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We analyzed the dynamics of soil respiration (Rs) and its relation to environmental factors

in a Moso bamboo forest (Phllostachys heterocycla cv. pubescens). Annual average Rs was

44.07 tCO2·ha-1·a-1. Rs was significantly correlated with soil temperature (P < 0.01),

which explained 69.7% of the variation of Rs. Soil moisture was correlated significantly

with Rs outside of the winter on a daily scale indicating it affected Rs. A model including

both soil temperature and soil moisture explained 93.6% of seasonal variations for Rs. The

relationship between Rs and soil temperature during a day showed a clear hysteresis. Rs

was in significant and positively (P < 0.01) related to gross ecosystem productivity and

leaf area index during our study, illustrating the significance of biotic factors as crucial

drivers of Rs.
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Abstract  17 

We analyzed the dynamics of soil respiration (Rs) and its relation to environmental factors in 18 

a Moso bamboo forest (Phllostachys heterocycla cv. pubescens). Annual average Rs was 19 

44.07 tCO2·ha-1·a-1. Rs was significantly correlated with soil temperature (P < 0.01), which 20 

explained 69.7% of the variation of Rs. Soil moisture was correlated significantly with Rs 21 

outside of the winter on a daily scale indicating it affected Rs. A model including both soil 22 

temperature and soil moisture explained 93.6% of seasonal variations for Rs. The relationship 23 

between Rs and soil temperature during a day showed a clear hysteresis. Rs was in significant 24 

and positively (P < 0.01) related to gross ecosystem productivity and leaf area index during 25 

our study, illustrating the significance of biotic factors as crucial drivers of Rs. 26 

Keywords: Soil respiration; Moso bamboo forest; environmental determiners; gross ecosystem 27 

productivity; leaf area index 28 

Introduction 29 

Soils are important sources and sinks in the global carbon budget (Sheng et al., 2010). Soil 30 

respiration (Rs) presents a major source of CO2 emissions from terrestrial ecosystem, as the 31 

second largest carbon flux between the atmosphere and ecosystems it is surpassed only by 32 

gross primary production (Raich and Schlesinger, 1992). Soils release approximately 68 ± 4 33 

Pg C per year globally, nearly 10 times of the amount of CO2 released annually by the 34 

combustion of fossil fuels (Raich and Potter ,1995). Hence, slight variations in Rs may cause 35 

profound changes in the atmospheric concentration of CO2, the accumulation of soil carbon 36 

(Schlesinger & Andrews, 2000), and subsequently affect global climate. 37 

Considering the importance of forest ecosystem in the terrestrial carbon cycle and their 38 

response to global climate, numerous studies have been conducted to explore Rs and its 39 
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dependence on environmental drivers. For instance, the temperature and moisture of soils are 40 

two of the major environmental drivers regulating Rs (Liu et al., 2016). Additionally, 41 

disturbances (as e.g. fire, Muñoz-Rojas et al., 2016; Köster et al., 2014), harvesting (Bahn et 42 

al., 2008), artificial warming and precipitation changes (Li et al., 2017a) or land use changes 43 

(Liu et al., 2011; Willaarts et al., 2016) can also have large effects on Rs. Rs is a complex 44 

biogeochemical process highly related to ecosystem productivity, leaf area index and soil 45 

fertility (Hibbard et al., 2005). Recently, research has reported Rs to be also influenced by the 46 

amount of litter (Oishi et al., 2013; Wu et al., 2017), vegetation type, latitude (Mahecha et al., 47 

2010; Wang et al., 2011), and composition of the soil microbial community (Luo et al., 2016). 48 

Furthermore, some biological factors (e.g. leaf area index and ecosystem productivity) are 49 

closely related to Rs, suggesting coupling between CO2 assimilation by the vegetation and 50 

emissions from the soil (Bahn et al., 2008; Hibbard et al., 2005). However, many of the 51 

environmental drivers are correlated with each other and it is difficult to distinguish and 52 

quantity the contribution of each environmental factor. 53 

Bamboo forests are widely distributed in warm temperate, subtropical and tropical zones 54 

between 46°N-47°S of the world (McDowell et al., 2015). Globally, bamboo forests cover 55 

31.5 million ha (FAO, 2010). In the context of sustainable development, bamboo plays a 56 

significant role in substituting wood as well as in the terrestrial carbon cycle (Song et al., 57 

2011). Well known as bamboo kingdom, China has 6.16 million ha bamboo forest, 58 

accounting for 2.97% of total forest area in China (SFAPRC, 2015). Appreciated for its rapid 59 

growth and high timber production (Guan et al., 2017), Moso bamboo (Phllostachys 60 

heterocycla cv. pubescens) forest is a major vegetation type of subtropical forests in 61 
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subtropical China (Song et al., 2013). Currently, the area covered by Moso bamboo forest 62 

increases annually by about 3%, since it provides many benefits (including high income 63 

generation and other ecosystem services) to the forest owners. 64 

Notably, Moso bamboo has high rates of carbon accumulation, sequestering 4.91 - 5.45 tC ha-
65 

1 each year (Zhou and Jiang, 2004), showing great potential for alleviating global warming by 66 

carbon fixation. Previous studies of Moso bamboo have concentrated on carbon storage, 67 

balance and its distribution in the ecosystem (Li et al., 2013), as well as on the productivity of 68 

bamboo forest (Cheng et al., 2015; Isagi et al., 1997), variation of soil organic carbon stocks 69 

(Guan et al., 2015). Previous studies reported a close relationship between Rs and biotic 70 

factors in other forest types (Hibbard et al., 2005) suggesting a coupling between forest 71 

canopy assimilation and carbon emissions from soil. However, comparatively little is known 72 

about bamboo forests. Thus, it is imperative to explore the relationship between biotic, abiotic 73 

factors and Rs in Moso bamboo forest. Also, it is necessary to explore the driving forces 74 

behind soil respiration in the forest. 75 

In this study, we used soil respiration measurements from a Moso bamboo stand and 76 

combined these with measurements of abiotic as well as biotic factors. Our aims were to 77 

explore the temporal dynamics of soil respiration, and to identify the relative importance of 78 

biotic and abiotic factors. 79 

Materials and Methods 80 

Study site 81 

A Moso bamboo stand, with a flux tower observation, was selected as study site at Anji 82 

County (30°28ƍ34.5ƎN, 119°40ƍ25.7ƎE, and elevation 380 m, Figure S1), located in 83 

northwestern of Zhejiang Province, southeast China. As the subtropical monsoon climate, 84 
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according to Trewartha climate classification, the average annual air temperature and 85 

precipitation was 15.6°C and 1413.2 mm, respectively, according to meteorological 86 

measurements for 1981-2010 from weather stations of Anji. Effective accumulated 87 

temperature above 10°C is 4934.1°C. There are on average hours 2021 h of sunshine 88 

annually. Monthly average rainfall and air temperature in the study period were shown in 89 

Figure 1. The soil type of this area is yellow red soil (Chinese system of soil classification), 90 

equivalent to Hapludult in USDA Soil Taxonomy (Soil Survey Staff of USDA, 1999), with a 91 

pH ranging from 4.4 to 4.8 and a soil bulk density of 1.5 g·cm-3 (Chen, 2016). 92 

The area of Moso bamboo forest was approximately 1687 hectares and 1km around the flux 93 

tower, it accounted for 86.1% (Xu et al., 2013) of the area, with stand density of 3235 culms 94 

per hectare. The average canopy height and diameter at breast height were 11 m and 9.3 cm, 95 

respectively. There was only a sparse understory in the stand. The main management 96 

activities were harvesting 6 or 7-year old bamboos, and a proportion of new bamboo shoots 97 

each year. No fertilization nor weeding were done in the forest. Further detailed information 98 

of the site can be found in Mao et al. (2017) . Moso bamboo has a biannual growth pattern. 99 

During “off years” (which are the even in our site) few new bamboo shoots are produced, 100 

there is leaf senescence of old leaves and vigorous growth of new leaves (Qiu, 1984). In “on 101 

years” which are uneven years more new bamboo shoots are produced and leaf senescence is 102 

limited.  103 

Experimental design and measurement 104 

Soil CO2 flux measurement 105 

The soil CO2 flux was measured using the LI-8150 (LI-COR Inc., Lincoln, NE, USA) 106 

multiplexer automatic soil carbon flux measurement system, from January to December in 107 
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2013. Four 20 m ×20 m plots were established around the flux tower within the forest. Four 108 

sampling polyvinyl chloride (PVC) soil collars (20 cm inside diameter, 10 cm height, and 5 109 

cm plugged in the soil from the ground surface) were randomly placed within each plot. All 110 

collars remained permanently in place throughout the study period. To reduce the 111 

disturbance-induced carbon dioxide emission, the first measurement started 24 h after 112 

insertion. Green plants growing inside every soil collar were cut off carefully using scissors. 113 

The data and the functioning of the equipment were checked regularly to ensure the 114 

experiment stability throughout the year. Soil water content (SWC, m3·m-3) and soil 115 

temperature (Ts, ℃) were monitored simultaneously adjacent to each collar at 5 cm depth of 116 

the soil, with 2 theta probes (ML2x, Delta-T Inc., UK; Omega Inc., USA) provided with the 117 

system. Soil respiration measurements were done at 2-hourly intervals on selected sunny days 118 

(about two weeks) in every mid-month of 2013. We defined March through May as spring, 119 

June through August as summer, September through November as autumn, January, February 120 

and December as winter. 121 

Measurements of environmental variables at the eddy covariance site 122 

Provided with meteorological measurements, Ts and SWC were monitored by soil 123 

temperature sensors (109SS, Campbell, USA) and soil moisture sensors (CS616, Campbell, 124 

USA), at 5 cm, 50 cm and 100 cm depths, respectively. Air temperature and relative humidity 125 

were measured using HMP45C probes (Vaisala, Helsinki, Finland) at seven heights (1 m, 7 126 

m, 11 m, 17 m, 23 m, 30 m, 38 m) above the ground. Ground-surface temperature was 127 

obtained using a SI-111 infrared temperature sensor (Apogee, USA). All the data were 128 

recorded by a data logger (CR1000, Campbell Inc., USA) and saved as 30-min averages. 129 
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Biological factors measurement 130 

The biological factors we considered were gross ecosystem productivity (GEP) and leaf area 131 

index (LAI). GEP was obtained by eddy co-variance (EC) technique. LAI was measured 132 

using digital camera provided with a fish-eye lens then in combination with MODIS LAI 133 

following the methods of Li et al. (2017b). LAI is reported as the average of three sample 134 

points were chosen within the 20 m ×20 m plot on non-rainy days. The LAI data was reported 135 

as mean values ±SD (standard deviation). For EC technique, an open-path infrared gas 136 

analyzer LI-7500 (Li-Cor Inc., Lincoln, NE, USA), in conjunction with a 3-dimensional sonic 137 

anemometer CSAT3 (Campbell Scientific Inc., Logan, UT, USA) was placed at 38 m above 138 

the ground. All the raw flux data were sampled at 10 Hz, calculated and recorded by a 139 

CR1000 data logger (Campbell Inc., USA) as 30-min average values. Whilst daily carbon 140 

fluxes (net ecosystem exchange, NEE, ecosystem respiration, RE and gross ecosystem 141 

productivity, GEP) were estimated as described by Xu et al. (2016).  142 

Data analysis 143 

We analyzed the soil respiration as a function of soil temperature assuming an exponential 144 

Q10 type relationship. 145 

bt

s
R ae                                            (1) 146 

10

10

b
Q e                                          (2) 147 

Where Rs (μmol·m-2·s-1) is soil respiration, T is soil temperate at 5 cm depth, a and b are 148 

parameters, Eq.1 (van't Hoff, 1884). Whilst the temperature sensitivity parameter, Q10, was 149 

calculated by Eq.2 (Sheng et al., 2010; Song et al., 2013). 150 

One-way analysis of variance (ANOVA) were carried out to test the statistical significance of 151 

differences in soil respiration, environmental and biotic factors (Table 2) between seasons. 152 

Regression analysis was performed to analyze the relationship between soil respiration, biotic 153 

PeerJ reviewing PDF | (2018:03:27113:0:1:NEW 30 Mar 2018)

Manuscript to be reviewed

dsihi
Comment on Text
Were there any data on litter input?

dsihi
Comment on Text
Is this to avoid any confounding effects of cloud on MODIS estimates?

dsihi
Comment on Text
Is this height approximately double of the canopy layer, which is a general recommendation for EC measurement?



8 

 

and abiotic variables. All analyses were conducted using the PASW Statistics 18.0 software. 154 

Results 155 

Seasonal dynamics of environmental and biotic factors in Moso bamboo forest 156 

As can be seen from Figure 1, 2013 was drier and warmer than the long-term average, with 157 

average air temperature 1.2 ℃ higher and total precipitation 114.5 mm lower than the long-158 

term average. Especially in July and August, Ta (30.7 and 30.3 ℃) was as much as 7.9 and 159 

2.8 ℃ higher than that of the long-term average. Whilst compared to the long-term average, 160 

precipitation was 57.2% and 31.5% of the mean, for July and August, respectively. The 161 

annual rainfall of 2013 was 1298.7 mm, and most occurred in the period from May to 162 

October. Additionally, July was the driest month (Figure 1), showing exceptionally hot and 163 

dry conditions (Yuan et al., 2016). Figure 2 showed seasonal dynamics of environmental 164 

variables and biotic factors during study period. Temperatures at different depths (soil 165 

temperature at 5 cm and 50 cm depth, Ts5, Ts50; air temperature at 1m height, Ta) presented a 166 

similar annual pattern (Figure 2A), it increased gradually from January to July, being 167 

maximal in July, and then decreased slowly till December. Ts5 and Ts50 changed more 168 

comparatively smooth and steadily than Ta. Soil water contents (SWC, at 5 cm and 50 cm 169 

depths, SWC5 and SWC50) were obviously affected by rainfall, and decreased greatly in July 170 

and August. 171 

Seasonal variation of carbon flux (net ecosystem exchange, NEE, ecosystem respiration, RE, 172 

gross ecosystem productivity, GEP) showed several peaks during 2013, with lower value in 173 

August (0.76 gC·m-2 mean daily NEE) (Figure 2C), and maxima in June and September. 174 

Besides, NEE was positive on some rainy and cloudy days. Mean daily NEE, RE and GEP 175 

was -2.11 gC·m-2·day-1, 5.36 gC·m-2·day-1and 7.48 gC·m-2·day-1, respectively. Due to the 176 
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impact of drought, GEP decreased significantly in July and August, being 59.9%, 80.0% of 177 

the values for 2011 (Chen et al., 2016). LAI remained at a lower value (about 3.6) in winter 178 

and spring, it increased gradually starting in March, and reached a maximum (5.92) in July. 179 

Thereafter, LAI decreased slowly (Figure 2D), exhibiting the typical growth characteristic of 180 

Moso bamboo in an “on year”. 181 

Diurnal variation of soil CO2 fluxes and its response to temperature 182 

Rs in our forest presented a similar diurnal cycle throughout the year (Figure 3A). After a 183 

daily minimum occurring between 5:00~7:00 o’clock, it increased slowly reaching a 184 

maximum value at about 14:00-16:00 o’clock, and then decreased gradually. There were, 185 

however, great differences in Rs during the different months. It (the mean instantaneous value 186 

at each time) ranged from 0.63 to 7.52 μmol·CO2·m
-2·s-1, with a mean value of 3.11 187 

μmol·CO2·m
-2·s-1, and coefficient of variation (CV) of 4.5%~23.6%. The maximal measured 188 

Rs was in August, with a value of 7.52 μmol·m-2·s-1 followed by July. Monthly maximum 189 

values of Rs ranged from 0.85 to 7.52 μmol·m-2·s-1. Table 2 showed the correlation 190 

coefficients between environmental factors and soil respiration. There was positive significant 191 

correlation between diurnal mean values of Rs and soil surface (TS5) and air temperature (Ta) 192 

with the correlation with soil surface temperature being larger (Figure 3C and 3D). 193 

Furthermore, an exponential relationship was used to estimate Rs based on Ts (Table 1). Ts 194 

explained 69.7% variation of Rs at a diurnal scale. Whereas Ts5 could explain 63.9% of Rs 195 

(not shown). Both regression models were statistically significant (P < 0.01). We plotted the 196 

diurnal variation of Rs against Ts, and Ts5 (Figure 4). The relationship showed a clear 197 

hysteresis. Additionally, there was slight discrepancy in elliptic shape of Ts and Ts5. and 198 
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subtle difference in both could explain the coefficient or determination (R2) in an exponential 199 

relationship of Ts and Ts5 (Table 1). 200 

Seasonal dynamics of soil CO2 fluxes and its affecting factors 201 

The stand showed a clear seasonal pattern in soil respiration (Figure 3A, 3B), being highest in 202 

summer with 5.77 μmol·CO2·m
-2·s-1, followed by autumn (3.50 μmol·CO2·m

-2·s-1), spring 203 

(2.42 μmol·CO2·m
-2·s-1), and lowest in winter (0.76 μmol·CO2·m

-2·s-1). The average annual 204 

soil CO2 flux was 3.11 μmol·CO2·m
-2·s-1, equating to annual Rs of 44.07 t CO2·ha-1·a-1. 205 

Temperatures at different height and depths presented similar seasonal dynamics, being 206 

maximum in summer and minimum in winter (Figure 3E). Besides, values Q10 were small in 207 

summer and large in winter (Table 1). 208 

Monthly mean values of LAI, soil temperature and GEP were all significantly related to soil 209 

respiration (Table 2 and Figure 5). Maximum Rs was significantly correlated with associated 210 

soil temperature (Figure 5E). Within each season, there was a complex relationship between 211 

SWC and Rs, with significant (P < 0.01) negative correlation in summer (R= -0.796, Rs = -212 

19.101*SWC+10.368, whilst, soil temperature and soil moisture showed significant 213 

relationship, R= -0.939, Ts=-0.013*SWC+0.559, P < 0.001 ), and positive correlation in 214 

autumn (P < 0.01, R= 0.552, Rs = 47.663*SWC-7.012 ) and spring (P< 0.05, R= 0.331, Rs = 215 

36.661*SWC-6.708), but no correlation (P > 0.05) in winter (R= 0.008), indicating that SWC 216 

played crucial role in Rs at the growing period of Moso bamboo. Whilst Rs was closely related 217 

(P<0.01) to Ts at all seasons (Figure 3C), with an R of 0.94 in spring, 0.72 in summer, 0.98 in 218 

autumn and 0.851 in winter. 219 

Moreover, exponential equation model was used to fit the relationship between different 220 

PeerJ reviewing PDF | (2018:03:27113:0:1:NEW 30 Mar 2018)

Manuscript to be reviewed

dsihi
Comment on Text
this statement is not clear. 

dsihi
Comment on Text
driving

dsihi
Comment on Text
Further



11 

 

temperatures (Ts, Ts5, Ts50 and Ta) and soil respiration (Figure 3C, 3D). The equations of Ts5-221 

Rs (R2= 0.954) and Ts50-Rs (R
2= 0.929) both showed higher R2 than that of Ts-Rs (R

2= 0.915), 222 

possible because of the relative stability of soil temperature profile measurement in eddy 223 

covariance system. Furthermore, due to the complex relationship between SWC and Rs, as 224 

well as considering combination of temperature and soil moisture, six models were compared 225 

that predict Rs based on soil temperature and soil moistures (Table 3). Based on root mean 226 

square (RMSE) and R2, the model (Rs=a+b*exp(c*Ts) +d*Ts*SWC) showed the best result, 227 

suggesting Ts and SWC could explain 93.6% temporal variation of Rs in 2013. Compared 228 

with a soil temperature (Ts)-soil respiration (Rs) equation (Figure 3C, R2=0.915), It showed a 229 

slight increase R2(Table 3, R2=0.936). 230 

Discussion 231 

Our work shows that there are three factors that affect soil respiration in Moso bamboo: 232 

temperature, soil humidity and either productivity or LAI. The importance and interactions of 233 

the factors will be discussed subsequently. Of the three factors, soil temperature was the 234 

dominant driver of soil respiration with an R2 of over 0.8. 235 

Seasonal change of Rs has been investigated in varying ecosystems. Soil temperature and soil 236 

water content are commonly to be two major determinants to give rise to seasonal variations 237 

in measured Rs (Davidson et al., 1998). In this study, soil respiration increased with the rising 238 

of soil temperature. Similar results were explored by Shi et al. (2012) on a global scale. 239 

However, soil temperature explained only 62.7% variation of soil respiration during summer 240 

(June, July and August). This was not only due to a lower variation of soil temperature during 241 

summer months, but also, as shown in Table 1, the temperature sensitivity of soil respiration 242 
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was markedly lower in the summer. Indeed, plots of soil respiration against daily temperature 243 

patterns show a rather flat relationship for the summer with a strong hysteresis. Similar 244 

findings have been reported in Moso bamboo forest of subtropical China by Tang et al. (2016) 245 

and Song et al. (2013). Depth of the soil temperature measurement affected the explanatory 246 

power of soil temperature. The explanatory power of the temperature in the humus layer was 247 

highest and decreased with the depth of the measurements. This indicates that most of the 248 

respiration originates from the humus layer. Zhang et al. (2016) made similar observations in 249 

winter wheat ecosystems. While Dai et al. (2004) found soil respiration of wheat was highly 250 

correlated with soil temperature at 10 cm depth. 251 

The relationship between soil carbon efflux and soil temperature showed a diurnal hysteresis 252 

(Figure 4). This indicates that there is a delayed effect between rapidly varying temperature 253 

and diurnal variation of soil respiration, similar to the study of Högberg et al. (2008). 254 

Furthermore, other research suggested that the length of the delay could vary among different 255 

species (Raich & Schlesinger, 1992). Since the depth of the measurements of soil temperature 256 

varies between studies, it might be difficult to compare the sensitivity of soil respiration to 257 

soil temperature between studies (Zhang et al., 2016). Previous research suggested diurnal 258 

variation of Rs was out of phase with corresponding Ts at 2 cm depth, resulting in significant 259 

hysteresis (Gaumont-Guay et al., 2006). As discussed above, there may be two possible 260 

reasons (1) effects of diurnal variations of root respiration supplied by newly produced 261 

photosynthetic products (Bahn et al., 2008) and (2) diurnal variations of soil water content 262 

near the critical value (Bahn et al., 2008). 263 

The relationship between soil respiration and soil moisture was more complicated in our 264 

PeerJ reviewing PDF | (2018:03:27113:0:1:NEW 30 Mar 2018)

Manuscript to be reviewed

dsihi
Comment on Text
organic layer?

dsihi
Comment on Text
Can also cite Davidson et al., 2006, where the author demonstrated that the top organic layer contributed significantly to soil respiration. 

Davidson, E.A., Savage, K.E., Trumbore, S.E., Borken, W., 2006c. Vertical partitioning of CO2 production within a temperate forest soil. Glob. Change Biol. 12 (6), 944–956.


dsihi
Comment on Text
Also can site Savage et al., 2009; Abramoff et al., 2017. 

Savage, K., Davidson, E.A., Richardson, A.D., Hollinger, D.Y., 2009. Three scales of temporal resolution from automated soil respiration measurements. Agric. Forest Meteorol. 149 (11), 2012–2021.

Abramoff, R.Z., Davidson, E.A., Finzi, A.C., 2017. A parsimonious modular approach to building a mechanistic belowground carbon and nitrogen model. J. Geophys. Res.:Biogeosci. 122 (9), JG003796.



dsihi
Comment on Text
This can affect the soil heterotrophic respiration, either by reducing the substrate availability (Davidson et al., 2012; Sihi et al., 2018) or by increasing microbial dormancy (Wang et al., 2015).

Davidson, E.A., Samanta, S., Caramori, S.S., Savage, K., 2012. The dual arrhenius and michaelis–menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob. Change Biol. 18 (1), 371–384.

Sihi, D., Davidson, E.A., Chen, M., Savage, K.E., Richardson, A.D., Keenan, T.F. and Hollinger, D.Y., 2018. Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA. Agricultural and Forest Meteorology, 252, pp.155-166.

Wang, G., Jagadamma, S., Mayes, M. A., Schadt, C. W., Steinweg, J. M., Gu, L. & Post, W. M. Microbial dormancy improves development and experimental validation of ecosystem model. The ISME journal, 9, 226, doi:10.1038/ismej.2014.120 (2015).




13 

 

study. Soil moisture improved marginally our models of soil respiration with a better fit of the 265 

models particularly in the dry summer 2013. No significant correlation was found between 266 

soil respiration and soil moisture in 2013 (Figure 3F). Similar findings had been reported for 267 

Moso bamboo forest in Zhejiang province (Song et al., 2013). However, soil moisture had a 268 

negative statistically significant (P < 0.001, R= -0.796, Rs = -19.101*SWC+10.368) 269 

correlation with soil respiration in summer while correlation in the other seasons was positive. 270 

However, previous observation indicated a pronounced correlation between Rs and SWC in 271 

subtropical forests (Sheng et al., 2010; Liu et al., 2011). The negative correlation of soil 272 

respiration and soil moisture in our study was probably caused by a spurious correlation (R= -273 

0.939, P < 0.001) of soil temperature and soil moisture during summer. When we fitted non-274 

linear models to soil respiration using temperature and soil moisture we got only a small 275 

increase in the R2 when soil moisture was included into the model. This indicates that soil 276 

moisture was, even in the dry year of 2013, not an important limitation of soil respiration.  277 

The models of soil respiration suggest that the temperature sensitivity of soil respiration 278 

declines when soil moisture is decreasing (Almagro et al., 2009; Jassal et al., 2008; Wang et 279 

al., 2006). Also, Q10 varied over the different seasons (Table 1) and we think that this 280 

variation is related to differences in soil moisture. This is supported plots of the relationship 281 

of soil respiration on temperature within a day. Due to smaller amplitude of soil temperature 282 

in deeper layers (Pavelka et al., 2007) tend Q10 values estimated from deeper soil layers 283 

tended to be larger than those of shallower layers. This can partly explain the discrepancy 284 

between Ta, Ts, and Ts5. Q10 was about 2.80 in our study, within range of 1.33~5.53 estimated 285 

for forests in China(Chen et al., 2008), lower than 4.09 in Moso bamboo forest of central 286 
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Taiwan (Hsieh et al., 2016), but higher than median of 2.0~2.4 (Hashimoto, 2005). Previous 287 

observation pointed out that annual Q10 value was not only an indicator of the response to soil 288 

temperature, but also a comprehensive response to variations of other factors (i.e. SWC, root 289 

biomass, root growth, amplitude of Rs, and other seasonal processes, Yuste et al., 2004). 290 

Another driver of soil respiration is the growth pattern of Moso bamboo which shows a large 291 

variation in below ground activities. In the spring, carbon is allocated to the production of 292 

new bamboo shoots. After bamboo has completed its main growth period in summer and new 293 

leaves are fully-expanded, it accumulates nutrient substance and allocates its main growth to 294 

the rhizome. Then in autumn Moso bamboo starts to hatch bamboo shoots for the next year 295 

(Chen et al., 2016). In this growing phase, soil moisture was a key factor for soil respiration. 296 

Subsequently, the stand got into overwintering stage. Soil moisture became less important in 297 

this period. Consequently, the importance of soil moisture for soil respiration varies among 298 

seasons and was more important during the time of active growth of Moso bamboo. However, 299 

soil temperature rather than soil moisture remained the most important drivers of soil 300 

respiration (Janssens & Pilegaard, 2003). 301 

Another explanation could be that the differences in soil respiration and Q10 values are driven 302 

by the annual pattern of gross primary production which drives substrate supply to the root 303 

and rhizosphere (e.g. Bahn et al., 2008). Currently several authors have reported productivity 304 

should be considered to improve the prediction of soil respiration (Bahn et al., 2008; Hibbard 305 

et al., 2005; Zhang et al., 2016). Numerous studies have shown close relations between soil 306 

respiration and canopy photosynthesis at different timescales. Högberg et al. (2008) reported 307 

that soil respiration was largely driven by recent primary production of the vegetation. 308 
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Monthly soil respiration was significantly related to LAI and GEP in our study (Figure 5A 309 

and 5C). The finding agreed with the view of a short-term coupling of photosynthesis and soil 310 

respiration. Likewise, Yuste et al. (2004) found that seasonal Rs was positively related to LAI. 311 

Bahn et al (2008) suggested Rs was closely related to LAI across grassland sites. In our study, 312 

LAI reflected the productivity of vegetation. There was similar monthly variation pattern of 313 

LAI and Ta in our study, which in turn increased the difficulty to detect relationships of Rs in 314 

relation to biological variable. Soil respiration is a complex biological process, composed of 315 

several processes from both autotrophic and heterotrophic organisms. Besides soil 316 

temperature and soil water content, it is known that soil respiration is partly explained by 317 

forest type, stand age and altitude in subtropical forests (Wang et al., 2011). Additionally, 318 

other variables such as management (i.e. fertilization, thinning and harvesting activities, Gao 319 

et al., 2014; Liu et al., 2011), litter, soil microbial (Linn & Doran, 1984) and physical 320 

properties, root biomass and extreme weather (e.g. warming, precipitation events, short-term 321 

drought events), all have indirect and direct effects on soil respiration. However, how these 322 

influence autotrophic and heterotrophic processes is not well understood and should be a 323 

subject of further research. 324 

Conclusions 325 

Soil respiration in the forest exhibited similar daily and seasonal dynamic patterns, with its 326 

highest values in summer and lowest values in winter, annual mean soil respiration was 44.1 327 

tCO2·ha-1·a-1. Soil respiration indicated positive significantly correlation with soil temperature 328 

(P < 0.01), it can explain 69.7% of temporal variation for Rs. No obvious related with soil 329 

moisture on daily scale, but significant correlation with soil moisture during seasons except 330 
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winter, implying soil moisture played a crucial role in different growth phase. The model 331 

compound by soil temperature and soil moisture, could explain 93.6% of seasonal variation 332 

for Rs. The correspondent relationship between Rs and different soil temperature exhibited an 333 

exhibited clear hysteresis. Soil respiration was significantly and positively (P < 0.01) in 334 

relation to gross ecosystem productivity and LAI during our study, illustrating the 335 

significance of biotic factors as crucial driving factors of soil respiration, and importance of 336 

future research revealing correspondence mechanism of canopy photosynthesis and soil CO2 337 

flux. 338 
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Figure 1

Monthly variation of air temperature, precipitation (P, mm) at the study site in 2013 and

long-term average.

The legend was shown as in the figure.
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Figure 2

Seasonal variation of abiotic and biotic factors of Moso bamboo forest in 2013.

(A) daily temperature (℃) of air (Ta) and soil at 5 cm(Ts5),50cm(Ts50) depth, (B) Daily

rainfall amount (mm) and soil water content (m3·m-3) at 5 cm depth (SWC5) and 50 cm

depth (SWC50), (C) daily carbon fluxes (NEE, RE, GEP, gC·m-2), (D) mean monthly LAI (m2·m-

2) during the study period Mean ± SD (n=3).
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Figure 3

Diurnal, seasonal dynamic of soil respiration and the relationship between related

factors and soil respiration in Moso bamboo forest.

(A, error bars denote standard error of means, n=12). Seasonal variation of soil respiration

(b, error bars denote standard deviation of means, n=12). Seasonal relationship between soil

respiration and different temperature (C and D, Ts, black circle, Ts5, white diamond, Ts50,

black diamond, and Ta, grey triangular, n=144), and (E) their seasonal variation; (F)

relationship between soil water content and soil respiration (n=144) error bars indicate

standard deviation of the means (n=12).
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Figure 4

Mean diurnal changes of Rs in response to Ts and Ts5 in different months of Moso bamboo

forest.

Rs denotes soil respiration, Ts denotes soil temperature measured by Li-8150, Ts5 denotes soil

temperature at 5 cm depth measured by eddy covariance technique. one month of the

season was chosen.
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Figure 5

Relationship between monthly soil respiration and leaf area index ,gross ecosystem

productivity.
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Table 1(on next page)

Relationships between mean diurnal soil respiration (Rs) and soil temperature measured

by Li-8150 (Ts) in 2013.

Rs is soil respiration, Ts is soil temperature measured by Li-8150.
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1

2 Table. 1. Relationships between mean diurnal soil respiration (Rs) and soil temperature 

3 measured by Li-8150 (Ts).

Time Equation R2 Q10 F P

Dec.~Feb. Rs=0.279exp(0.241*Ts) 0.684 11.08 73.74 0.000

Mar.~May Rs=0.629exp(0.095*Ts) 0.819 2.59 154.39 0.000

Jun.~Aug. Rs=1.427exp(0.058*Ts) 0.627 1.79 57.08 0.000

Sep.~Nov. Rs=0.594exp(0.107*Ts) 0.983 2.92 1976.33 0.000

4

5
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Table 2(on next page)

Correlation coefficients of monthly mean soil CO2 fluxes and its affecting factors in

2013.

Ts (soil temperature measured by Li-8150 probe), Rh (air relative humidity measured by flux

tower at 1m height), GEP (gross ecosystem productivity), other variables shown see Figure 2.

Statistical significance with: ** p-values<0.01, * p-values<0.05, besides, due to no significant

correlation between soil moisture and other factors, it was not shown in Table 1 (expect GEP

in July and August).
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1 Table 2. Correlation coefficients of monthly mean soil CO2 fluxes and its affecting factors in 2013.

2

Environmental variablesFactors Rs

Ts Ts5 Ts50 Ta Rh SWC5 SWC50

GEP

Ts

Ts5

Ts50

Ta

Rh

SWC5

SWC50

GEP

LAI

0.988**

0.968**

0.966**

0.966**

0.21

-0.229

0.244

0.841**

0.937**

0.99**

0.95**

0.99**

0.21

-0.135

0.306

0.868**

0.89**

0.97**

0.99**

0.152

-0.153

0.296

0.863**

0.91**

0.946**

0.133

-0.348

0.142

0.752*

0.914**

0.081

0.337

0.334

0.894**

0.901**

0.438

0.688*

0.198

0.15

0.813*

0.148

-0.275

0.555

0.162 0.761*

3 Note: Ts (soil temperature measured by Li-8150 probe), Rh (air relative humidity measured by flux tower at 1m height), GEP (gross 

4 ecosystem productivity), other variables shown see Fig. 2. Statistical significance with: ** p-values＜0.01, * p-values＜0.05, besides, 

5 due to no significant correlation between soil moisture and other factors, it was not shown in Table 1 (expect GEP in July and August).

6
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Table 3(on next page)

Relationship between Rs, Ts and SWC. Coefficients of determination (R2) and root mean

square error (RMSE) were given

The abbreviation was shown in Figure. 1. P value of every model was 0.000.
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1 Table 3. Relationship between Rs, Ts and SWC. Coefficients of determination (R2) and root mean square error (RMSE) were given.

Model R2 a b c d RMSE

Rs=exp(a+b*Ts) *SWC

Rs=(c*SWC+d) *a*exp(b*Ts)

Rs=exp(a+b*Ts+c*SWC+d*Ts*SWC)

0.895

0.918

0.919

1.07

0.64

0.22

0.09

0.08

0.05

-

1.13

-1.97

-

0.97

0.14

0.663

0.591

0.588

Rs=exp(a+b*Ts+c*SWC+d*SWC2 )

Rs=a+b*Ts+c*SWC+d*Ts*SWC

Rs=a+b*exp(c*Ts) +d*Ts*SWC

0.922

0.929

0.936

1.88

-3.74

-4.73

0.08

0.47

4.76

-18

13.45

0.03

39

-0.9

-0.04

0.578

0.542

0.515

2 Note: the abbreviation was shown in Figure. 1. P value of every model was 0.000.
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