzo (1998a) do suggest female-bias dimorphism in cheliceral length and width, however. Quantifying the presence of SSD in chelicerae is further complicated by the lack of a reliable metric for total body size. Body length has been considered problematic, as the size of the abdomen is known to increase post feeding (Brookhart & Muma, 1981; Wharton, 1986). Elsewhere, the combined length of the chelicerae and propeltidium (CP index) has been preferred as a metric of solifuge total body size (Bird, 2015), further confusing the picture with regards to chelicerae length and overall SSD.

Dimorphism in solifuge chelicerae shape and dentition (projections from the chelicerae) is more widely accepted. Male chelicerae are straighter (Hrušková-Martišová et al., 2010); the fixed finger is less curved and the manus (a broad proximal section of the paturon which contains the cheliceral muscles; Bird, 2015) is more gracile (narrower and not as deep; Bird, 2015). The dentition of adult male chelicerae is also reduced in projection size (Bird, 2015). This is not universally true however — though not quantified, there appears to be little to no difference in the size of the primary and secondary teeth between sexes in *Solpugiba lineata* and some species of *Hemiblossia* (Bird, 2015). Both are known to be termitophagous, thus Bird (2015) has hypothesised that solifuge cheliceral

dimorphism is linked to feeding behaviour. Males are known to feed less often than females (Junqua, 1962; Wharton, 1986), and male chelicerae show less dental wear (Fitcher, 1940). Sex differences in dietary preference have also been observed under laboratory conditions, with female *Gulvia dorsalis* feeding on highly sclerotized beetles, which are refused by males (Hrušková-Martišová et al., 2010). The increased depth of the manus in female chelicerae may therefore facilitate an increase in muscle volume and enhanced bite force and feeding efficiency (Bird, 2015). Such a pattern has previously been found interspecifically: species characterised by chelicerae that are more robust are capable of delivering a stronger bite force (van der Meijden et al., 2012).

Alternatively, dimorphism in solifuge chelicerae may arise from their function during mating (van der Meijden et al., 2012). Male *Galeodes caspius* use their chelicerae to insert spermatophores into the genital opening of the female (Hrušková-Martišová et al., 2010); often inserting the fixed finger or occasionally the whole chelicera into the genital opening (Amitai et al., 1962; Bird, 2015). After sperm transfer, the male may start a 'chewing' action; the precise reason for this is unknown but is hypothesised to help force sperm into a storage area and/or break up the spermatophore (Muma, 1966). The straighter shape of the male chelicerae may assist with spermatophore insertion (Hrušková-Martišová et al., 2010), whilst reduced dentition could minimise damage during genital chewing (Bird, 2015). Sexually dimorphic setae are also present on the base of the chelicerae; in *Oltacola chacoensis* these are less numerous in males, but larger and harder (Peretti & Willemart, 2007). During mating, setae are pressed up against the perigenital region of the female, indicating a potential role during mating (Peretti & Willemart, 2007).

SD is also present in the solifuge flagellum, an elongate structure protruding from the fixed finger of the chelicerae. The flagellum occurs only in male solifugae (Punzo 1998). There is considerable interspecific variation in both the form of the flagellum (Lawrence, 1954; Punzo, 1998b) and in its articulation: it is fixed in some species and movable in others (Punzo, 1998b). Lamoral (1975) suggested multiple potential functions for the flagellum, including as a mechanoreceptor and being involved the storage and emission of exocrine. Flagella may also play a role in mating, being used by male *Oltacola chacoensis* to carry spermatophores (Peretti & Willemart, 2007), and being inserted into the genital opening during sperm transfer by male *Metasolpuga picta* (Wharton, 1986).

To summarise, SSD is present to some degree in total body size and may be present in chelicerae of solifuges, though shape dimorphism is better accepted. More work is required to determine the relative importance of mating and feeding on cheliceral morphology. Bird (2015) advocates a geometric morphometrics approach to quantifying the morphology of chelicerae, and we concur that such a study including males and females from multiple, phylogenetically disparate species would be an important advance in the field. Furthermore, life history information pertaining to Solifugae is limited to a small number of species; mating has only been studied in three families (Hrušková-Martišová et al., 2010). Focusing basic research onto lesser-studied groups may illuminate further trends in SD across the order.

Uropygi

Description and Phylogeny

Uropygi, known as whip scorpions or vinegaroons, are represented by 110 extant species (Zhang, 2011). The group is found in habitats limited to tropical and subtropical areas, preferring damp and humid conditions, although *Mastigoproctus giganteus* is found in arid environments in the southern U.S. (Kern & Mitchell, 2011). As their common name suggests, uropygid morphology bears some resemblance to that of scorpions, with palpal claws and a segmented opisthosoma. However, uropygid anatomy differs from that of scorpions in having a segmented terminal flagellum instead of a stinging tail. Furthermore, uropygids spray a noxious mixture primarily composed of acetic acid from glands located near the pygidium as a means of defence (Schmidt et al., 2000). There is consensus in the phylogenetic position of Uropygi: they are widely regarded as the sister group to Schizomida, together forming Thelyphonida, and being united with the Amblypygi to form the clade Pedipalpi (Giribet et al., 2002; Shultz, 2007; Sharma et al., 2014; Garwood et al., 2017).

Sexual Dimorphism and Potential Drivers

SSD has been reported in whip scorpions, with males having a larger prosomal scutum, the dorsal sclerotized prosomal plate, (seen as a good indicator of body size) than females (see Figure 16; Weygoldt, 1988). Other minor structural modifications can also be seen in the opistisoma and first leg of females (Huff and Prendini, 2009). In the pedipalps, SD is present beyond the fourth nymphal phase (the final nymphal stage before maturity). There is an increased positive allometric relationship in the length of the palpal femur and patella when regressed against carapace length in adult male of the species *Mastigoproctus gigantus* that is unseen in females (Weygoldt, 1971). SSD in the pedipalps is also seen in the genera *Thelyphonellas* and *Typopelti*, and to a lesser degree *Thelyphonus* (Weygoldt, 1988). Male pedipalps have also been described as "stronger" in these genera (Weygoldt, 1988), but there are no biomechanical analyses to support this statement. Minor

differences in structure between the male and female pedipalp are also present. For example, the third spine on the female trochanter of *Thelyphonus indicus* is much longer relative to other palpal spines (Rajashekhar & Bali, 1982), and the patella apophyses are thicker relative to length in females (Rajashekhar & Bali, 1982).

The tibial apophysis of the uropygid pedipalp is also dimorphic, though not in every group (Gravely, 1916). Where present, dimorphism is expressed through a larger tibial apophysis in males; this results, in males possessing a broader area on the tibia termed a 'palm'; a consistent feature across Uropygi (Gravely, 1916; Weygoldt, 1971, 1972; Rajashekhar & Bali, 1982). The tibial apophysis has a wide range of male morphologies across the group, ranging from a small projection to a suite of highly modified curved structures (Gravely, 1915). Similarly, the tarsus is characterised by sexually dimorphic projections in some species, with male *T.indicus* (Rajashekhar & Bali, 1982) and *Mastigoproctus gigantus* (Weygoldt, 1971) bearing a spine close to the tip of the fixed finger of the pedipalp claw, not present in females.

The sexually dimorphic pedipalps of Thelyphonidae are hypothesized to play a role in male-male contest over prospective females (Watari & Komine, 2016). Fighting includes a phase of grappling, where males face each other and fight using their pedipalps, and a tackling phase, during which males try to overturn their opponent using the pedipalps (Watari & Komine, 2016). Numerous publications report that males also use the pedipalps in mating, typically grabbing the first legs of the female with the pedipalps and manipulating her until they are face-to-face (Weygoldt, 1971, 1972).

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

Further work is needed to determine the underlying drivers of SD in the Uropygi. As many species are known from only a small number of individuals (See Gravely 1916; Huff & Prendini 2009), a concerted collecting effort will be required before any broad scale patterns in uropygid SSD may be distinguished.

Discussion

Trends in SD across Arachnida

When SD is considered across Arachnida as a whole, general trends become apparent (see Table 1). The lack of current consensus regarding phylogenetic relationships between arachnid orders precludes us from deriving the ancestral condition of dimorphism, with only Arachnopulmonata (containing Scorpiones, Araneae, Amblypygi, Schizomida and Uropygi; see Figure 17) and its internal relationships being consistently being recovered (Giribet, 2018). However, a current consensus phylogeny is included to allow readers to gain an insight into the distribution of sexual dimorphism across the group (see Figure 17). Firstly, though generally not as pronounced as in Araneae, female-biased SSD in overall body size is present across much of Arachnida: female biased SSD has also been reported in mites, amblypygids, Opiliones, pseudoscorpions, scorpions and solifuges. Whilst some species are known to subvert the general trend, we note that there is no evidence of male-biased SSD being dominant across an order. Secondly, SSD in leg length relative to body size typically favours males, occurring in Scorpiones, Solifugae, Araneae, Ricinulei and Opiliones. This trait is seemingly driven by behavioural factors,

although the precise mechanism differs between groups (see below). Additionally, the majority of

1022 arachnid orders exhibit dimorphism in either size or shape of the pedipalps. When present, SSD in 1023 the pedipalp typically favours male arachnids, with males often possessing additional spurs or 1024 other accessories to the appendage. In the most extreme examples, Araneae have modified their 1025 pedipalps to transfer spermatophores directly. However, in the majority of cases, the pedipalp does 1026 not play a direct role in sperm transfer and is instead involved in female mate choice or 1027 intraspecific male contest. 1028 SSD in chelicerae is also observed in a number of arachnid orders (Acari, Araneae, Opiliones and 1029 Solifugae), though the direction of dimorphism can differ. When dimorphism is male biased, the 1030 chelicerae tend to be under the influence of sexual selection. For example, Opiliones chelicerae 1031 are used in male-male contest (Willemart et al., 2006), spider chelicerae are thought to be used for 1032 intersexual display (Faber, 1983) and nuptial gift giving (Costa-Schmidt & de Araújo, 2008). 1033 Female biased dimorphism, on the other hand, appears to be related to increased feeding due to 1034 the energetic costs of fecundity. Female biased intersexual difference in the number of prey 1035 captured has been empirically demonstrated in spiders that exhibit female biased cheliceral SSD 1036 (Walker and Rypstra, 2002). Differences in cheliceral wear patterns suggest this is also the case in 1037 solifuge (Fitcher, 1940). 1038 Several orders also show male bias in the number of sensory structures present (Amblypygi, 1039 Solifugae and Scorpiones). In solifuges and scorpions, the co-occurrence of larger sensory 1040 structures and longer leg length (Melville, 2000; Peretti & Willemart, 2007; Punzo, 1998b) may 1041 be tied to the selective pressures of mate searching (Punzo, 1998a; Melville, 2000). In Opiliones, 1042 male and females have different sensory anatomy (Wijnhoven, 2013) though there is no clear 1043 indication as to whether one sex has increased sensory capabilities relative to the other.

1045

1046

Selective Pressures for SD in Arachnida

Weapons and Ornaments

1047	When sexually dimorphic structures appear better developed in males, they are often found to play
1048	a role in male-male contest or male-female courtship. The degree to which these intra- or
1049	intersexual selection pressures are most prevalent has yet to be discussed for Arachnida as a whole
1050	however.
1051	Here we find evidence for male-male contest driving the evolution of sexually dimorphic structures
1052	in Acari, Amblypygi, Araneae, Opiliones, Pseudoscorpiones and Uropygi. In mites, male C.
1053	berlesei use enlarged third legs to kill rival males (Radwan, 1993), whilst male amblypygids
1054	'fence' each other using their sexually dimorphic antenniform 'whip' legs (Weygoldt, 2000). The
1055	hyperallometric chelicerae of male Arenaea are known to be used in male-male combat (Funke &
1056	Huber, 2005), and the enlarged fourth leg of male Opiliones is used in contest between 'major'
1057	morphs (Zatz et al., 2011). Finally, the sexually dimorphic pedipalps of Pseudoscorpiones
1058	(Weygoldt, 1966; Thomas & Zeh, 1984) and Uropygi (Watari & Komine, 2016) are involved in
1059	grappling during male-male aggression.
1060	Yet in the instances outlined above, the male-bias sexually dimorphic structures have also been
1061	found to function during courtship and mating. Elaborations on the enlarged third legs of mites
1062	may assist males in aligning with the female spermaduct opening (Gaud & Atyeo, 1979), and the
1063	sexually dimorphic antenniform 'whips' of amblypygids are also used to display to and caress
1064	females prior to mating (Weygoldt, 2000). The enlarged chelicerae of some male spiders are

thought to play a role in a courtship display (Faber, 1983), whilst the pedipalps of pseudoscorpions are also involved in a ritualised dance prior to mating (Weygoldt, 1966). There are several instances therefore of *both* intra- and intersexual selection pressures acting on a given sexually dimorphic structure.

Arguably, however, examples of courtship and female choice driving the evolution of sexually dimorphic structures are even more widespread. Of those groups considered in the present study, evidence of intersexual selection driving SSD is lacking for only Uropygi. In addition to the examples listed above, the cheliceral horns of Opiliones are placed on the female dorsum after copulation (Willemart et al., 2006), and the longer male legs of Ricinulei are engaged in 'leg play' prior to mating (Cooke, 1967; Legg, 1977). In schizomids, the female chelicerae grip the male flagellum during mating (Sturm, 1958, 1973), whereas the dimorphic chelicerae of solifuge are used by the male to grip the female and transfer spermataphores (Peretti & Willemart, 2007). The dimorphic pedipalp of scorpions has also been hypothesised to play a role in the 'courtship dance', as males and females grasp chelae prior to mating (e.g. Alexander 1959; Polis & Farley 1979a). Indeed, in four groups (Ricinulei, Schizomida, Solifugae, Scorpiones), courtship and mating appear to be the primary drivers of male-bias SSD in the appendages

Scramble Competition

The scramble competition hypothesis posits that the most mobile males within a population will reach and copulate with a greater number of females (Ghiselin, 1974). Male traits conferring an advantage in locating a receptive female, such as sensory and locomotor adaptations, may therefore become sexually dimorphic under the selective pressure of scramble competition (Andersson, 1994). This is well-supported in the case of Araneae, with decreased male body size and increased

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

leg length in spiders being linked to improved climbing ability (Moya-Laraño et al., 2002), bridging ability (i.e. walking upside-down on silk bridges; Corcobado et al., 2010) and locomotor speed (Grossi & Canals, 2015). Here we also identify instances of male-bias SSD in leg length in Acari, Scorpiones, Solifugae, Ricinulei and Opiliones, and reduced total body size in male Acari, Amblypygi, Pseudoscorpions, Scorpiones and Solifugae. Within scorpions, decreased body mass and elongate legs have been correlated to increased sprint speed in male C. vittus (Carlson et al., 2014), and the increased size of pectines (sensory organs) in males has been hypothesised to play a role in mate searching (Melville, 2000). Elsewhere, smaller body size and increased leg length in male Solifugae may also be related to mate searching (Peretti & Willemart, 2007), with male Metasolpuga picta typically covering much greater straight-line distances than females (Wharton, 1987). The chemosensing racquet organs of male solifuges are also enlarged (Peretti & Willemart, 2007). The case for scramble competition driving some aspects of SD in both Scorpiones and Solifugae is therefore convincing. Yet within Ricinulei and Opiliones, male-bias SSD in leg length appears better explained by their role in mating (Legg, 1977) and male-male contest (Willemart et al., 2009; Buzatto et al., 2014) respectively. As discussed below, further experimental work focusing on the biomechanical and physiological implications of body size and leg length dimorphism would be particularly insightful in this respect.

Fecundity Selection

Fecundity selection is a well-documented driver of female-bias body size dimorphism within Araneae (Head, 1995, Coddington et al., 1997). In female wolf spiders (*Donacosa merlini*), the disproportionately large opisthosoma of females has been correlated to egg production and storage, for example (Fernández-Montraveta & Marugán-Lobón, 2017). Under laboratory conditions, female body mass in ant-eating spiders (*Zodarion jozefienae*) has been found to tightly correlate

to number of eggs present within the egg sack (Pekár *et al.*, 2011). More broadly across Araneae, body size dimorphism has been explained by female size increase via fecundity selection for increased reproductive output (Prenter, 1999; Huber, 2005). Yet despite this wealth of data pertaining to Araneae, relatively little is known of the role of fecundity selection across the smaller arachnid orders. Within scorpions, the carapace length of females is correlated to increased litter size (Outeda-Jorge et al., 2009), and female-bias dimorphism in prosoma length has therefore been taken as evidence of fecundity selection (Fox et al., 2015); similar patterns can also be seen in solifuges (Punzo, 1998a). Beyond this, female-bias size dimorphism has been identified in other metrics of 'total body size' in opilionids (Pinto-da-Rocha et al., 2007; Zatz, 2010), pseudoscorpions (Zeh, 1987a) and amblypygids (McArthur et al., 2018). Whilst the degree to which such dimensions correspond to potential fecundity in these groups has remained largely unexplored, female carapace size does appear to be correlated to brood size in at least one species of amblypygid (Armas, 2005).

Niche Partitioning

Males and females may also diverge in their energetic requirements due to their different reproductive or social roles, resulting in different trait optima between the sexes (Statkin, 1984). Here we highlight examples of niche partitioning within Acari and Araneae, although unequivocal examples are limited across Arachnida. Due to the increased energetic demands of reproduction, female ant-eating spiders (*Z. jozefienae*) have been found to predate larger prey items using their enlarged chelicerae compared to males (Pekár et al., 2011). In such instances, fecundity selection (as discussed above) can be thought of as driving niche partitioning. The increased reproductive output of females can necessitate habitat or dietary divergence, resulting in morphological dimorphism *beyond* that of total body size. Trophic dimorphism has also been reported in the

nymphal stages of Kiwi bird feather mites (*Kiwialges palametrichus*; Gaud & Atyeo, 1996), with males and females diverging in their preferred microhabitat in and around the feather. In this instance however, sexual dimorphism and niche partitioning is also compounded by ontogenetic nymphal stages. Hence, whilst there is some evidence that niche partitioning promotes sexual dimorphism in arachnids, it does not currently appear to be a major driving force. The relative lack of examples of niche partitioning (in comparison to male contest, for example) may partly reflect the paucity of information relating to the discrete dietary and habitat preferences of each sex, however. In some instances, our understanding of the morphology of sexual dimorphs far exceeds that of their potential dietary and habitat niches.

Conclusion

In conclusion, we believe that a key endeavour for future work should be to trace the evolution of SD across Arachnida more broadly, extending work that has thus far predominantly been restricted to Araneae. For example, the frequency with which pedipalp SSD occurs across arachnids (7 out of 11 orders) may point towards an early origin within the group. Alternatively, given that arachnid pedipalps appear to be involved in numerous different courting and mating tasks, pedipalp dimorphism may have evolved independently several times. Such analyses will prove extremely informative with regards to the origin of SD in the group - and its evolution more generally - but necessarily must overcome issues regarding phylogenetic uncertainty. In arachnids as a whole, there is little congruence between recent morphological and molecular phylogenies (Sharma et al., 2014; Garwood et al., 2017; Giribet, 2018); this issue is often replicated within arachnid orders. Furthermore, there is a general paucity of information on the phylogenetic relationships within smaller arachnid orders. For example, just one molecular phylogenetic study of Palpigradi has been published to date (Giribet et al. 2014); in Amblypygi, limited morphological phylogenies

1156 have been published (Weygoldt 1996, Garwood et al. 2017) and no molecular phylogenetic study 1157 of the order as a whole has ever been conducted. Therefore, ideally future analyses of SSD should 1158 be accompanied by improved phylogenies, or else account for current uncertainty in phylogeny. 1159 Furthermore, we note that basic data pertaining to the biology and life history of many arachnid 1160 orders are still lacking, particularly in the smaller groups. For example, information on courtship 1161 displays in Schizomida are limited to anecdotal evidence, and there is no published data on mating 1162 in Palpigradi. An improved understanding of ontogenetic scaling in the size and shape of arachnids 1163 is also a priority. In particular, the ability to better identify discrete ontogenetic stages and the onset 1164 of sexual maturity will prove useful, as dimorphism frequently becomes more pronounced beyond 1165 this point. 1166 We also believe that future research efforts should exploit recent advances in the fields of 1167 morphometrics, statistics, experimental physiology and biomechanics. Some progress has been 1168 made in this direction concerning Araneae SD: for example, recent studies have employed GMM 1169 to quantify shape dimorphism amongst D.merlini (Araneae, Fernández-Montraveta & Marugán-1170 Lobón, 2017). In contrast, potential shape dimorphism amongst the smaller arachnid orders is 1171 typically quantified using ratios of linear metrics (e.g. Weygoldt 2000; Vasconcelos et al. 2014; 1172 Santos et al. 2013), and may therefore fail to capture finer-scale shape change between sexes. 1173 Furthermore, statistical hypothesis testing remains limited amongst the smaller orders. Whilst 1174 limited sample sizes are both frequent and undoubtedly a problem, other studies comprising a 1175 larger number of samples continue to eschew statistical testing, and further work is needed to 1176 statistically corroborate previously published qualitative observations. Finally, field and lab-based 1177 experimental studies are uncommon outside of spiders (Moya-Laraño, et al., 2002; Grossi & 1178 Canals, 2015). This work is, however, imperative, as an improved understanding of form-function

1179	relationships will provide further insights into the life history of both sexes, and the potential
1180	evolutionary drivers behind SD within arachnids.
1181	
1182	
1183	
1184	<u>Acknowledgments</u>
1185	We thank the editor, Glaucho Machado and one other anonymous reviewer, who's comments
1186	greatly improved this manuscripts

1188	References:
1189	Abouheif E., Fairbairn DJ. 1997. A comparative analysis of allometry for sexual size
1190	dimorphism: assessing Rensch's rule. <i>The American Naturalist</i> 149:540–562.
1191	Aisenberg A., Costa FG., González M., Postiglioni R., Pérez-Miles F. 2010. Sexual dimorphism
1192	in chelicerae, forelegs and palpal traits in two burrowing wolf spiders (Araneae: Lycosidae)
1193	with sex-role reversal. <i>Journal of Natural History</i> 44:1189–1202.
1194	Alexander AJ. 1959. Courtship and mating in the buthid scorpions. <i>Journal of Zoology</i> 133:145–
1195	169.
1196	Amitai P., Levy G., Shulov A. 1962. Observations on mating in a solifugid <i>Galeodes sulfuripes</i>
1197	Roewer. Bulletin of the Research Council of Israel, Section B, Zoology 11:156–159.
1198	Andersson, M. 1994. Sexual Selection. Princeton University Press, Princeton. 624pp.
1199	Angermann H. 1955. Indirekte Spermatophorenübertragung bei Euscorpius italicus
1200	(Hbst.)(Scorpiones, Chactidae). Naturwissenschaften 42:303.
1201	Angermann H. 1957. Über verhalten, spermatophorenbildung und sinnesphysiologie von
1202	Euscorpius italicus Hbst. und verwandten arten (Scorpiones, Chactidae). Ethology 14:276-
1203	302.
1204	Armas, L.F.D., 2005. Notas sobre la biología reproductiva del amblipígido partenogenético
1205	Charinus acosta (Quintero, 1983)(Amblypygi: Charinidae). Boletín de la SEA, (36), pp.271-
1206	273.
1207	Ax P. 2000. Palpigradi—Holotracheata. In: Multicellular Animals. Springer, 120–122.

1208	Baker RH., Wilkinson GS. 2001. Phylogenetic analysis of sexual dimorphism and eye-span
1209	allometry in stalk-eyed flies (Diopsidae). Evolution 55:1373–1385.
1210	Barnes RD. 1982. <i>Invertebrate Zoology</i> . Philadelphia, PA: Holt-Saunders International.
1211	Barranco P., Mayoral JG. 2007. A new species of <i>Eukoenenia</i> (Palpigradi, Eukoeneniidae) from
1212	Morocco. Journal of Arachnology 35:318–324.
1213	Behan-Pelletier VM. 2015a. Sexual dimorphism in <i>Autogneta</i> , with description of three new
1214	species from North America and new diagnosis of the genus (Acari, Oribatida,
1215	Autognetidae). Zootaxa 3946:55–78.
1216	Behan-Pelletier VM. 2015b. Review of sexual dimorphism in brachypyline oribatid mites.
1217	Acarologia 55:127–146.
1218	Behan-Pelletier VM., Eamer B. 2010. The first sexually dimorphic species of Oribatella (Acari,
1219	Oribatida, Oribatellidae) and a review of sexual dimorphism in the Brachypylina. Zootaxa
1220	2332:1–20.
1221	Beier M. 1961. Über Pseudoscorpione aus sizilia-nischen Höhlen. Bolletino Accademia Gioenia
1222	di Scienze Naturali in Catania 4:89–96.
1223	Bernini F., Avanzati AM. 1983. Notulae Oribatologicae XXIX. Le Oribatellidae (Acarida,
1224	Oribatida) viventi sul massiccio sardo-corso. <i>Biogeographia</i> 8.
1225	Bertani R., Guadanucci, JPL. 2013. Morphology, evolution and usage of urticating setae by
1226	tarantulas (Araneae: Theraphosidae). Zoologia (Curitiba) 30:403-418.

1227	Bird 1L. 2015. Cheliceral morphology of Solifugae (Arachnida): Primary homology,
1228	terminology, and character survey. PhD Thesis, Colorado State University.
1229	Bonduriansky, R. 2007. Sexual selection and allometry: A critical reappraisal of the evidence
1230	and ideas. Evolution 61: 838-849.
1231	Booncham, U. 2007. Sexual dimorphism in the Asian Giant Forest Scorpion, Heterometrus
1232	laoticus Couzijn, 1981. NU Science Journal 4:42-52.
1233	Brookhart JO., Muma MH. 1981. The pallipes species-group of Eremobates Banks (Solpugida:
1234	Arachnida) in the United States. Florida Entomologist:283–308.
1235	Bulbert MW., O'Hanlon JC., Zappettini S., Zhang S., Li D. 2015. Sexually selected UV signals
1236	in the tropical ornate jumping spider, Cosmophasis umbratica may incur costs from
1237	predation. <i>Ecology and evolution</i> 5:914–920.
1238	Buzatto BA, Machado G. 2008. Resource defence polygyny shift to female polygyny over the
1239	course of the reproductive season of a Neotropical harvestman. Behavioural Ecology and
1240	Sociobiology 63:85-94.
1241	Buzatto BA., Machado G. 2014. Male dimorphism and alternative reproductive tactics in
1242	harvestmen (Arachnida: Opiliones). Behavioural Processes 109:2-13.
1243	Buzatto BA., Requena GS., Lourenço RS., Munguía-Steyer R., Machado G. 2011. Conditional
1244	male dimorphism and alternative reproductive tactics in a Neotropical arachnid (Opiliones).
1245	Evolutionary Ecology 25:331–349.

1246	Buzatto BA., Tomkins JL., Simmons LW., Machado G. 2014. Correlated evolution of sexual
1247	dimorphism and male dimorphism in a clade of neotropical harvestmen. Evolution 68:1671-
1248	1686.
1249	Carlson BE., McGinley S., Rowe MP. 2014. Meek males and fighting females: sexually-
1250	dimorphic antipredator behavior and locomotor performance is explained by morphology in
1251	bark scorpions (Centruroides vittatus). PloS one 9:e97648.
1252	Carrera PC., Mattoni CI., Peretti A V. 2009. Chelicerae as male grasping organs in scorpions:
1253	sexual dimorphism and associated behaviour. Zoology 112:332–350.
1254	Chapin KJ., Reed-Guy S. 2017. Territoriality mediates atypical size-symmetric cannibalism in
1255	the Amblypygi <i>Phrynus longipes</i> . Ethology 123: 772-777.
1256	Clark, D.L., Uetz, G.W. 1993. Signal efficacy and the evolution of male dimorphism in the
1257	jumping spider, Maevia inclemens. Proceedings of the National Academy of Sciences, 90:
1258	11954-11957.
1259	Coddington JA., Hormiga G., Scharff N. 1997. Giant female or dwarf male spiders? <i>Nature</i>
1260	385:687.
1261	Cokendolpher JC., Enríquez T. 2004. A new species and records of <i>Pseudocellus</i> (Arachnida:
1262	Ricinulei: Ricinoididae) from caves in Yucatán, Mexico and Belize. Texas Memorial
1263	Museum, Speleological Monographs 6:95–99.
1264	Condé B. 1991. Le dimorphisme sexuel des Palpigrades. Bulletin de la Société Neuchâteloise des
1265	Sciences Naturelles 116:67–73.

1266	Condé B. 1996. Les Palpigrades, 1885–1995: acquisitions et lacunes. Revue Suisse de Zoologie,
1267	hors série 1:87–106.
1268	Cooke JAL. 1967. Observations on the biology of Ricinulei (Arachnida) with descriptions of two
1269	new species of Cryptocellus. Journal of Zoology 151:31-42.
1270	Cooke JAL., Shadab MU. 1973. New and little known ricinuleids of the genus Cryptocellus
1271	(Arachnida, Ricinulei). American Museum novitates; no. 2530.
1272	Costa-Schmidt LE., de Araújo AM. 2008. Sexual dimorphism in chelicerae size in three species
1273	of nuptial-gift spiders: a discussion of possible functions and driving selective forces.
1274	Journal of Zoology 275: 307-313.
1275	Cox RM., Butler MA., John-Alder HB. 2007. The evolution of sexual size dimorphism in
1276	reptiles. In: Sex, size and gender roles: evolutionary studies of sexual size dimorphism.
1277	Oxford: Oxford University Press, 38–49.
1278	Cracraft J., Donoghue MJ. 2004. Assembling the tree of life. Oxford: Oxford University Press.
1279	Elgar MA. 1991. Sexual cannibalism, size dimorphism, and courtship behavior in orb-weaving
1280	spiders (Araneidae). Evolution 45:444–448.
1281	Elgar MA., Ghaffar N., Read AF. 1990. Sexual dimorphism in leg length among orb-weaving
1282	spiders: a possible role for sexual cannibalism. <i>Journal of Zoology</i> 222:455–470.
1283	Emlen DJ., Hunt J., Simmons LW. 2005. Evolution of sexual dimorphism and male dimorphism
1284	in the expression of beetle horns: phylogenetic evidence for modularity, evolutionary
1285	lability, and constraint. The American Naturalist 166:S42-S68.

1286	Faber DB. 1983. Sexual differences in body proportions of Zygoballus rufipes Peckham and
1287	Peckham (Araneae, Salticidae): an effect of cheliceral and leg allometry. Journal of
1288	Arachnology:385–391.
1289	Fernández-Montraveta C., Marugán-Lobón J. 2017. Geometric morphometrics reveals sex-
1290	differential shape allometry in a spider. <i>PeerJ</i> 5:e3617.
1291	Fitcher E. 1940. Studies of North American Solpugida, I. The true identity of <i>Eremobates</i>
1292	pallipes. The American Midland Naturalist 24:351–360.
1293	Foellmer MW., Moya-Larano J. 2007. Sexual size dimorphism in spiders: patterns and
1294	processes. In: Sex, size and gender roles: Evolutionary studies of sexual size dimorphism.
1295	Oxford: Oxford University Press Oxford, 71–81.
1296	Fox GA., Cooper AM., Hayes WK. 2015. The dilemma of choosing a reference character for
1297	measuring sexual size dimorphism, sexual body component dimorphism, and character
1298	scaling: cryptic dimorphism and allometry in the scorpion Hadrurus arizonensis. PloS one
1299	10:e0120392.
1300	Framenau VW. 2005. Gender specific differences in activity and home range reflect
1301	morphological dimorphism in wolf spiders (Araneae, Lycosidae). Journal of Arachnology
1302	33:334–346.
1303	Francke OF. 1979. Observations on the reproductive biology and life history of Megacormus
1304	gertschi Diaz (Scorpiones: Chactidae; Megacorminae). Journal of Arachnology:223-230.

1305	Franklin D., Oxnard CE., O'higgins P., Dadour I. 2007. Sexual dimorphism in the subadult
1306	mandible: quantification using geometric morphometrics. Journal of forensic sciences 52:6-
1307	10.
1308	Funke S., Huber BA. 2005. Allometry of genitalia and fighting structures in <i>Linyphia</i>
1309	triangularis (Araneae, Linyphiidae). Journal of Arachnology 33:870-872.
1310	Garcia LF., Gonzalez-Gomez JC., Valenzuela-Rojas JC., Tizo-Pedroso E., Lacava M. 2016. Diet
1311	composition and prey selectivity of Colombian populations of a social pseudoscorpion.
1312	Insectes sociaux 63:635–640.
1313	Garwood RJ., Dunlop J. 2014. Three-dimensional reconstruction and the phylogeny of extinct
1314	chelicerate orders. <i>PeerJ</i> 2:e641.
1315	Garwood RJ., Dunlop JA., Knecht BJ., Hegna TA. 2017. The phylogeny of fossil whip spiders.
1316	BMC evolutionary biology 17:105.
1317	Gaud J., Atyeo WT. 1979. Co-évolution des acariens sarcoptiformes plumicoles et de leurs hôtes.
1318	Acarology 21:291–306.
1319	Gaud J., Atyeo WT. 1996. Feather mites of the world (Acarina, Astigmata): the supraspecific
1320	taxa. Annales-Musee Royal de l'Afrique Centrale. Sciences Zoologiques (Belgium).
1321	Gertsch WJ. 1971. Three new ricinuleids from Mexican caves (Arachnida, Ricinulei). Bulletin of
1322	the Association for Mexican Cave Studies 4:127–135.
1323	Girard MB., Endler JA. 2014. Peacock spiders. Current Biology 24:R588–R590.

1324	Girbet, G., 2018. Current views on chencerate phylogeny—A tribute to Peter
1325	Weygoldt. Zoologischer Anzeiger, 273, pp.7-13.
1326	Giribet G., Edgecombe GD., Wheeler WC., Babbitt C. 2002. Phylogeny and systematic position
1327	of Opiliones: a combined analysis of chelicerate relationships using morphological and
1328	molecular data. Cladistics 18:5–70.
1329	Giribet G., McIntyre E., Christian E., Espinasa L., Ferreira RL., Francke ÓF., Harvey MS., Isaia
1330	M., Kováč Ĺ., McCutchen L. 2014. The first phylogenetic analysis of Palpigradi
1331	(Arachnida)—the most enigmatic arthropod order. <i>Invertebrate Systematics</i> 28:350–360.
1332	Giribet, G. 2018. Current views on chelicerate phylogeny – A tribute to Peter Weygoldt.
1333	Zoologischer Anzeiger 2018 273:7-13.
1334	Giupponi APL., Kury AB. 2013. Two new species of Heterophrynus Pocock, 1894 from
1335	Colombia with distribution notes and a new synonymy (Arachnida: Amblypygi: Phrynidae).
1336	Zootaxa 3647:329–342.
1337	Gravely, F. H. 1916: The evolution and distribution of the Indo-Australian Thelyphonidae, with
1338	notes on distinctive characters of various species. Rec.Indian Mus. 12: 59-86
1339	Grossi B., Canals M. 2015. Energetics, scaling and sexual size dimorphism of spiders. <i>Acta</i>
1340	biotheoretica 63:71–81.
1341	Van der Hammen L. 1989. An introduction to comparative arachnology. The Hague; The
1342	Netherlands: SPB Academic Publishing.

1343	Harvey MS. 1992. The Schizomida (Chelicerata) of Australia. <i>Invertebrate Systematics</i> 6:77–
1344	129.
1345	Harvey MS. 2001. New cave-dwelling schizomids (Schizomida: Hubbardiidae) from Australia.
1346	Records of the Western Australian Museum, Supplement 64:171–185.
1347	Harvey MS. 2003. Catalogue of the smaller arachnid orders of the world: Amblypygi, Uropygi,
1348	Schizomida, Palpigradi, Ricinulei and Solifugae. Collingwood, Victoria, Australia: CSIRO
1349	publishing.
1350	Head G. 1995. Selection on fecundity and variation in the degree of sexual size dimorphism
1351	among spider species (class Araneae). Evolution 49:776–781.
1352	Heinemann S., Uhl G. 2000. Male dimorphism in <i>Oedothorax gibbosus</i> (Araneae, Linyphiidae)
1353	a morphometric analysis. Journal of Arachnology 28:23-28.
1354	Heymons R. 1902. Biologische Beobachtungen an asiatischen Solifugen, nebst Beitragen zur
1355	Systematik derselben. Abhandlungen der Königlich Preus- sischen Akademie der
1356	Wissenschaftern 1901:1–65.
1357	Hormiga G., Scharff N., Coddington JA. 2000. The phylogenetic basis of sexual size
1358	dimorphism in orb-weaving spiders (Araneae, Orbiculariae). Systematic Biology 49:435-
1359	462.
1360	Hrušková-Martišová M., Pekár S., Bilde T. 2010. Coercive copulation in two sexually
1361	cannibalistic camel-spider species (Arachnida: Solifugae). <i>Journal of Zoology</i> 282:91–99.

1362	Huber BA. 1995. The retrolateral tibial apophysis in spiders—shaped by sexual selection?
1363	Zoological Journal of the Linnean society 113:151–163.
1364	Huber BA. 2005. Sexual selection research on spiders: progress and biases. <i>Biological Reviews</i>
1365	80:363–385.
1366	Huff JC., Prendini L. 2009. On the African whip scorpion, Etienneus africanus (Hentschel,
1367	1899)(Thelyphonida: Thelyphonidae), with a redescription based on new material from
1368	Guinea-Bissau and Senegal. American Museum Novitates: 1–16.
1369	Humphreys WF., Adams M., Vine B. 1989. The biology of <i>Schizomus vinei</i> (Chelicerata:
1370	Schizomida) in the caves of Cape Range, Western Australia. Journal of Zoology 217:177-
1371	201.
1372	Igelmund P. 1987. Morphology, sense organs, and regeneration of the forelegs (whips) of the
1373	whip spider Heterophrynus elaphus (Arachnida, Amblypygi). Journal of Morphology
1374	193:75–89.
1375	Junqua C. 1962. Biologie-Donnees sur la Reproduction dun Solifuge-Othoes Saharae Panouse.
1376	Comptes rendus Hebdomadaires des Seances de la Acadmie des Sciences 255:2673.
1377	Kaliontzopoulou A., Carretero MA., Llorente GA. 2007. Multivariate and geometric
1378	morphometrics in the analysis of sexual dimorphism variation in Podarcis lizards. Journal
1379	of Morphology 268:152–165.
1380	Kauri H. 1989. External ultrastructure of sensory organs in the subfamily lrumuinae (Arachnida,
1381	Opiliones, Assamiidae). Zoologica Scripta 18:289–294.

1382	Kern WHJ., Mitchell RE. 2011. Giant whip scorpion Mastigoproctus giganteus giganteus
1383	(Lucas, 1835)(Arachnida: Thelyphonida (= Uropygi): Thelyphonidae). Institute of Food and
1384	Agricultural Sciences, University of Florida.
1385	Kjellesvig-Waering EN. 1966. The scorpions of Trinidad and Tobago. Caribbean Science 6:123-
1386	135.
1387	Klußmann-Fricke B., Wirkner CS. 2016. Comparative morphology of the hemolymph vascular
1388	system in Uropygi and Amblypygi (Arachnida): Complex correspondences support
1389	Arachnopulmonata. Journal of morphology 277:1084–1103.
1390	Koch LE. 1977. The taxonomy, geographic distribution and evolutionary radiation of Australo-
1391	Papuan scorpions. Records of the Western Australian Museum 5:83–367.
1392	Kovarik F. 2009. Illustrated Catalog of Scorpions Part 1. Clarion Productions, Prague. 650pp.
1393	Kronestedt T. 1990. Separation of two species standing as <i>Alopecosa aculeata</i> (Clerck) by
1394	morphological, behavioural and ecological characters, with remarks on related species in
1395	the pulverulenta group (Araneae, Lycosidae). Zoologica Scripta 19:203–225.
1396	Kruyt JW., Quicazán-Rubio EM., van Heijst GF., Altshuler DL., Lentink D. 2014. Hummingbird
1397	wing efficacy depends on aspect ratio and compares with helicopter rotors. Journal of The
1398	Royal Society Interface 11:20140585.
1399	Kury AB. 2013. Order Opiliones Sundevall, 1833. In: Zhang, ZQ.(Ed.) Animal Biodiversity:
1400	An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda
1401	2013). Zootaxa 3703:27–33.

1402	Lamoral BH. 1975. The structure and possible function of the flagellum in four species of male
1403	solifuges of the family Solpugidae. In: Proceedings of the 6th international arachnological
1404	congress. 136–141.
1405	Lang G. 2001. Sexual size dimorphism and juvenile growth rate in <i>Linyphia triangularis</i>
1406	(Linyphiidae, Araneae). Journal of Arachnology 29:64–71.
1407	Lawrence RF. 1954. Some Solifugae in the collection of the British Museum (Natural History).
1408	Journal of Zoology 124:111–124.
1409	Legg DA, Sutton MD, Edgecombe GD. 2013. Arthropod fossil data increase congruence of
1410	morphological and molecular phylogenies. <i>Nature Communications</i> 4:2485.
1411	Legg G. 1976. The external morphology of a new species of ricinuleid (Arachnida) from Sierra
1412	Leone. Zoological Journal of the Linnean Society 59:1–58.
1413	Legg G. 1977. Sperm transfer and mating in <i>Ricinoides hanseni</i> (Ricinulei : Arachnida). <i>Journal</i>
1414	of Zoology 182:51–61.
1415	Legrand RS., Morse DH. 2000. Factors driving extreme sexual size dimorphism of a sit-and-wait
1416	predator under low density. Biological Journal of the Linnean Society 71:643–664.
1417	Legrende P. 1998. Model II regression user's guide, R edition. R Vignette 14.
1418	Lim, M.L. and Li, D., 2006. Extreme ultraviolet sexual dimorphism in jumping spiders (Araneae:
1419	Salticidae). Biological Journal of the Linnean Society, 89(3), pp.397-406.

1420	Lindenfors P., Gittleman JL., Jones KE. 2007. Sexual size dimorphism in mammals. In: Sex, size
1421	and gender roles: evolutionary studies of sexual size dimorphism. Oxford: Oxford
1422	University Press, 16–26.
1423	Lindquist EE. 1984. Current theories on the evolution of major groups of Acari and on their
1424	relationships with other groups of Arachnida, with consequent implications for their
1425	classification. Acarology VI/editors, DA Griffiths and CE Bowman.
1426	Lipke E., Hammel JU., Michalik P. 2015. First evidence of neurons in the male copulatory organ
1427	of a spider (Arachnida, Araneae). Biology letters 11:20150465.
1428	Logunov D V. 2011. Sexual size dimorphism in burrowing wolf spiders (Araneae: Lycosidae).
1429	In: Proc. Zool. Inst. RAS. 274.
1430	Lourenço WR, Duhem B. 2010. The genus <i>Chaerilus</i> Simon, 1877 (Scorpiones, Chaerilidae) in
1431	the Himalayas and description of a new species. Zootaxa 37:13-25.
1432	Machado G., Buzatto BA., Garcia-Hernandez S., Macias-Ordonez R. 2016 Macroecology of
1433	Sexual Selection: A Predictive Conceptual Framework for Large-Scale Variation in
1434	Reproductive Traits. <i>The American Naturalist</i> 188: S1.
1435	Magalhaes ILF., Santos AJ. 2012. Phylogenetic analysis of Micrathena and Chaetacis spiders
1436	(Araneae: Araneidae) reveals multiple origins of extreme sexual size dimorphism and long
1437	abdominal spines. Zoological Journal of the Linnean Society 166:14-53.
1438	Mattoni CI. 2005. Tergal and sexual anomalies in bothriurid scorpions (Scorpiones,
1439	Bothriuridae). Journal of Arachnology 33:622-628.

1440	Maury EA. 1975. La estructura del espermatóforo en el género <i>Brachistosternus</i> (Scorpiones,
1441	Bothriuridae). Physis 34:179–182.
1442	McArthur IW, Silva de Miranda G., Seiter M., Chapin, KJ. 2018. Global patterns of sexual
1443	dimorphism in Amblypygi. Zoologischer Anzeiger 273: 56-64.
1444	van der Meijden A., Langer F., Boistel R., Vagovic P., Heethoff M. 2012. Functional
1445	morphology and bite performance of raptorial chelicerae of camel spiders (Solifugae).
1446	Journal of experimental biology 215:3411–3418.
1447	Melville JM. 2000. The pectines of scorpions: analysis of structure and function. Oregon State
1448	University.
1449	Monjaraz-Ruedas R., Francke OF. 2015. Taxonomic revision of the genus <i>Mayazomus</i> Reddell
1450	& Cokendolpher, 1995 (Schizomida: Hubbardiidae), with description of five new species
1451	from Chiapas, Mexico. Zootaxa 3915:451–490.
1452	Montaño-Moreno H., Francke OF. 2013. Observations on the life history of <i>Eukoenenia chilanga</i>
1453	Montaño (Arachnida: Palpigradi). Journal of Arachnology 41:205–212.
1454	Moya-Laraño J., Halaj J., Wise DH. 2002. Climbing to reach females: Romeo should be small.
1455	Evolution 56:420–425.
1456	Muchmore WB. 1990. A pseudoscorpion from arctic Canada (Pseudoscorpionida, Chernetidae).
1457	Canadian journal of zoology 68:389–390.
1458	Muma MH. 1966. Mating behaviour in the solpugid genus <i>Eremobates</i> Banks. <i>Animal Behaviour</i>
1459	14:346IN3349-348350.

1460	Munguia-Steyer R., Buzatto BA, Machado G. 2012. Male dimorphism of a neotropical arachnid:
1461	harem size, sneaker opportunities, and gonadal investment. Behavioural Ecology 23:827-
1462	835.
1463	Muniz DG, Machado G. 2015. Devoted fathers or selfish lovers? Conflict between mating effort
1464	and parental care in a harem-defending arachnid. Animal Behaviour 109:23-31.
1465	Murayama GP., Willemart RH. 2015. Mode of use of sexually dimorphic glands in a Neotropical
1466	harvestman (Arachnida: Opiliones) with paternal care. Journal of natural history 49:1937-
1467	1947.
1468	Murienne J., Harvey MS., Giribet G. 2008. First molecular phylogeny of the major clades of
1469	Pseudoscorpiones (Arthropoda: Chelicerata). Molecular phylogenetics and evolution
1470	49:170–184.
1471	Norton, R.A. and Alberti, G., 1997. Porose integumental organs of oribatid mites (Acari,
1472	Oribatida). 3. Evolutionary and ecological aspects. Zoologica, 146, pp.115-143.
1473	Outeda-Jorge S., Mello T., Pinto-da-Rocha R. 2009. Litter size, effects of maternal body size,
1474	and date of birth in South American scorpion (Arachnida: Scorpiones). Zoologia (Curitiva)
1475	26:1.
1476	Owens IPF., Hartley IR. 1998. Sexual dimorphism in birds: why are there so many different
1477	forms of dimorphism? Proceedings of the Royal Society of London B: Biological Sciences
1478	265:397–407.

1479	Painting CJ., Probert AF, Townsend DJ, Howell Gl. 2015. Multiple exaggerated weapon
1480	morphs: a novel form of male polymorphism in harvestmen. Scientific Reports, 5: 16368.
1481	Peaslee AG., Wilson G. 1989. Spectral sensitivity in jumping spiders (Araneae, Salticidae).
1482	Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral
1483	Physiology 164:359–363.
1484	Peckham G., Peckham E. 1889. Observations on Sexual Selection in the Family of Spiders
1485	Attidae. Occ . Pap . Wisc. Nat. Hist. Soc. 1:3-60.
1486	Pekár S., Martišovà M., Bilde, T. 2011. Intersexual trophic niche partitioning in an ant-eating
1487	spider (Araneae: Zodariidae). PLoS ONE 6: e14603.
1488	Pepato AR., da Rocha CEF., Dunlop JA. 2010. Phylogenetic position of the acariform mites:
1489	sensitivity to homology assessment under total evidence. BMC Evolutionary Biology
1490	10:235.
1491	Peretti A V., Acosta LE., Benton TIMG. 1999. Sexual cannibalism in scorpions: fact or fiction?
1492	Biological Journal of the Linnean Society 68:485–496.
1493	Peretti A V., Willemart RH. 2007. Sexual coercion does not exclude luring behavior in the
1494	climbing camel-spider Oltacola chacoensis (Arachnida, Solifugae, Ammotrechidae).
1495	Journal of ethology 25:29–39.
1496	Pinto-da-Rocha R., Machado G., Giribet G. 2007. Harvestmen: the biology of Opiliones.
1497	Harvard University Press.

1498	Pittard K. 1970. Comparative external morphology of the file stages of Cryptocettus petaezi
1499	(Arachnids, ricinulei). Texas Tech University.
1500	Pittard K., Mitchell RW. 1972. Comparative Morphology of the Life Stages of Cryptocellus
1501	pelaezi (Arachnid, Ricinulei). PhD Thesis, Texas Tech.
1502	Platnick NI., Raven RJ. 2013. Spider systematics: past and future. Zootaxa 3683:595–600.
1503	Polis GA. 1990. The biology of scorpions. Stanford University Press.
1504	Polis GA., Farley RD. 1979a. Behavior and ecology of mating in the cannibalistic scorpion,
1505	Paruroctonus mesaensis Stahnke (Scorpionida: Vaejovidae). Journal of Arachnology:33-46
1506	Polis GA., Farley RD. 1979b. Characteristics and environmental determinants of natality, growth
1507	and maturity in a natural population of the desert scorpion, Paruroctonus mesaensis
1508	(Scorpionida: Vaejovidae). Journal of Zoology 187:517-542.
1509	Polis GA., Sissom WD. 1990. Life history. In: <i>The biology of scorpions</i> . Stanford University
1510	Press Stanford, California, 161–223.
1511	Pollard SD. 1994. Consequences of sexual selection on feeding in male jumping spiders
1512	(Araneae: Salticidae). Journal of Zoology 234:203–208.
1513	Prendini L. 2001. Further additions to the scorpion fauna of Trinidad and Tobago. <i>Journal of</i>
1514	Arachnology 29:173–188.
1515	Prendini L. 2011. Order Ricinulei Thorell, 1876. Zootaxa 1876:122.

1516	Prenter J., Elwood RW., Montgomery WI. 1999. Sexual size dimorphism and reproductive
1517	investment by female spiders: a comparative analysis. <i>Evolution</i> 53:1987–1994.
1518	Proctor H. 2003. Feather mites (Acari: Astigmata): ecology, behavior, and evolution. <i>Annual</i>
1519	Review of Entomology 48:185–209.
1520	Proctor H, Knee W. 2018. Asymmetry and polymorphism in males of the feather mite <i>Michaelia</i>
1521	neotropica Hernandes and Mironov (Acariformes: Astigmata: Freyanidae). Zoologischer
1522	Anzeiger 273: 226-230.
1523	Proud DN., Felgenhauer BE. 2013 Ultrastructure of the sexually dimorphic tarsal glands and
1524	tegumental glands in gonyleptoid harvestmen (Opiliones, Laniatores). Journal of
1525	Morphology 274:1203-1215.
1526	Punzo F. 1998a. Natural history and life cycle of the solifuge <i>Eremobates marathoni</i> Muma &
1527	Brookhart (Solifugae, Eremobatidae). Bulletin of the British Arachnological Society
1528	11:111–118.
1529	Punzo F. 1998b. The Biology of Camel-Spiders: Arachnida, Solifugae. Boston: Kluwer
1530	Academic Publishing.
1531	Ra'Anan Z., Sagi A. 1985. Alternative mating strategies in male morphotypes of the freshwater
1532	prawn Macrobrachium rosenbergii (De Man). The Biological Bulletin 169:592-601.
1533	Radwan J. 1993. The adaptive significance of male polymorphism in the acarid mite
1534	Caloglyphus berlesei. Behavioral Ecology and Sociobiology 33:201–208.

1535	Rahmadi C., Harvey MS., Kojima J-1. 2010. Whip spiders of the genus <i>Sarax</i> Simon 1892
1536	(Amblypygi: Charinidae) from Borneo Island. Zootaxa 2612:1–21.
1537	Rajashekhar KP., Bali G. 1982. Sexual dimorphism in a whipscorpion, <i>Thelyphonus indicus</i>
1538	Stoliczka (Arachnida, Uropygi). Bulletin-British Arachnological Society.
1539	Reddell JR., Cokendolpher JC. 1991. Redescription of Schizomus crassicaudatus (Pickard-
1540	Cambridge) and diagnoses of Hubbardia Cook, Stenochrus Chamberlin, and
1541	Sotanostenochrus new genus, with description of a new species of Hubbardia from
1542	California (Arachnida: Schizomida: Hubbardiidae). Texas Memorial Museum, The
1543	University of Texas at Austin.
1544	Reddell JR., Cokendolpher JC. 1995. Catalogue, bibliography, and generic revision of the order
1545	Schizomida (Arachnida). Texas Memorial Museum, College of Natural Sciences, University
1546	of Texas at Austin.
1547	Regier JC., Shultz JW., Zwick A., Hussey A., Ball B., Wetzer R., Martin JW., Cunningham CW.
1548	2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding
1549	sequences. <i>Nature</i> 463:1079–1083.
1550	Rensch B. 1950. Die Abhangigkeit der relativen sexualdifferenz von der Korpergroße. Bonner
1551	Zoologische Beiträge 1:58–69.
1552	Rovner JS. 1968. Territoriality in the Sheet-Web Spider Linyphia triangularis (Clerck)(Araneae,
1553	Linyphiidae. Ethology 25:232–242.

1554	Rowland JM. 1975. Classification, phylogeny and zoogeography of the American arachnids of
1555	the order Schizomida. Texas Tech University.
1556	Rowland JM., Reddell JR. 1979a. American Arachnological Society The Order Schizomida (
1557	Arachnida) in the New World . I . Protoschizomidae and dumitrescoae Group (
1558	Schizomidae : Schizomus) Author (s): J . Mark Rowland and James R . Reddell Published
1559	by: American Arachnological Society. American Arachnological Society 6:161–196.
1560	Rowland JM., Reddell JR. 1979b. American Arachnological Society The Order Schizomida (
1561	Arachnida) in the New World . II . Simonis and brasiliensis Groups (Schizomidae :
1562	Schizomus). American Arachnological Society 7:89–119.
1563	Rowland JM., Reddell JR. 1980. American Arachnological Society The Order Schizomida (
1564	Arachnida) in the New World . III . Mexicanus and Pecki Groups (Schizomidae :
1565	Schizomus). American Arachnological Society 8:1–34.
1566	Rowland JM., Reddell JR. 1981. American Arachnological Society The Order Schizomida (
1567	Arachnida) in the New World . IV . goodnightorum and briggsi Groups and Unplaced
1568	Species (Schizomidae: Schizomus). American Arachnological Society 9:19-46.
1569	Sánchez-Quirós C., Arévalo E., Barrantes G. 2012. Static allometry and sexual size dimorphism
1570	in Centruroides margaritatus (Scorpiones: Buthidae). Journal of Arachnology 40:338–344.
1571	Santos AJ., Ferreira RL., Buzatto BA. 2013. Two New Cave-Dwelling Species of the Short-
1572	Tailed Whipscorpion Genus Rowlandius (Arachnida: Schizomida: Hubbardiidae) from
1573	Northeastern Brazil, with Comments on Male Dimorphism. <i>PLoS ONE</i> 8:1–12.

15/4	Scheffer SJ., Uetz GW., Stratton GE. 1996. Sexual selection, male morphology, and the efficacy
1575	of courtship signalling in two wolf spiders (Araneae: Lycosidae). Behavioral Ecology and
1576	Sociobiology 38:17–23.
1577	Schembri PJ., Baldacchino AE. 2011. Ilma, blat u hajja: is-sisien ta'l-ambjent naturali Malti.
1578	Malta University Services.
1579	Schmidt JO., Dani FR., Jones GR., Morgan ED. 2000. Chemistry, ontogeny, and role of pygidial
1580	gland secretions of the vinegaroon Mastigoproctus giganteus (Arachnida: Uropygi). Journal
1581	of insect physiology 46:443–450.
1582	Schütz D., Taborsky M. 2003. Adaptations to an aquatic life may be responsible for the reversed
1583	sexual size dimorphism in the water spider, Argyroneta aquatica. Evolutionary ecology
1584	research 5:105–117.
1585	Seiter M., Wolff J., Hoerweg C. 2015. A new species of the South East Asian genus Sarax
1586	Simon, 1892 (Arachnida: Amblypygi: Charinidae) and synonymization of Sarax
1587	mediterraneus Delle Cave, 1986. Zootaxa 4012:542–552.
1588	Sentenská L., Graber F., Richard M., Kropf C. 2017. Sexual dimorphism in venom gland
1589	morphology in a sexually stinging scorpion. Biological Journal of the Linnean Society
1590	122:429-443.
1591	Sharma PP., Kaluziak ST., Pérez-Porro AR., González VL., Hormiga G., Wheeler WC., Giribet
1592	G. 2014. Phylogenomic interrogation of Arachnida reveals systemic conflicts in
1593	phylogenetic signal. Molecular Biology and Evolution 31:2963–2984.

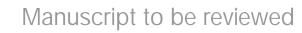
1394	Shine, R. 1989. Ecological Causes for the Evolution of Sexual Dimorphism. A Review of the
1595	Evidence. The Quarterly Review of Biology 64:419-461.
1596	Shultz JW. 1990. Evolutionary morphology and phylogeny of Arachnida. <i>Cladistics</i> 6:1–38.
1597	Shultz JW. 2007. A phylogenetic analysis of the arachnid orders based on morphological
1598	characters. Zoological Journal of the Linnean Society 150:221–265.
1599	da Silva Fernandes N., Willemart RH. 2014. Neotropical harvestmen (Arachnida, Opiliones) use
1600	sexually dimorphic glands to spread chemicals in the environment. Comptes rendus
1601	biologies 337:269–275.
1602	Smuts BB., Smuts RW. 1993. Male aggression and sexual coercion of females in nonhuman
1603	primates and other mammals: evidence and theoretical implications. Advances in the Study
1604	of Behavior 22:1–63.
1605	Souza MFVR., Ferreira RL. 2012. A new highly troglomorphic species of Eukoenenia
1606	(Palpigradi: Eukoeneniidae) from tropical Brazil. <i>Journal of Arachnology</i> 40:151–158.
1607	Søvik G. 2004. The biology and life history of arctic populations of the littoral mite
1608	Ameronothrus lineatus (Acari, Oribatida). Experimental and Applied Acarology 34: 3-20.
1609	Spicer GS. 1987. Scanning electron microscopy of the palp sense organs of the harvestman
1610	Leiobunum townsendi (Arachnida: Opiliones). Transactions of the American Microscopical
1611	Society:232–239.

1012	Stumpt H., Linsenman KE. 1996. Observations on the mating systems of two spiders, <i>Linyphia</i>
1613	hortensis Sund. and L. triangularis (Cl.) (Linyphiidae: Araneae). Revue Suisse de Zoologie,
1614	vol. hors série (August 1996):627–634.
1615	Sturm H. 1958. Indirekte Spermatophorenübertragung bei dem Geißelskorpion <i>Trithyreus sturmi</i>
1616	Kraus (Schizomidae, Pedipalpi). Naturwissenschaften 45:142–143.
1617	Sturm H. 1973. Zur Ethologie von Trithyreus sturmi Kraus (Arachnida, Pedipalpi,
1618	Schizopeltidia). Ethology 33:113–140.
1619	Tallarovic SK., Melville JM., Brownell PH. 2000. Courtship and mating in the giant hairy desert
1620	scorpion, Hadrurus arizonensis (Scorpionida, Iuridae). Journal of insect behavior 13:827-
1621	838.
1622	Taylor, C.K., 2004. New Zealand harvestmen of the subfamily Megalopsalidinae (Opiliones:
1623	Monoscutidae)—the genus Pantopsalis. Tuhinga, 15, pp.53-76.
1624	Teruel R., Schramm FD. 2014. Description of the adult male of <i>Pseudocellus pachysoma</i> Teruel
1625	& Armas 2008 (Ricinulei: Ricinoididae). Revista Ibérica de Aracnología 24:75–79.
1626	Thomas RH., Zeh DW. 1984. Sperm transfer and utilization strategies in arachnids: ecological
1627	and morphological constraints. In R. L. Smith (ed.), Sperm Competition and the Evolution of
1628	Animal Mating Systems Academic Press, N.Y.:179–221.
1629	Tourinho AL., Azevedo CS. 2007. A new Amazonian Cryptocellus Westwood (Arachnida,
1630	Ricinulei). Zootaxa 1540:55–60.

1631	Isubaki Y. 2003. The genetic polymorphism linked to mate-securing strategies in the male
1632	damselfly Mnais costalis Selys (Odonata: Calopterygidae). Population ecology 45:263–266
1633	Tuxen SL. 1974. The African genus <i>Ricinoides</i> (Arachnida, Ricinulei). <i>Journal of Arachnology</i>
1634	1:85-106.
1635	Vacante V. 2015. The handbook of mites of economic plants: identification, bio-ecology and
1636	control. Wallingford: CABI.
1637	Vanacker D., Maes L., Pardo S., Hendrickx F., Maelfait JP. 2003. Is the hairy groove in the
1638	gibbosus male morph of <i>Oedothorax gibbosus</i> (Blackwall 1841) a nuptial feeding device?
1639	Journal of Arachnology 31:309-315.
1640	Vasconcelos ACO., Giupponi APL., Ferreira RL. 2014. A new species of <i>Charinus</i> from Minas
1641	Gerais State, Brazil, with comments on its sexual dimorphism (Arachnida: Amblypygi:
1642	Charinidae). The Journal of Arachnology 42:155–162.
1643	Vollrath F. 1998. Dwarf males. <i>Trends in Ecology & Evolution</i> 13:159–163.
1644	Walker SE., Rypstra AL. 2002. Sexual dimorphism in trophic morphology and feeding
1645	behaviour of wolf spiders (Araneae: Lycosidae) as a result of differences in reproductive
1646	roles. Canadian Journal of Zoology 80:679-688.
1647	Walter DE., Proctor HC. 1999. Mites: ecology, evolution and behaviour. Wallingford: CABI.
1648	Watari Y., Komine H. 2016. Field observation of male-male fighting during a sexual interaction
1649	in the whip scorpion Typopeltis stimpsonii (Wood 1862)(Arachnida: Uropygi). Acta
1650	Arachnologica 65:49–54.

1651	Watson PJ. 1990. Female-enhanced male competition determines the first mate and principal sire
1652	in the spider Linyphia litigiosa (Linyphiidae). Behavioral Ecology and Sociobiology 26:77-
1653	90.
1654	Weckerly FW. 1998. Sexual-size dimorphism: influence of mass and mating systems in the most
1655	dimorphic mammals. Journal of Mammalogy 79:33–52.
1656	Weygoldt P. 1966. Mating behavior and spermatophore morphology in the pseudoscorpion
1657	Dinocheirus tumidus Banks (Cheliferinea, Chernetidae). The Biological Bulletin 130:462-
1658	467.
1659	Weygoldt P. 1971. Notes on the life history and reproductive biology of the giant whip scorpion,
1660	Mastigoproctus giganteus (Uropygi, Thelyphonidae) from Florida. Journal of Zoology
1661	164:137–147.
1662	Weygoldt P. 1972. Spermatophorenbau und Samenübertragung bei Uropygen (Mastigoproctus
1663	brasilianus CL Koch) und Amblypygen (Charinus brasilianus Weygoldt und Admetus
1664	pumilio CL Koch)(Chelicerata, Arachnida). Zeitschrift für Morphologie der Tiere 71:23-51.
1665	Weygoldt P. 1978. Paarungsverhalten und Spermatophorenmorphologie bei Geißelskorpionen:
1666	Thelyphonellus amazonicus Butler und Typopeltis crucifer Pocock (Arachnida, Uropygi).
1667	Zoomorphology 89:145–156.
1668	Weygoldt P. 1988. Sperm transfer and spermatophore morphology in the whip scorpion
1669	Thelyphonus linganus (Arachnida: Uropygi: Thelyphonidae). Journal of Zoology 215:189-
1670	196.

1671	Weygoldt P. 1996. Evolutionary morphology of whip spiders: towards a phylogenetic system
1672	(Chelicerata: Arachnida: Amblypygi). Journal of Zoological Systematics and Evolutionary
1673	Research 34:185–202.
1674	Weygoldt P. 2000. Whip spiders (Chelicerata: Amblypygi): their biology, morphology and
1675	systematics, Whip spiders.
1676	Weygoldt P. 2003. Reproductive biology of two species of Phrynichus, P. exophthalmus
1677	Whittick, 1940 and P. deflersi arabicus nov. ssp.(Chelicerata: Amblypygi). Zoologischer
1678	Anzeiger-A Journal of Comparative Zoology 242:193–208.
1679	Wharton RA. 1986. Biology of the diurnal Metasolpuga picta (Kraepelin)(Solifugae,
1680	Solpugidae) compared with that of nocturnal species. <i>Journal of Arachnology</i> :363–383.
1681	Wheeler WC., Hayashi CY. 1998. The phylogeny of the extant chelicerate orders. <i>Cladistics</i>
1682	14:173–192.
1683	Wijnhoven H. 2013. Sensory structures and sexual dimorphism in the harvestman <i>Dicranopalpus</i>
1684	ramosus (Arachnida: Opiliones). Arachnologische Mitteilungen 46:27–46.
1685	Willemart RH., Chelini M. 2007. Experimental demonstration of close-range olfaction and
1686	contact chemoreception in the Brazilian harvestman, Iporangaia pustulosa. Entomologia
1687	Experimentalis et Applicata 123:73–79.
1688	Willemart RH., Farine J., Gnaspini P. 2009. Sensory biology of Phalangida harvestmen
1689	(Arachnida, Opiliones): a review, with new morphological data on 18 species. Acta
1690	Zoologica 90:209–227.



1691	Willemart RH., Farine J-P., Peretti A V., Gnaspini P. 2006. Behavioral roles of the sexually
1692	dimorphic structures in the male harvestman, <i>Phalangium opilio</i> (Opiliones, Phalangiidae).
1693	Canadian Journal of Zoology 84:1763–1774.
1694	Willemart RH., Osses F., Chelini MC., Macias-Ordonez R., Machado G. 2009. Sexually
1695	dimorphic legs in a neotropical harvestman (Arachnida, Opiliones): Ornament or weapon?
1696	Behavioural Processes 80:51–59.
1697	Willemart RH., Pérez-González A., Farine J., Gnaspini P. 2010. Sexually dimorphic tegumental
1698	gland openings in Laniatores (Arachnida, Opiliones), with new data on 23 species. Journal
1699	of Morphology 271:641–653.
1700	Williams SC. 1980. Scorpions of Baja California, Mexico, and adjacent islands. San Francisco:
1701	California Academy of Sciences.
1702	World Spider Catalog 2018. World Spider Catalog. Version 19.0. Natural History Museum Bern
1703	Online at: https://wsc.nmbe.ch/ . Accessed on 21st June 2018.
1704	Yeh PD., Alexeev A. 2016. Effect of aspect ratio in free-swimming plunging flexible plates.
1705	Computers & Fluids 124:220–225.
1706	Yoshikura M. 1973. Whip Scorpions of Japan. <i>Kumamoto journal of science. Biology</i> 11:81–93.
1707	Zatz C. 2010. Seleção sexual e evolução do dimorfismo sexual em duas espécies de opiliões
1708	(Arachnida: Opiliones). Masters Thesis, Universidade de São Paulo.

1709	Zatz C., Werneck RM., Macías-Ordóñez R., Machado G. 2011. Alternative mating tactics in
1710	dimorphic males of the harvestman Longiperna concolor (Arachnida: Opiliones).
1711	Behavioral Ecology and Sociobiology 65:995–1005.
1712	Zeh DW. 1986. Ecological Factors, Pleiotropy, and the Evolution of Sexual Dimorphism in
1713	Chernetid Pseudoscorpions (Phoresy, Quantitative Genetics, Sexual Selection). PhD Thesis,
1714	University of Arizona.
1715	Zeh DW. 1987a. Aggression, density, and sexual dimorphism in chernetid pseudoscorpions
1716	(Arachnida: Pseudoscorpionida). Evolution 41:1072–1087.
1717	Zeh DW. 1987b. Life history consequences of sexual dimorphism in a chernetid pseudoscorpion
1718	Ecology 68:1495–1501.
1719	Zhang Z-Q. 2011. Phylum Arthropoda von Siebold, 1848. In: Zhang, ZQ.(Ed.) Animal.
1720	Zootaxa 3148:99–103.
1721	
1722	
1723	
1724	
1725	
1726	
1727	

1728	
1729	
1730	
1731	
1732	
1733	
1734	
1735	
1736	
1737	
1738	Figure Captions:
1739	See "Standard Figure Abbreviations" for labelling guide
1740	Fig 1 – Patterns of SSD across Acari. See "Standard Figure Abbreviations" for labelling guide
1741	Fig 2 – Patterns of SSD across Amblypygi; though carapace has been found to be statistically
1742	wider in males in Charinus jibaossu relative to carapace length, suggesting a larger carapace
1743	overall, it is not highlighted here due its wide consideration as a reference character for overall
1744	body size, which is thought to favour females. See "Standard Figure Abbreviations" for labelling
1745	guide

1/40	rig 3 – Relationship between log pedipaip tibia length and log carapace length (modified from
1747	Weygoldt, 2000). Regression analysis was re-run with a type two regression; against the H0 that
1748	the two rates of allometric growth are equal $p = <0.001$ for <i>Damon gracilis</i> $p=0.031$ for <i>Damon</i>
1749	variegatus.
1750	Fig 4 – Patterns of SSD across Araneae. See "Standard Figure Abbreviations" for labelling guide
1751	Fig 5 – Patterns of SSD across Palpigradi. See "Standard Figure Abbreviations" for labelling
1752	guide
1753	Fig 6 – Patterns of SSD across Pseudoscorpiones. See "Standard Figure Abbreviations" for
1754	labelling guide
1755	Fig 7 – Patterns of sex bias in pedipalp claw SSD in cherenid Psuedoscorpions, red dots indicate
1756	male bias, green is female-biased. Modified from Zeh (1987a).
1757	Fig 8 – Patterns of SSD across Opiliones. See "Standard Figure Abbreviations" for labelling
1758	guide
1759	Fig 9 – SEM images showing dimorphism in the chelicerae of <i>P.opilo</i> , the male chelicerae are
1760	noted for the presence of a horn used in contest (modified from Willemart et al, 2006) $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
1761	Canadian Science Publishing or its licensors.
1762	Fig 10 – Patterns of SSD across Ricinulei. See "Standard Figure Abbreviations" for labelling
1763	guide, Cuc = cucullus.
1764	Fig 11 – Patterns of SSD across Schizomida. See "Standard Figure Abbreviations" for labelling
1765	guide

17//	T: 10	D 44	C 1: CC	. 1	. 1	1 41	1	1 /1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l /hh	H10 I / -	Patterns	ot ditterences	in ned	เทลเท	lenoths a	denotino	hoth sexua	i and ma	le dimorphism.
1 / 00	115 14	1 atterns	or arrier chees	III pcu	ւրաւր	TOILE HIS	uchoung	oon sexua	i ana ma	ic diffici pilisiff.

- 1767 Top = frequency histogram of pedipalp patella lengths, Bottom = Relationship between pedipalp
- patella length and prosoma length for the two male morphs and female (modified from Santos et
- 1769 al, 2013)
- 1770 Fig 13 Patterns of SSD across Scorpiones. See "Standard Figure Abbreviations" for labelling
- 1771 guide
- 1772 Fig 14 Sexually dimorphic differences in body plan in *Centruroides vittatus*, note the longer
- male legs and metasoma (modified from Carlson, McGinley and Rowe, 2014)
- 1774 Fig 15 Patterns of SSD across Solifugae. See "Standard Figure Abbreviations" for labelling
- 1775 guide
- 1776 Fig 16 Patterns of SSD across Uropygi. See "Standard Figure Abbreviations" for labelling
- 1777 guide
- 1778 Fig 17 A broad consensus arachnid phylogeny encompassing a range of recent studies
- 1779 (modified from Giribet, 2018)
- Table 1 Patterns of SSD across arachnid orders. $\sqrt[3]{\text{red}}$ = male biased, $\sqrt[9]{\text{green}}$ = female-
- biased, symbols in brackets indicate rare reversals.

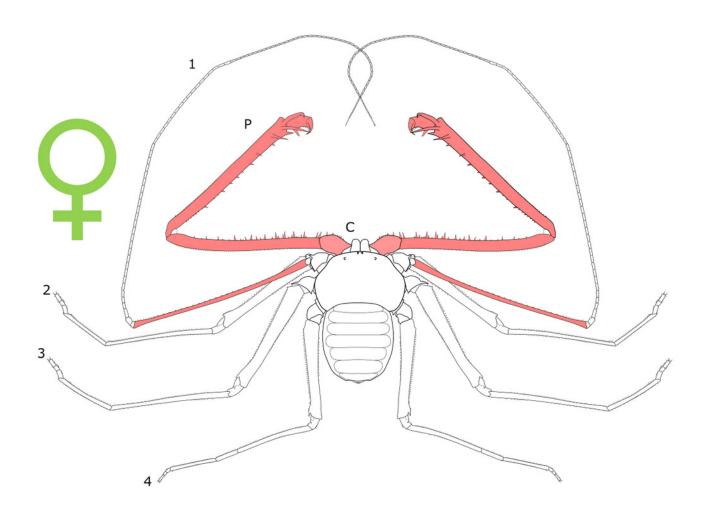
Table 1(on next page)

Patterns of SSD across arachnid orders

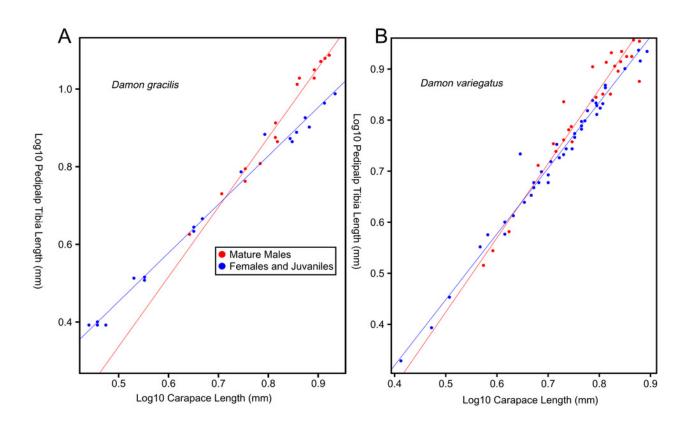
 $\sigma'/red = male biased$, $\Omega'/red = male biased$, Ω'/r

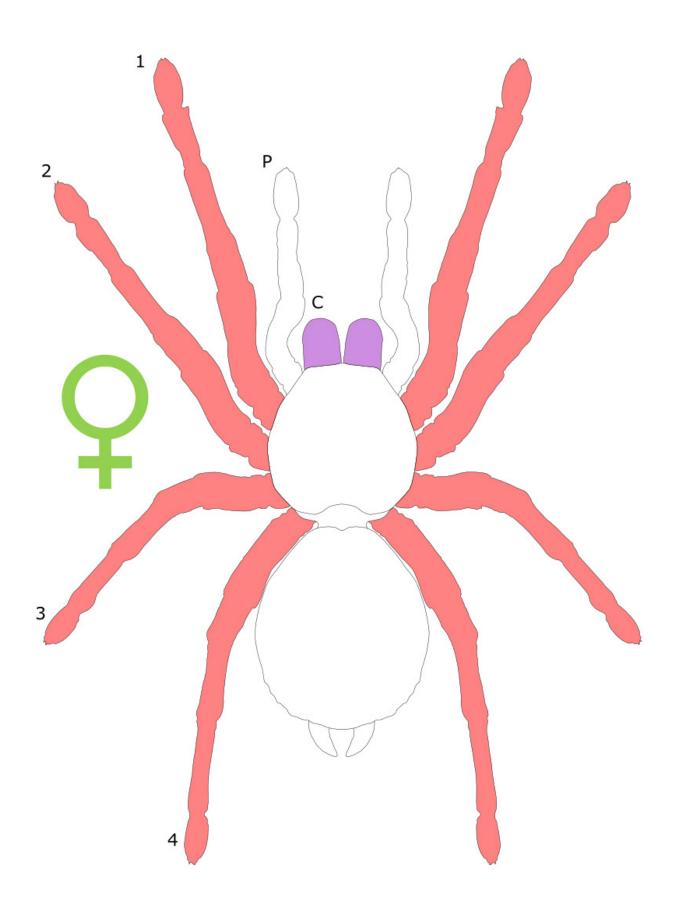

1

	Acari	Amblypygi	Aranaea	Palpigradi	Pseudoscorpiones	Opiliones	Ricinulei	Schizomida	Scorpiones	Solifugae	Uropygi
Overall body	(♀)	2	♀(♂)		♀(♂)	2			♀(♂)	9	3
Legs		♂ *	3			0	3		0	2	
Chelicerae	3		20			0	3			(♀)	
Pedipalps	3	0			2 8	5 0		7 0		√	3

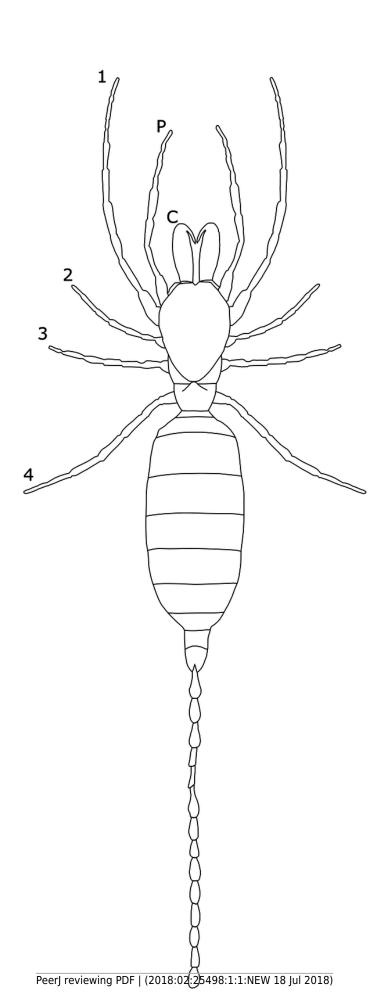

Patterns of SSD across Acari

Patterns of SSD across Amblypygi

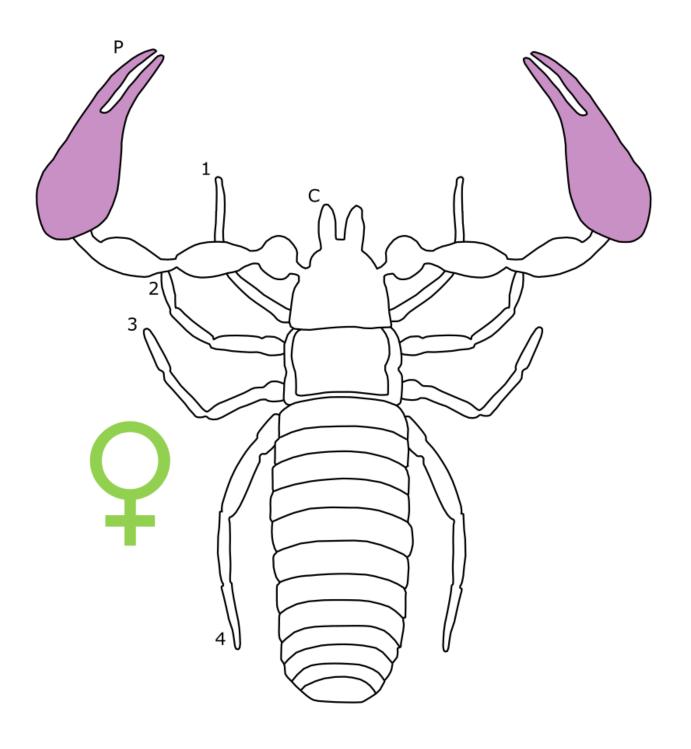

Though carapace has been found to be statistically wider in males in *Charinus jibaossu* relative to carapace length, suggesting a larger carapace overall, it is not highlighted here due its wide consideration as a reference character for overall body size, which is thought to favour females. See "Standard Figure Abbreviations" for labelling guide.


Relationship between log pedipalp tibia length and log carapace length

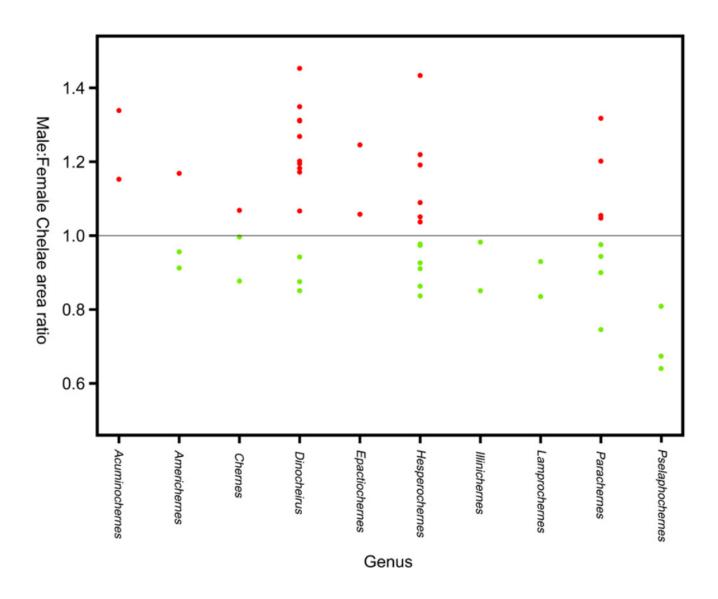
Relationship between log pedipalp tibia length and log carapace length (modified from Weygoldt, 2000). Regression analysis was re-run with a type two regression; against the H0 that the two rates of allometric growth are equal p = <0.001 for *Damon gracilis* (A), p=0.031 for *Damon variegatus* (B).

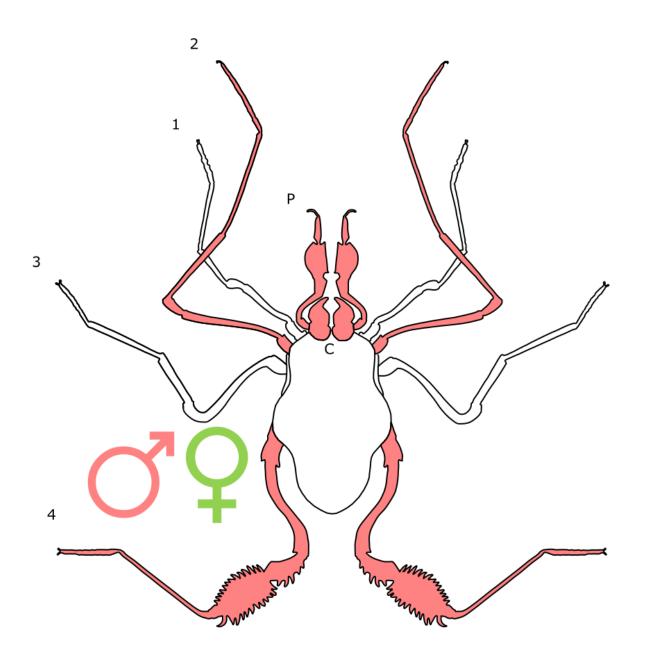


Patterns of SSD across Araneae



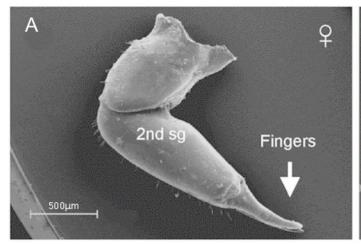
Patterns of SSD across Palpigradi

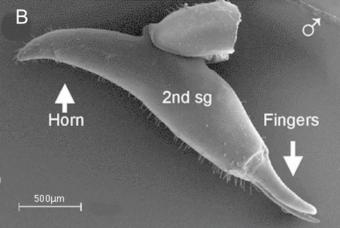

Patterns of SSD across Pseudoscorpiones



Patterns of sex bias in pedipalp claw SSD in Psuedoscorpions

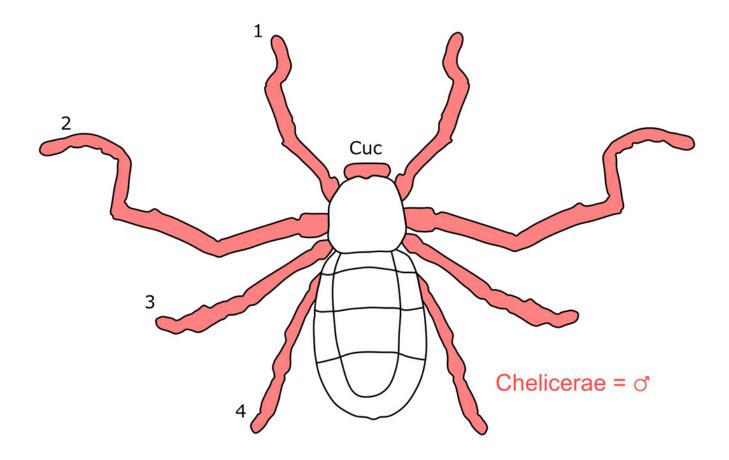
Patterns of sex bias in pedipalp claw SSD in Psuedoscorpions, red dots indicate male bias, green is female-biased. Modified from Zeh (1987a).

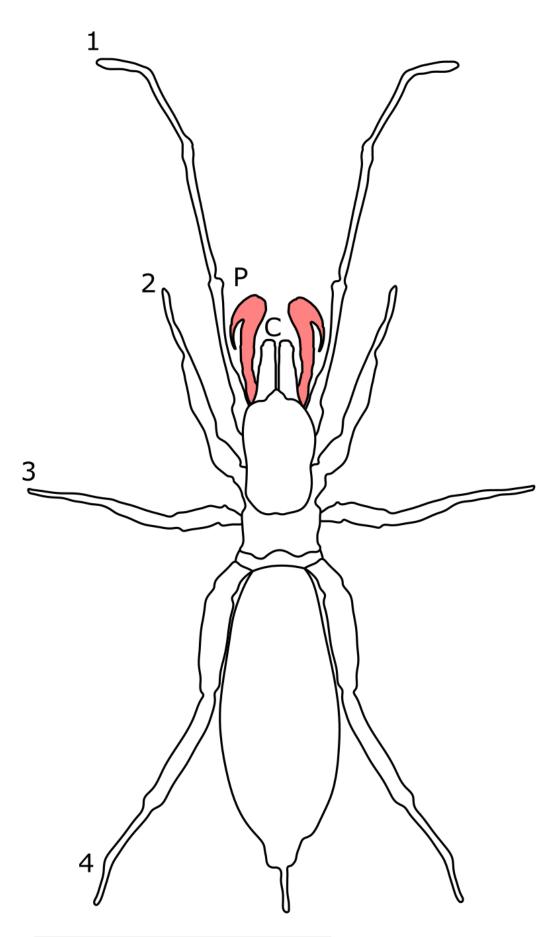

Patterns of SSD across Opiliones



SEM images showing dimorphism in the chelicerae of P.opilo

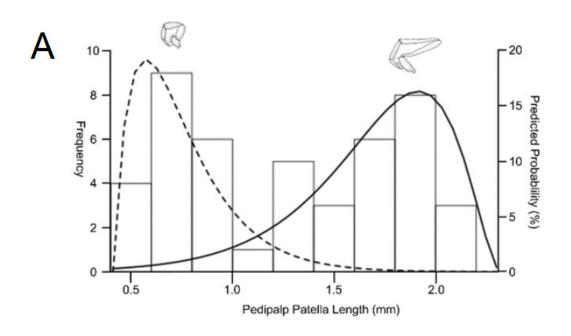
The male chelicerae (B) are noted for the presence of a horn used in contest which is absent in the female (A, modified from Willemart et al, 2006) © Canadian Science Publishing or its licensors.

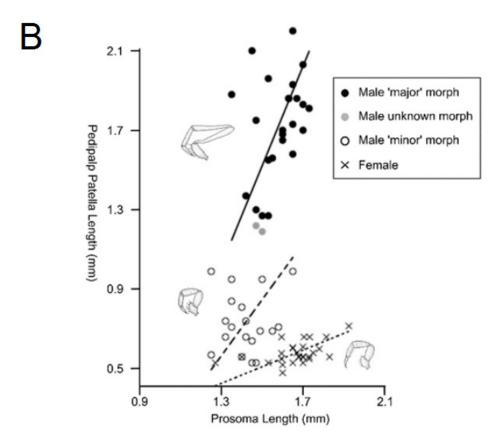

*Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.


Patterns of SSD across Ricinulei

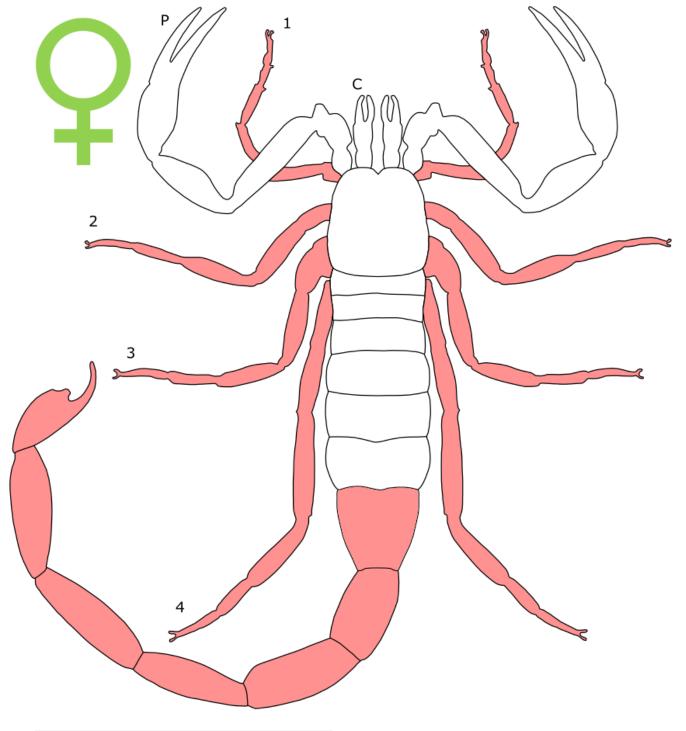
See "Standard Figure Abbreviations" for labelling guide, Cuc = cucullus.

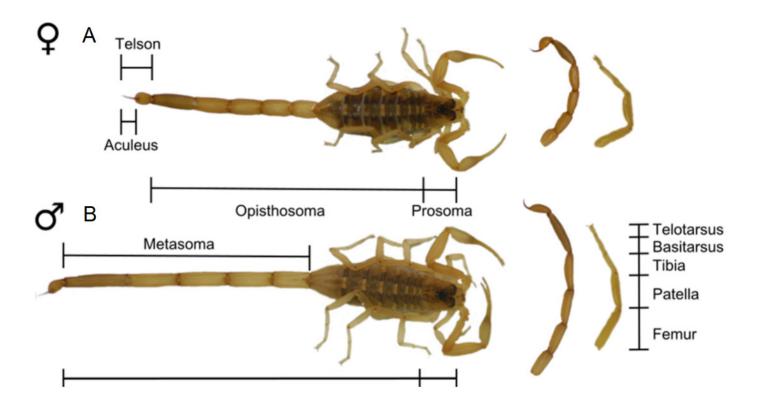
Patterns of SSD across Schizomida



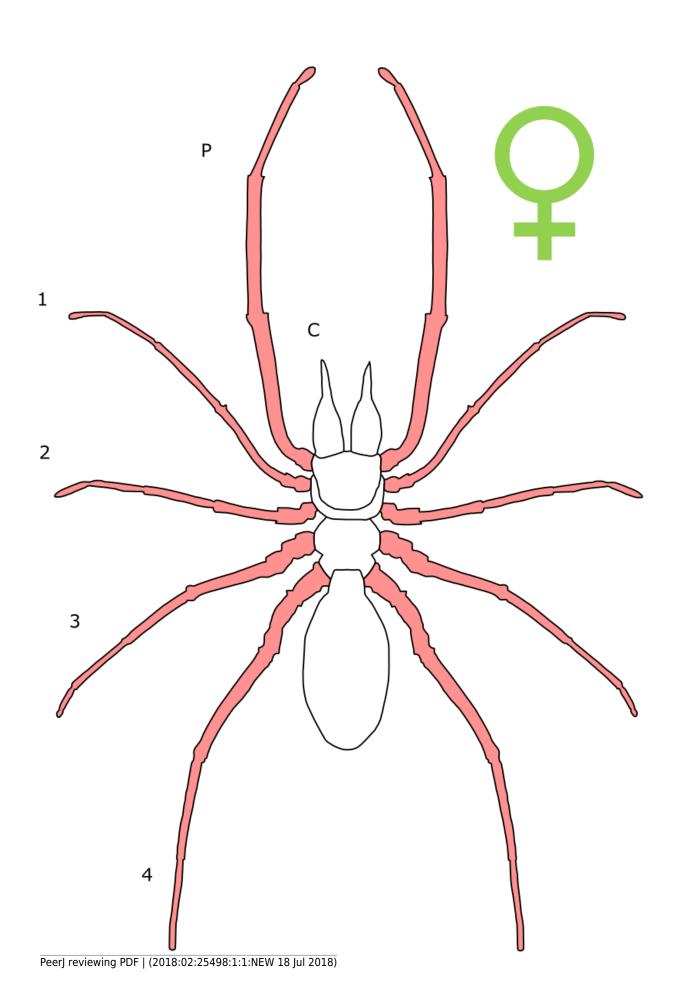


Patterns of differences in pedipalp lengths denoting both sexual and male dimorphism.

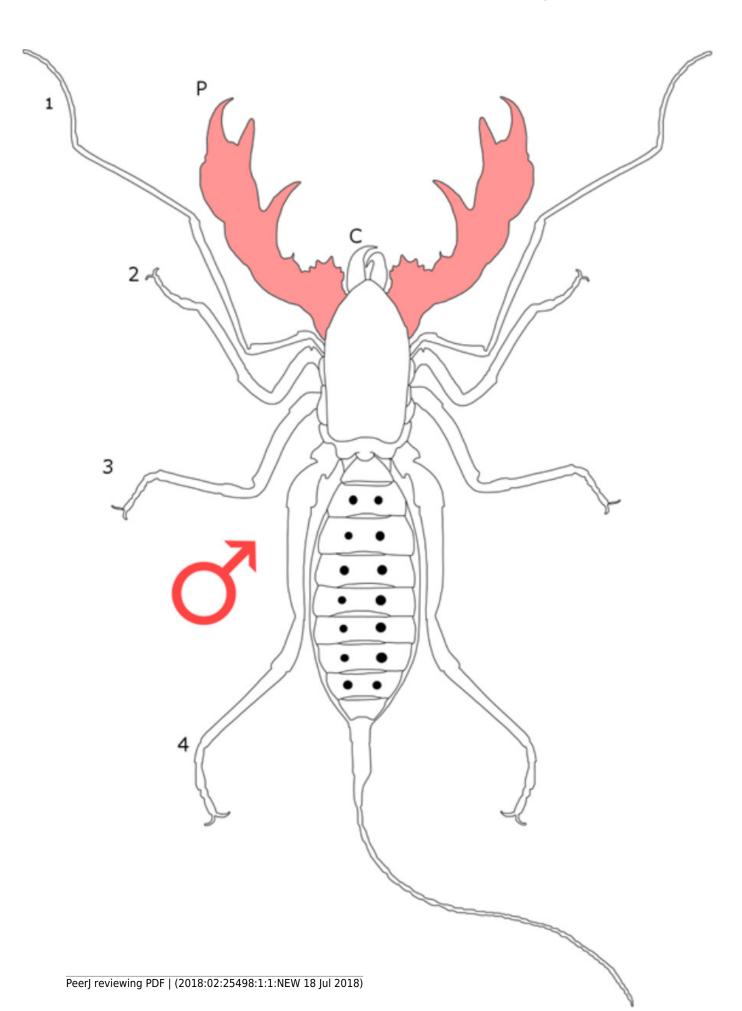

A = frequency histogram of pedipalp patella lengths, B = Relationship between pedipalp patella length and prosoma length for the two male morphs and female (modified from Santos et al, 2013).



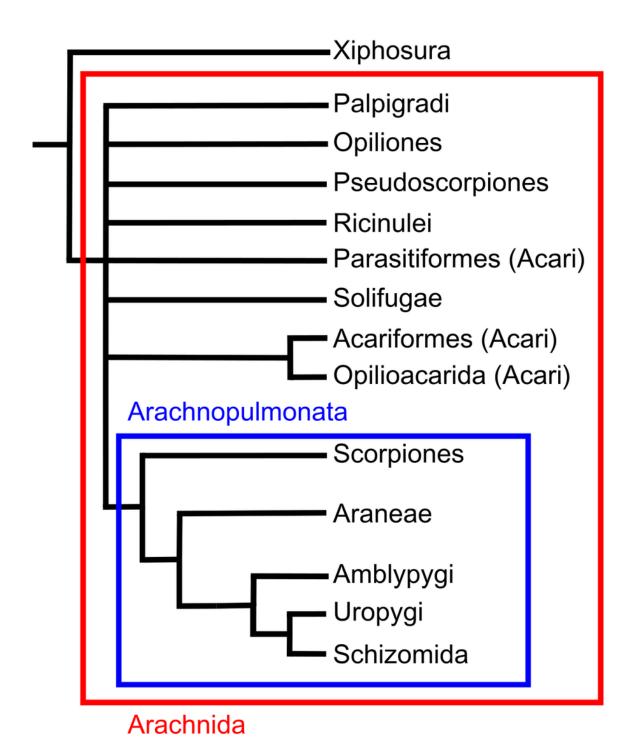
Patterns of SSD across Scorpiones


Sexually dimorphic body plan of *Centruroides vittatus*

Differences between the female (A) and male (B) body plan in *Centruroides vittatus*, note the longer metasoma and legs in the male.



Patterns of SSD across Solifugae


Patterns of SSD across Uropygi

A broad consensus arachnid phylogeny encompassing a range of recent studies

A broad consensus arachnid phylogeny encompassing a range of recent studies (modified from Giribet, 2018).

