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Protein backbones occupy diverse conformations, but compact metrics to describe such

conformations and transitions between them have been missing. This report re-introduces

the Ramachandran number (\(\mathcal{R}\)) as a residue-level structural metric that could

simply the life of anyone contending with large numbers of protein backbone

conformations (e.g., ensembles from NMR and trajectories from simulations). Previously,

the Ramachandran number (\(\mathcal{R}\)) was introduced using a complicated closed-

form, which made the Ramachandran number difficult to implement. This report discusses

a much simpler closed form of \(\mathcal{R}\) that makes it much easier to calculate,

thereby making it easy to implement. Additionally, this report discusses how

\(\mathcal{R}\) dramatically reduces the dimensionality of the protein backbone, thereby

making it ideal for simultaneously interrogating large number of protein structures. For

example, two hundred distinct conformations can easily be described in one graphic using

\(\mathcal{R}\) (rather than two hundred distinct Ramachandran plots). Finally, a new

Python-based backbone analysis tool -- PlotMAP -- is introduced that reiterates how

\(\mathcal{R}\) can be used as a simple and succinct descriptor of protein backbones and

their dynamics.
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ABSTRACT7

Protein backbones occupy diverse conformations, but compact metrics to describe such conformations

and transitions between them have been missing. This report re-introduces the Ramachandran number

(R) as a residue-level structural metric that could simply the life of anyone contending with large numbers

of protein backbone conformations (e.g., ensembles from NMR and trajectories from simulations).

Previously, the Ramachandran number (R) was introduced using a complicated closed-form, which made

the Ramachandran number difficult to implement. This report discusses a much simpler closed form of

R that makes it much easier to calculate, thereby making it easy to implement. Additionally, this report

discusses how R dramatically reduces the dimensionality of the protein backbone, thereby making it

ideal for simultaneously interrogating large number of protein structures. For example, two hundred

distinct conformations can easily be described in one graphic using R (rather than two hundred distinct

Ramachandran plots). Finally, a new Python-based backbone analysis tool – BACKMAP– is introduced

that reiterates how R can be used as a simple and succinct descriptor of protein backbones and their

dynamics.

8

9

10

11

12

13

14

15

16

17

18

19

20

INTRODUCTION21

Proteins are a class of biomolecules unparalleled in their functionality (Berg et al., 2010). A natural22

protein may be thought of as a linear chain of amino acids, each normally sourced from a repertoire of 2023

naturally occurring amino acids. Proteins are important partially because of the structures that they access:24

the conformations (conformational ensemble) that a protein assumes determines the functions available25

to that protein. However, all proteins are dynamic: even stable proteins undergo long-range motions26

in its equilibrium state; i.e., they have substantial diversity in their conformational ensemble (Mannige,27

2014). Additionally, a number of proteins undergo conformational transitions, without which they may28

not properly function. Finally, some proteins – intrinsically disordered proteins – display massive disorder29

whose conformations dramatically change over time (Uversky, 2003; Fink, 2005; Midic et al., 2009;30

Espinoza-Fonseca, 2009; Uversky and Dunker, 2010; Tompa, 2011; Sibille and Bernado, 2012; Kosol31

et al., 2013; Dunker et al., 2013; Geist et al., 2013; Baruah et al., 2015), and whose characteristic32

structures are still not well-understood (Beck et al., 2008).33
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Figure 1. Backbone conformational degrees of freedom dominantly depend on the dihedral angles φ
and ψ (green), and to a smaller degree depend on the third dihedral angle (ω ; red) as well as bond lengths

and angles (unmarked).
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Figure 2. While the Ramachandran plot is useful for getting a qualitative sense of peptide backbone structure (a, c), it is

not a convenient representation for exploring peptide backbone dynamics (c). Secondary structure keys used here and throughout the

document: ‘α’ – α-helix, ‘310’ – 310-helix, ‘β ’ – β-sheet/extension, ‘ppII’ – polyproline II helix.

Large-scale changes in a protein occur due to changes in protein backbone conformations. Fig. 1 is a34

cartoon representation of a peptide/protein backbone, with the backbone bonds themselves represented35

by darkly shaded bonds. Ramachandran et al. (1963) had recognized that the backbone conformational36

degrees of freedom available to an amino acid (residue) i is almost completely described by only two37

dihedral angles: φi and ψi (Fig. 1, green arrows). Today, protein structures described in context of the38

two-dimensional (φ ,ψ)-space are called Ramachandran plots.39

The Ramachandran plot is recognized as a powerful tool for two reasons: 1) it serves as a map40

for structural ‘correctness’ (Laskowski et al., 1993; Hooft et al., 1997; Laskowski, 2003), since many41

regions within the Ramachandran plot space are energetically not permitted (Momen et al., 2017); and42

2) it provides a qualitative snapshot of the structure of a protein (Berg et al., 2010; Alberts et al., 2002;43

Subramanian, 2001). For example, particular regions within the Ramachandran plot indicate the presence44

of particular secondary locally-ordered structures such as the α-helix and β-sheet (see Fig. 2a).45

While the Ramachandran plot has been useful as a measure of protein backbone conformation, it is46

not popularly used to assess structural dynamism and transitions (unless specific knowledge exists about47

whether a particular residue is believed to undergo a particular structural transition). This is because48

of the two-dimensionality of the plot: describing the behavior of every residue involves tracking its49

position in two-dimensional (φ ,ψ) space. For example, a naive description of positions of a peptide in a50

Ramachandran plot (Fig. 2b) needs more annotations for a per-residue analysis of the peptide backbone’s51

structure. Given enough residues, it would be impractical to track the position of each residue within a52

plot. This is compounded with time, as each point in (b) becomes a curve (c), further confounding the53

situation. The possibility of picking out previously unseen conformational transitions and dynamism54

becomes a logistical impracticality. As indicated above, this impracticality arises primarily from the fact55

that the Ramachandran plot is a two-dimensional map.56

Consequently, there has been no single compact descriptor of protein structure. This impedes the57

naïve or hypothesis-free exploration of new trajectories/ensembles. For example, tracking changes in58

protein trajectory is either overly detailed or overly holistic: an example of an overly detailed study is the59

tracking on exactly one or a few atoms over time (this already poses a problem, since we would need60

to know exactly which atoms are expected to partake in a transition); an example of a holistic metric is61

the radius of gyration (this also poses a problem, since we will never know which residues contribute62

to a change in radius of gyration without additional interrogation). With our understanding of protein63

dynamics undergoing a new rennissance – especially due to intrinsically disordered proteins and allostery64

– having hypothesis-agnostic yet detailed (residue-level) metrics of protein structure has become even65

more relevant.66

It has recently been shown that the two Ramachandran backbone parameters (φ ,ψ) may be conve-67

niently combined into a single number – the Ramachandran number [R(φ ,ψ) or simply R] – with little68

2/16

PeerJ reviewing PDF | (2018:01:22993:0:1:NEW 25 Jul 2018)

Manuscript to be reviewed



180 0 180
180

0

180

310

ppII

(a)

0.0 0.2 0.4 0.6 0.8 1.0

310 ppII
(b)

Figure 3. The distribution of dominant regular secondary sctuctures are shown in [φ ,ψ]-space (a) and in R-space (b).

Ramachandran plots (a) and Ramachandran ‘lines’ (b) equally resolve the secondary structure space, thereby making R a

compact yet faithful representation of backbone structure (Mannige et al., 2016).

loss of information (Fig. 3; Mannige et al. (2016)). In a previous report, detailed discussions were provided69

regarding the reasons behind and derivation of R (Mannige et al., 2016). This report provides a simpler70

version of the equation previously published (Mannige et al., 2016), and further discusses how R may be71

used to provide information about protein ensembles and trajectories. Finally, this report introduces a72

software package – BACKMAP– that can be used by to produce MAPs that describe the behavior of a73

protein backbone within user-inputted conformations, structural ensembles and trajectories. This package74

is presently available on GitHub (https://github.com/ranjanmannige/BackMAP).75

INTRODUCING THE SIMPLIFIED RAMACHANDRAN NUMBER (R)76

The Ramachandran number is both an idea and an equation. Conceptually, the Ramachandran number (R)77

is any closed form that collapses the dihedral angles φ and ψ into one structurally meaningful number78

(Mannige et al., 2016). Mannige et al. (2016) presented a version of the Ramachandran number (shown79

in the appendix as Eqn. 7) that was complicated in closed form, threby reducing its utility. Here, a simpler80

and most accurate version of the Ramachandran number is introduced. Section shows how this simplified81

form was derived from the original closed form (Eqns. 7).82

Given arbitrary limits of φ ∈ [φmin,φmax) and ψ ∈ [ψmin,ψmax), where the minimum and maximum
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Figure 4. The Ramachandran number R displays smooth relationships with respect to radius of gyration (Rg; a),

end-to-end distance (Re; b) and chirality (χ; c), as calculated within Mannige (2017). Light blue lines are average trends,

dark blue horizontal lines are error bars. Average positions of dominant secondary structures are shown to the right. These

trends explain why R is a useful and compact structural measure. Structural measures Rg and Re were obtained by

computationally generating poly-glycine peptides of length 10 for all possible φ and ψ ∈ [−180,−175, . . . ,175,180]. This

was done using the Python library PeptideBuilder (Tien et al., 2013). Values for Rg and Re were obtained for each peptide

and binned with respect to its R(φ ,ψ) (each bin represents a region in R space that is 0.01 R in width). Given that actual

values for Rg and Re mean little (since one rarely deals with polyglycines of length 10), actual values are omitted.

values differ by 360◦, the most general and accurate equation for the Ramachandran number is

R(φ ,ψ)≡ φ +ψ − (φmin +ψmin)

(φmax +ψmax)− (φmin +ψmin)
. (1)

For consistency, we maintain throughout this paper that φmin = ψmin =−180◦ or −π radians, which

makes

R(φ ,ψ) =
φ +ψ +2π

4π
. (2)

As evident in Fig. 3, the distributions within the Ramachandran plot are faithfully reflected in corre-83

sponding distributions within Ramachandran number space. This paper shows how the Ramachandran84

number is both compact enough and informative enough to generate immediately useful graphs (multi-85

angle pictures or MAPs) of a dynamic protein backbone.86

REASON TO USE THE RAMACHANDRAN NUMBER87

Ramachandran numbers are structurally meaningful88

In addition to resolving positions of secondary structures (Fig. 3), R relate well to structural measures89

such as radius of gyration (Rg), end-to-end distance (Re) and chirality (χ). These relationships are shown90

in Fig. 4.91

Ramachandran numbers are more compact than one might realize92

An important aspect of the Ramachandran number (R) lies in its compactness compared to the traditional93

Ramachandran pair (φ ,ψ). Say we have an N-residue peptide. Then, switching from (φ ,ψ) to R appears94

to only reduce the number of variables from 2N to N, and hense by half. However, (φ ,ψ) values are95

coupled, i.e., for any N-length peptide, any ordering of [φ1,φ2, . . . ,φN ,ψ1,ψ2, . . . ,ψN ] can not describe96
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Figure 5. Two types of R-codes. Digesting protein structures (a) using R numbers either as histograms

(b) or per-residue codes (c) allow for compact representations of salient structural features. For example,

a single glance at the histograms indicate that protein 1mba is likely all α-helical, while 2acy is likely a

mix of α-helices and β-sheets. Additionally, residue-specific codes (c) not only indicate secondary

structure content, but also exact seconday structure stretches (compare to d), which gives a more

complete picture of how the protein is linearly arranged.

the structure, it is only pairs – [(φ1,ψ1),(φ2,ψ2), . . . ,(φN ,ψN)] – that can. Therefore, we must think of97

switching from (φ ,ψ)-space to R-space as a switch in structure space per residue from N two-tuples98

(φi,ψi) that reside in φ ×ψ space to N single-dimensional numbers (Ri).99

The value of this conversion is that the structure of a protein can be described in various one-100

dimensional arrays (per-structure “Ramachandran codes” or “R-codes”), which, when arranged vertical-101

ly/columnarly, describe easy to digest/interpret structural patterns. See, e.g., Fig. 5.102

Ramachandran codes are stackable103

In addition to assuming a small form factor, R-codes may then be stacked side-by-side for visual and104

computational analysis. There lies its true power.105

For example, the one-R-to-one-residue mapping means that the entire residue-by-residue structure106

of a protein can be shown using a string of Ris (which would show regions of secondary structure and107

disorder, for starters). Additionally, an entire protein’s backbone makeup can be shown as a histogram in108

R-space (which may reveal a protein’s topology). The power of this format lies not only in the capacity109

to distill complex structure into compact spaces, but in its capacity to display many complex structures in110

this format, side-by-side (stacking).111

Peptoid nanosheets (Mannige et al., 2015) will be used here as an example of how multiple structures,112

in the form of R-codes, may be stacked to provide immediately useful pictograms. Peptoid nanosheets113

are a recently discovered peptide-mimic that, in one molecular dynamics simulation (Mannige et al.,114

2015), were shown to display a novel secondary structure. In the reported model (Mannige et al., 2015),115

each peptoid within the nanosheet displays backbone conformations that alternate in chirality, causing the116

backbone to look like a meandering snake that nonetheless maintains an overall linear direction. This117

secondary structure was discovered by first setting up a nanosheet where all peptoid backbones were118

restrained to be fully extended (Fig. 6a, left), after which the restraints were energetically softened (a,119

middle) and completely reseased (a, right). As evident in Fig. 6b and Fig. 6c, the two types of R-code120

stacks display salient information at first glance: 1) Fig. 6b shows that the extended backbone first121

undergoes some rearrangement with softer restraints, and then becomes much more binary in arrangement122

as we look down the backbone (excepting the low-order region in the middle, unshown in Fig. 6a); and123
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Figure 6. Stacked R-codes provide useful information at a glance.

2) Fig. 6c shows that lifting restraints on the backbone causes a dramatic change in backbone topology,124

namely a birth of a bimodal distribution evident in the two parallel horizontal bands.125

By utilizing R, maps such as those in Fig. 6 provide information about every φ and ψ within the126

backbone. As such, these maps are dubbed MAPs, for Multi Angle Pictures. A Python package called127

BACKMAP created Fig. 6a and b, which is provided as a GitHub repository at https://github.128

com/ranjanmannige/BackMAP. BACKMAP takes in a PDB structure file containing a single129

structure, or multiple structures separated by the code ‘MODEL’.130

Case study: picking out subtle differences from high volume of data131

This section expands on the notion that R-numbers – due to their compactness/stackability – can be used132

to pick out backbone structural trends that would be hard to decipher using any other metric. For example,133

it is well known that prolines (P) display unusual backbone behavior: in particular, proline backbones134

occupy structures that are close to but distinct from α-helical regions. Due to the two-dimensionality135

of Ramachandran plots (Fig. 7a), such distinctions are hard to visually pick out from Ramachandran136

plots. However, stacking per-amino-acid R-codes side by side make such differences patent (Fig. 7b; see137

arrow).138

It is also known that amino acids preceeding prolines display unusual shift in backbone twist/chirality.139

For example, Fig. 8 shows that amino acids appearing before prolines and glycines behave differently than140

they would otherwise (discussed further in the figure caption). While these results have been discussed141

previously (Gunasekaran et al., 1998; Ho and Brasseur, 2005), they were reported more than 30 years142

after the first structures were published; they would have been relatively easy to find if R-codes were to143

be used regularly.144

The relationships in Figs. 7 and 8 show how subtle changes in structure can be easily picked out when145

structures are stacked side-by-side in the form of R-codes. Such subtle changes are often witnessed when146
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Figure 7. Ramachandran lines are stackable – Part I. Panel (a) shows the per-amino acid backbone behavior of an

average protein found in the protein databank (PDB). While these plots are useful, it is difficult to compare such plots. For

example, it is hard to pick out the change in the α-helial region of the proline plot (P). However, when we convert

Ramachandran plots to Ramachanran lines [by converting (φi,ψi)→Ri], we are able to conveniently “stack”

Ramachandran lines calculated for each residue. Then, even visually, it is obvious that proline does not occupy the

canonical α-helix region, which is not evident to an untrained eye in (a).
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Figure 8. Ramachandran lines are stackable – Part II. Similar to Fig. 7b, Panel (a) represents the behavior of an amino

acid ‘X’ situated before a leucine (XL; assuming that we are reading a sequence from the N terminal to the C terminal).

Panel (b) similarly represents the behavior of specific amino acids situated before a proline (XP). While residues preceeding

a leucine behave similarly to their average behavior (Fig. 7a), most residues preceeding prolines appear to be enriched in

structures that change ‘direction’ or backbone chirality (this is evident by many amino acids switching from R < 0.5 to R
> 0.5). Panel (c) shows the behavior of individual amino acids when situated before each of the 20 amino acids. This graph

shows a major benefit of side-by-side Ramachandran line “stacking”: general trends become much more obvious. For

example, it is evident that glycines and prolines dramatically modify the structure of an amino acid preceeding it (compared

to average behavior of amino acids in Fig. 7b). This trend is not as strong when considering amino acids that follow glycines

or prolines (c). Such trends, while previously discovered [e.g., Gunasekaran et al. (1998); Ho and Brasseur (2005)], would

not be accessible when naïvely considering Ramachandran plots because one would require 400 (20×20) distinct

Ramachandran plots to compare.
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protein backbones transition from one state to another.147

USING THE BACKMAP PYTHON MODULE148

Installation149

BACKMAP may either be installed locally by downloading the GitHub repository, or installed directly150

by running the following line in the command prompt (assuming that pip exists): > pip install151

backmap152

Usage153

The module can either be imported and used within existing scripts, or used as a standalone package using154

the command ‘python -m backmap’. First the in-script usage will be discussed.155

In-script usage I: first simple test156

The simplest test would be to generate Ramachandran numbers from (φ ,ψ) pairs:157

158

1# I mp or t module159

2import backmap160

3# Conve r t ( phi , p s i ) t o R161

4print backmap . R( p h i =0 , p h i =0) # Expec ted o u t p u t : 0 . 5162

5print backmap . R( −180 , −180) # Expec ted o u t p u t : 0 . 0163

6print backmap . R( 180 , 180) # Expec ted o u t p u t : 1 . 0 ( e q u i v a l e n t i n meaning t o 0 )164
165

In-script usage II: basic usage for creating Multi-Angle Pictures (MAPs)166

The following code shows how Multi-Angle Pictures (MAPs) of protein backbones can be generated:167

1. Select and read a protein PDB structure168

Each trajectory frame must be a set of legitimate protein databank "ATOM" records separated by169

"MODEL" keywords (distinct models show up as distinct frames on the x-axis or abscissa).170

171

1import backmap172

2pdbfn = ' . / pdbs / n a n o s h e e t _ b i r t h _ U 7 . pdb ' # S e t pdb name173

3d a t a = backmap . read_pdb ( pdbfn ) # READ PDB i n t h e form of a m a t r i x wi th columns174
175

Here, ‘data’ is a 2d array with four columns [‘model’, ‘chain’, ‘resid’,‘R’]. The first row of176

‘data’ is the header (i.e., the name of the column, e.g., ‘model’), with values that follow.177

2. Select color scheme (color map)178

In addition to custom colormaps listed in the next section, one can also use standardly available179

colormaps at matplotlib.org (e.g., ‘Reds’ or ‘Reds_r’).180

181

4# s e t t i n g t h e name of t h e co lormap182

5cmap = " S e c o n d a r y S t r u c t u r e "183
184

3. Draw per-chain MAPs185

186

6# Grouping by c h a i n187

7g r o u p e d _ d a t a = backmap . group_by ( da t a , group_by= ' c h a i n ' ,188

8c o l u m n s _ t o _ r e t u r n =[ ' model ' , ' r e s i d ' , 'R ' ] )189

9for c h a i n in g r o u p e d _ d a t a . keys ( ) : # Going t h r o u g h each c h a i n190

10# G e t t i n g t h e X, Y, Z v a l u e s f o r each e n t r y191

11models , r e s i d u e s , Rs = g r o u p e d _ d a t a [ c h a i n ]192

12# F i n a l l y , c r e a t i n g ( b u t n o t showing ) t h e g raph193

13backmap . draw_xyz (X = models , Y = r e s i d u e s , Z = Rs194

14, x l a b e l = ' Frame # ' , y l a b e l =" Res idue # " , z l a b e l = ' $ \ m a t h c a l {R}$ '195

15, cmap = cmap , t i t l e = " Chain : ' "+ c h a i n +" ' "196

16, vmin =0 , vmax =1)197

17# Now, we d i s p l a y t h e graph :198

18p l t . show ( ) # . . . one can a l s o use p l t . s a v e f i g ( ) t o sa ve t o f i l e199
200
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Running the module as a standalone script would produce all these graphs automatically. ‘plt.show()’201

would result in the following image being rendered:202
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203

Additionally, by changing how one assigns values to ‘X’ and ‘Y’, one can easily construct and draw204

other types of graphs such as time-resolved histograms, root mean squared fluctuations, root mean205

squared deviation, etc.206

In-script usage III: Creating custom graphs207

Other types of grpahs can be easily created by modifying part three of the code above. For example, the208

following code creates histograms of R, one for each model (starting from line 9 above).209

210

9for c h a i n in g r o u p e d _ d a t a . keys ( ) :211

10models , r e s i d u e s , Rs = g r o u p e d _ d a t a [ c h a i n ]212

11213

12' Begin custom code '214

13X = [ ] ; Y= [ ] ; Z = [ ] ; # Wi l l s e t X=model , Y=R , Z=P (R)215

14# Bund l ing t h e t h r e e l i s t s i n t o one 2d a r r a y216

15new_data = np . a r r a y (zip ( models , r e s i d u e s , Rs ) )217

16# G e t t i n g a l l R v a l u e s , model by model218

17for m in sorted (set ( new_data [ : , 0 ] ) ) : # column 0 i s t h e model column219

18# G e t t i n g a l l Rs f o r t h a t model #220

19c u r r e n t _ r s = new_data [ np . where ( new_data [ : , 0 ] = =m) ] [ : , 2 ] # column 2 c o n t a i n s R221

20# G e t t i n g t h e h i s t o g r a m222

21a , b = np . h i s t o g r a m ( c u r r e n t _ r s , b i n s =np . a r a n g e ( 0 , 1 . 0 1 , 0 . 0 1 ) )223

22max_count = float ( np . max ( a ) )224

23for i in range (len ( a ) ) :225

24X. append (m) ; Y. append ( ( b [ i ]+ b [ i + 1 ] ) / 2 . 0 ) ; Z . append ( a [ i ] / float ( np . sum ( a ) ) ) ;226

25' End custom code '227

26228

27# F i n a l l y , c r e a t i n g ( b u t n o t showing ) t h e g raph229

28draw_xyz (X = X , Y = Y , Z = Z230

29, x l a b e l = ' Frame # ' , y l a b e l =" $ \ m a t h c a l {R}$ " , z l a b e l =" $P ' ( \ m a t h c a l {R} ) $ "231

30, cmap = ' Greys ' , y l im = [ 0 , 1 ] )232

31p l t . y t i c k s ( np . a r a n g e ( 0 , 1 . 0 0 0 0 1 , 0 . 2 ) )233

32# Now, we d i s p l a y t h e graph :234

33p l t . show ( ) # . . . one can a l s o use p l t . s a v e f i g ( ) t o save t o f i l e235
236

The code above results in the following graph:237
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In-script usage IV: Available color schemes (CMAPs)239

Aside from the general color maps (cmaps) that exist in matplotlib (e.g., ‘Greys’, ‘Reds’, or, god forbid,240

‘jet’), BACKMAP provides two new colormaps: ‘Chirality’ (key: +-twists – red; −ve twists: blue),241

and ‘SecondaryStructure’ (key: potential helices – red; sheets – blue; ppII helices – cyan). right242

twisting backbones are shown in red; left twisting backbones are shown in blue). Fig. 9 shows how243
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a single protein ensemble may be described using these schematics. As illustrated in Fig. 9b, cmaps244

available within the standard matplotlib package do not distinguish between major secondary structures245

well, while those provided by BACKMAP do. In case it is known that the protein backbone accesses246

non-traditional regions of the Ramachandran plot, a four-color schematic will be needed (see below for247

more discussions).248
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Figure 9. A protein ensemble (a) along with some MAPs colored with different themes (b-d). Panels (c)

and (d) are provided by the BACKMAP module. In Panel (c), β-sheets are shown in blue and all helices

are shown in red. In Panel (d), right-handed and left-handed backbone twists are shown as red and blue

respectively.

Stand Alone Usage249

BACKMAP can be used as a stand along package by running ‘> python -m backmap -pdb <pdb_dir_or_file>’.250

The sectons below describes the expected outputs and how they may be interpreted.251

Stand Alone Example I: A Stable Protein252

Panels (b) through (f) of Fig. 10 below were created by running ‘> python -m backmap ./tests/pdbs/1xqq.pdb’253

(Panel (b) was created using VMD). These graphs indicate that protein 1xqq describes a conformationally254

stable protein, since each residue fluctuates little in color (structure) over ‘time’ (c,d; here and below, it is255

assumed that discrete models represent distinct states of the protein over ‘time’), show little change in the256

R histogram over time (b) and show few enduring fluctuations in RMSD (e) and RMSF (f).257

In particular, each column in Panel (b) describes the histogram in Ramachandran number (R) space258

for a single model/timeframe. These histograms show the presence of both α-helices (at R ≈ 0.34)259

and β-sheets (at R≈ 0.52). Additionally, Panels (c) and (d) describe per-residue conformational plots260

(colored by two different metrics or CMAPs), which show that most of the protein backbone remains261

relatively stable over time (e.g., few fluctuations in state or ‘color’ are evident over frame #). Finally,262

Panel (e) describes the extent towards which a single residue’s state has deviated from the first frame,263

and Panel (f) describes the extent towards which a single residue’s state has deviated from its state in the264

previous frame. All these graphs, show that this protein is relatively conformationally stable.265

Stand Alone Example II: An Intrinsically Disrodered Protein266

Fig. 11 is identical to Fig. 10, except that the panels pertain to an intrinsically disordered protein 2fft267

whose structural ensemble describes dramatically distinct conformations.268

As compared to the conformationally stable protein above, protein 2fft is much more flexible. Panel269

(b) shows that the states accessed per model are diverse and dramatically fluctuate over the entire range of270

R (this is especially true when compared to a stable protein, see Fig. 10b).271
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a. c. e.

b. d. f.

Figure 10. Protein 1xqq describes a stable protein.
a. c. e.

b. d. f.

Figure 11. Protein 2fft describes an intrinsically disordered protein, with one stable helix in red.

The diverse states occupied by each residue (Panels (c) and (d)) confirm the conformational variation272

displayed by most of the backbone (Panels (e) and (f) similarly show how most of the residues fluctuate273

dramatically).274

Yet, interestingly, Panels (c) through (f) also show an unsusually stable region – residues 15 through275

25 – which consistently display the same conformational (α-helical) state at R≈ 0.34 (interpreted as the276

color red in Panel (c)). This trend would be hard to recognize by simply looking at the structural ensemble277

(Panel (a)).278

A signed Ramachandran number for ‘misbehaving’ backbones279

The Ramachandran number increases in value from the bottom left of the Ramachandran plot to the280

top right in sweeps that are parallel to the negative sloping diagonal. As discussed in Mannige et al.281

(2016), this method of mapping a two-dimensional space into one number is still structurally meaningful282

and descriptive because 1) most structural features of the protein backbone – e.g. radius of gyration283

(Mannige et al., 2016), end-to-end distance (Mannige et al., 2016), and chirality (Mannige, 2017) – vary284

little along lines parallel to the negatively-sloping diagonal (this is indicated by relatively small standard285

deviations in structural metrics for similar Rs; Fig. 4), and 2) most protein backbones display chiral286

centers and therefore predominantly appear on the top left region of the Ramachandran plot (above the287

dashed diagonal in Fig. 12a-(i)).288

However, not all backbones localize in only one half of the Ramachandran plot. Particularly, among289

biologically relevant amino acids, glycine occupies both regions of the Ramachandran plot (Fig. 12a-(ii);290

of note, the αL helix region becomes relatively prominent). On the other hand, prolines are known to form291

polyproline-II helices (ppII in Fig. 12a-(iii)), which falls on almost the same ‘sweep’ as glycine rich pep-292

tides (red dot-dashed line). In situations where both prolines and glycines are abundant, the Ramachandran293

number (R) would fail to distinguish αL from ppII (Fig. 12b; regions outlined by rectangles).294

To accomodate the situation where achiral backbones are expected (eg., if peptoids or polygycines
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Figure 12. Signed Rs are required for non-chiral backbones. While the backbones of most amino

acids occupy the top of the positively sloped diagonal (dashed in b), non chiral amino acids such as

Glycines (or their N-substituted variants – peptoids) display no such preference, which causes distinct

secondary structures that lie on the same ‘sweep’ to be localized at similar regions in R (e.g., in b,

polyproline-II and αD helices both localize at R ≈ 0.6). However, a signed Ramachandran number (RS)

solves this overlap by multiplying those R’s derived from backbones with φ > ψ by −1. The resolving

power of RS is evident available by the separation of polyproline-II and αD helices (c). The mapping of

(φ ,ψ) to R and RS are shown to the right of each respective R-plot (b,c).

are being studied), an additional Ramachandran number – the signed Ramachandran number RS – is

introduced here. RS is identical to the original number in magnitude, but which changes sign from + to

− as you approach R numbers that are to the right (or below) the positively sloped diagonal. I.e.,

RS =

{

R , if ψ ≥ φ

R×−1 , if ψ < φ
(3)

As an example of the utility of RS, Fig. 12b shows that RS easily distinguishes αD from ppII.295

Note that the signed RS, while useful, would be important in very limited scenarios, as more than296

96% of the amino acids in the Protein Databank (PDB) occupy the upper-left region of the Ramachandran297

plot (with the 3% of ‘rule breakers’ contributed mostly by glycines).298

CONCLUSION299

A simpler Ramachandran number is reported – R= (φ +ψ +2π)/(4π) – which, while being a single300

number, provides much information. For example, as discussed in Mannige et al. (2016), R values301

above 0.5 are left-handed, while those below 0.5 are right handed, R values close to 0, 0.5 and 1302

are extended, β-sheets occuppy R values at around 0.52, right-handed α-helices hover around 0.34.303
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Given the Ramachandran number’s ‘stackability’, single graphs can hold detailed information of the304

progression/evolution of molecular trajectories. Indeed, Fig. 8 shows how 400 distinct Ramachandran305

plots can easily be fit into one graph when using R. Finally, a python script/module (BACKMAP) has306

been provided in an online GitHub repository to promote the utility of R as a universal metric.307

MATERIALS308

The following protein structures were obtained from the Protein DataBank (PDB): 1mba, 2acy, 1xqq, and309

2fft. The first two in the list (1mba, 2acy) describe single conformations and the last two (1xqq, 2fft)310

describe ensembles.311

Statistics about single amino acid conformations and secondary structures (excepting polyproline II312

helices) were derived from the Structural Classification of Proteins or SCOPe website [Release 2.06; Fox313

et al. (2014)]. This database, currently available at http://scop.berkeley.edu/downloads/314

pdbstyle/pdbstyle-sel-gs-bib-40-2.06.tgz, contains 13,760 three-dimensional protein315

conformations (one domain per conformation) with lower than 40% sequence identity. Secondary structure316

annotations were assigned using the DSSP algorithm (Kabsch and Sander, 1983), although the STRIDE317

algorithm (Frishman and Argos, 1995) provides qualitatively identical distributions.318

Given the absence of polyproline II helix (ppII) annotation in the present version of DSSP, statistics319

for polyproline II helices (used to generate the green distributions in Figs X) were obtained from segments320

within 16,535 proteins annotated by PolyprOnline (Chebrek et al., 2014) to contain three or more residues321

of the secondary structure.322

Fig X represents a trajectory of a portion of a single peptoid backbone within a ‘relaxing’ peptoid323

nanosheet bilayer. The conformation of this backbone – derived from work by Mannige et al. (2015) and324

Mannige et al. (2016) – is also available as ‘/tests/pdbs/nanosheet_birth_U7.pdb’ within the companion325

GitHub repository.326

Root mean squared deviation (RMSD) and fluctuation (RMSF) are measures of change in structure

over ‘time’ when respectively compared to the initial conformation or the preceeding conformation. Their

equations are as follows:

RMSDr,t =

√

(Rr,t −Rr,1)
2, RMSFr,t =

√

(Rr,t −Rr,t−1)
2. (4)

Here, Rr,t is the Ramachandra nnumber associated with residue number r at ‘time’ t. Since we are327

only considering deviation and fluctuations within individual resides, these numbers are normalized by328

dividing by 1.329
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APPENDIX337

Simplifying the Ramachandran number (R)338

This section will derive the simplified Ramachandran number presented in this paper from the more339

complicated looking Ramachandran number introduced previously (Mannige et al., 2016).340

Assuming the bounds φ ∈ [φmin,φmax) and φ ∈ [ψmin,ψmax), the previously described Ramachandran

number takes the form

R(φ ,ψ)≡ RZ(φ ,ψ)−RZ(φmin,φmin)

RZ(φmax,φmax)−RZ(φmin,φmin)
, (5)

where, R(φ ,ψ) is the Ramachanran number with range [0,1), and RZ(φ ,ψ) is the unnormalized integer-

spaced Ramachandran number whose closed form is

RZ(φ ,ψ) =
⌊

(φ −ψ +λ )σ/
√

2
⌉

+
⌊√

2λσ
⌉⌊

(φ +ψ +λ )σ/
√

2
⌉

. (6)
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Here, ⌊x⌉ rounds x to the closest integer value, σ is a scaling factor, discussed below, and λ is the341

range of an angle in degrees (i.e., λ = φmax −φmin). Effectively, this equation does the following. 1) It342

divides up the Ramachandran plot into (360◦σ1/◦)2 squares, where σ is a user-selected scaling factor343

that is measured in reciprocal degrees [see Fig. 8b in Mannige et al. (2016)]. 2) It then assigns integer344

values to each square by setting the lowest integer value to the bottom left of the Ramachandran plot345

(φ =−180◦,ψ =−180◦) and proceeding from the bottom left to the top right by iteratively slicing down346

-1/2 sloped lines and assigning increasing integer values to each square that one encounters. 3) Finally,347

the equation assigns any (φ ,ψ) pair within φ ,ψ ∈ [−φmin,φmax) to the integer value (RZ) assigned to the348

divvied-up square that they it exists in.349

Combining the two equations (Eqns. 5 and 6) results in the following, rather imposing, equation for

the Ramachandran number:

R(φ ,ψ) =





⌊

(φ −ψ +λ )σ/
√

2
⌉

+
⌊√

2λσ
⌉⌊

(φ +ψ +λ )σ/
√

2
⌉

−
⌊

(φmin −ψmin +λ )σ/
√

2
⌉

−
⌊√

2λσ
⌉⌊

(φmin +ψmin +λ )σ/
√

2
⌉









⌊

(φmax −ψmax +λ )σ/
√

2
⌉

+
⌊√

2λσ
⌉⌊

(φmax +ψmax +λ )σ/
√

2
⌉

−
⌊

(φmin −ψmin +λ )σ/
√

2
⌉

−
⌊√

2λσ
⌉⌊

(φmin +ψmin +λ )σ/
√

2
⌉





(7)

However useful Eqn. 7 is, the complexity of the equation may be a deterrent towards utilizing it. This

paper reports a simpler equation that is derived by taking the limit of Eqn. 7 as σ tends towards ∞. In

particular, when σ → ∞, Eqn. 7 becomes

R(φ ,ψ) = lim
σ→∞

R̄(φ ,ψ) =
φ +ψ − (ψmin +ψmin)

(φmax +ψmax)− (φmin +ψmin)
. (8)

Assuming that φ ,ψ ∈ [−180◦,180◦) or [−π,π),350

R(φ ,ψ) =
φ +ψ +2π

4π
. (9)

Conformation of this limit is shown numerically in Fig. 13. Since larger σs indicate higher accuracy,351

lim
σ→∞

R(φ ,ψ) represents an exact representation of the Ramachandran number. Using this closed form,352

this report shows how both static structural features and complex structural transitions may be identified353

with the help of Ramachandran number-derived plots.354

Assuming, a different range (say, φ ,ψ ∈ [0,2π)), the Ramachandran number in that frame of reference

will be

R(φ ,ψ)φ ,ψ∈[0,2π) =
φ +ψ

4π
. (10)

However, in changing the ranges, the meaning of the Ramachandran number will change. This manuscript355

assumes that all angles (φ ,ψ ,ω) range between −π (−180◦) and π (180◦)356
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Figure 13. The increase in the acccuracy measure (σ ) for the original Ramachandran number (Eqn. 6)

results in values that tend towards the new Ramachandran number proposed in this paper (Eqn. 2).
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