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Background. Osteoclast differentiation in the inflamed synovium of rheumatoid arthritis affected joints

leads to the formation of bone lesions. Reconstruction and analysis of protein interaction networks

underlying specific disease phenotypes are essential for designing therapeutic interventions. In this study

we have created a network that captures signal flow leading to osteoclast differentiation. Based on

transcriptome analysis, we have indicated the potential mechanisms responsible for the phenotype in the

rheumatoid arthritis affected synovium.

Method. We collected information on gene expression, pathways and protein interactions related to

rheumatoid arthritis from literature and databases namely Gene Expression Omnibus, KEGG pathway and

STRING. Based on these information, we created a network for the differentiation of osteoclasts. We

identified the differentially regulated network genes and reported the signaling that are responsible for

the process in the rheumatoid arthritis affected synovium.

Result. Our network reveals the mechanisms underlying the activation of the Neutrophil Cytosolic Factor

complex in connection to osteoclastogenesis in rheumatoid arthritis. Additionally, the study reports the

predominance of the canonical pathway of NF-κB activation in the diseased synovium. The network also

confirms that the upregulation of T cell receptor signaling and downregulation of TGFβ signaling pathway

favour osteoclastogenesis in Rheumatoid Arthritis. To the best of our knowledge, this is the first

comprehensive protein-protein interaction network describing Rheumatoid Arthritis driven

osteoclastogenesis in the synovium.

Discussion. This study provides information that can be used to build models of the signal flow involved

in the process of osteoclast differentiation. The models can further be used to design therapies to

ameliorate bone destruction in the Rheumatoid Arthritis affected joints.
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10 Abstract

11 Background

12 Osteoclast differentiation in the inflamed synovium of Rheumatoid Arthritis affected joints leads 

13 to the formation of bone lesions. Reconstruction and analysis of protein interaction networks 

14 underlying specific disease phenotypes are essential for designing therapeutic interventions. In 

15 this study we have created a network that captures signal flow leading to osteoclast 

16 differentiation. Based on transcriptome analysis, we have indicated the potential mechanisms 

17 responsible for the phenotype in the Rheumatoid Arthritis affected synovium.

18 Method

19 We collected information on gene expression, pathways and protein interactions related to 

20 Rheumatoid Arthritis from literature and databases namely Gene Expression Omnibus, KEGG 

21 pathway and STRING. Based on these information, we created a network for the differentiation 

22 of osteoclasts. We identified the differentially regulated network genes and reported the 

23 signaling that are responsible for the process in the Rheumatoid Arthritis affected synovium. 

24 Result

25 Our network reveals the mechanisms underlying the activation of the Neutrophil Cytosolic 

26 Factor complex in connection to osteoclastogenesis in Rheumatoid Arthritis. Additionally, the 

27 study reports the predominance of the canonical pathway of NF-κB activation in the diseased 

28 synovium. The network also confirms that the upregulation of T cell receptor signaling and 

29 downregulation of TGFβ signaling pathway favour osteoclastogenesis in Rheumatoid Arthritis. 
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30 To the best of our knowledge, this is the first comprehensive protein-protein interaction network 

31 describing Rheumatoid Arthritis driven osteoclastogenesis in the synovium. 

32 Discussion

33 This study provides information that can be used to build models of the signal flow involved in 

34 the process of osteoclast differentiation. The models can further be used to design therapies to 

35 ameliorate bone destruction in the Rheumatoid Arthritis affected joints.

36 Introduction

37 Rheumatoid arthritis (RA) is a systemic autoimmune disease that primarily affects synovial 

38 joints. The disease is characterised by chronic inflammation in the joints, leading to synovial 

39 hyperplasia (pannus formation), destruction of the cartilage and erosion of the underlying bone. 

40 RA is a complex disease involving several molecular pathways across various cell types and 

41 tissues. Thus in order to elucidate the underlying cause of a particular phenotype associated to 

42 the disease, identification of the network consisting of differentially expressed genes (DEG) in 

43 the interacting pathways is essential. Studies have used pathway analysis to identify affected 

44 pathways from lists of DEGs (Hao et al., 2017; Wang et al., 2017; Lee et al., 2011; Wu et al., 

45 2010). The lists have also been used to create networks that are related to specific diseases or 

46 conditions. Earlier work using RA samples has focused on generating networks of the genes 

47 showing differential regulation (Hao et al., 2017; Wang et al., 2017) or the most enriched gene 

48 ontology (GO) (“Expansion of the Gene Ontology knowledgebase and resources.,” 2017) 

49 category in the DEG lists (Lee et al., 2011). A comprehensive network describing molecular 

50 interactions across various RA affected tissues was created using publicly available microarray 

51 data by Wu et al (Wu et al., 2010). Other groups have created gene regulatory networks (GRN) 
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52 using in vitro data from cultured fibroblasts and macrophages (Kupfer et al., 2014; You et al., 

53 2014).  Kupfer et al (Kupfer et al., 2014) used time series data generated from RA synovial 

54 fibroblasts subjected to external stimulation to create a GRN. They simulated the network to 

55 analyse the behaviour of genes involved in RA pathogenesis, in response to stimulation by RA 

56 associated cytokines and growth factors. You et al (You et al., 2014) created a GRN and 

57 identified the critical interactions responsible for synovial fibroblast invasiveness in RA 

58 synovium. The creation of a detailed protein-protein interaction (PPI) network describing the 

59 connections between various pathways involved in any specific RA process, at the level of the 

60 synovial tissue, is yet to be attempted. In this study, using the publicly available gene expression 

61 data for RA synovial tissue and protein interactions and pathway databases, we created and 

62 analysed a detailed phenotype-specific PPI network. We used differentially regulated genes to 

63 identify the altered pathways in the affected synovium. We identified the pathway of osteoclast 

64 differentiation as a phenotype connected to many of the altered pathways in the RA synovium. It 

65 is established that the RA synovium harbors osteoclasts, the cells responsible for bone 

66 degradation in the affected joints (Schett, 2007). Therefore, a network of proteins participating in 

67 the interacting pathways underlying the RA associated process of osteoclast differentiation in the 

68 synovium was created for the first time. We report the upregulated signaling routes that drive 

69 osteoclastogenesis via the generation of reactive oxygen species (ROS) by Neutrophil Cytosolic 

70 Factor (NCF) complex in the RA synovium. We demonstrate the contribution of elevated T cell 

71 receptor signaling in facilitating osteoclast differentiation in the affected tissue. In addition, we 

72 describe the importance of the canonical pathway of NF-κB activation and the TGFβ pathway in 

73 connection to the process. Finally, the network reports all the possible routes by which the 

74 inflamed synovium promotes the differentiation of osteoclasts.

PeerJ reviewing PDF | (2018:04:27886:2:0:NEW 7 Sep 2018)

Manuscript to be reviewed



75 Materials and Methods

76 This study involved two major steps: selection of a phenotype exhibited by the RA synovium, 

77 and construction and analysis of a PPI network for the selected phenotype. Figure 1 shows the 

78 detailed workflow that was followed. Each step is described in detail in this section. The 

79 databases used in this study are summarized in Table 1.

80 Identification of DEGs using microarray data analysis

81 The DEGs were obtained by re-analysing the publicly available microarray datasets in Gene 

82 Expression Omnibus (GEO) (Edgar, Domrachev & Lash, 2002) database. The repository was 

83 searched for the data generated from synovial tissue in RA patients and healthy controls. The 

84 results were further narrowed down by considering only the data from Affymetrix platforms with 

85 at least four RA and four control samples. Datasets selected for the study are mentioned in Table 

86 2.

87 Of the seven datasets, information regarding treatments received by the patients was not 

88 available for GSE77298 (Broeren et al., 2016) and GSE7307. Earlier, it was established that the 

89 differential regulation of the genes in these datasets was not under the influence of drug therapy 

90 (Dey, Panga & Raghunathan, 2016). The clinical information for the RA patients was available 

91 for the datasets GSE1919 (Ungethuem et al., 2010), GSE12021 (U133A) (Huber et al., 2008), 

92 GSE12021 (U133B) (Huber et al., 2008), GSE55235 (Woetzel et al., 2014) and GSE55457 

93 (Woetzel et al., 2014). The erythrocyte sedimentation rate (ESR) and the concentration of C-

94 reactive protein (CRP) reported for these datasets were higher than 40 mm hour-1 and 21 mg litre-

95 1 respectively. These values indicated active inflammation in the synovium of the RA patients 
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96 (Wetteland et al., 1996 ; Otterness, 1994). For the datasets, GSE77298 and GSE 7307, the values 

97 for these parameters were not available.

98 Raw data from the seven datasets along with their metadata was downloaded using the R 

99 libraries GEOquery (Davis & Meltzer, 2007) and GEOmetadb (Zhu et al., 2008). The data was 

100 analysed using the affy (Gautier et al., 2004) and simpleaffy (Wilson & Miller, 2005) libraries in 

101 the Bioconductor package in R (R Core Team, 2017). 

102 In this analysis, two algorithms, Robust Multiarray Average (RMA) and Microarray Suite 5.0 

103 (MAS5) were used for the data normalization. The choice of data normalization algorithms affect 

104 the final selection of the DEGs (Pepper et al., 2007). In order to reduce the algorithm specific 

105 effects, both RMA and MAS5 were used in this study. In the case of MAS5, probesets having at 

106 least one present call (“P”) in control as well as treatment samples were considered. Probesets 

107 were annotated with Entrez IDs using the Bioconductor as well as DAVID gene-ID conversion 

108 tool (Huang, Sherman & Lempicki, 2009b; Huang, Sherman & Lempicki, 2009a). Welch t test 

109 was applied to calculate the significance for differential expression between the RA and the 

110 control samples. As per the recommendations by Huang et al (Huang, Sherman & Lempicki, 

111 2009a), in our study a gene with a linear fold change of 2 (for up and downregulation) and a p 

112 value <= 0.05 was considered to be differentially expressed. A final list of DEGs, from the seven 

113 datasets, was obtained using the selection rules as described below:

114 A. In a dataset, a gene is considered to be upregulated if:

115 i. It is upregulated in both RMA and MAS5 [+,+]

116 Or,

117 ii. It is upregulated in one of the algorithm and not differentially expressed in the other 

118 [+, 0] or [0, +].
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119 B. Across the datasets, the gene is upregulated if:

120 i. It is [+, +] in at least one of the seven datasets and no downregulation in any of the 

121 datasets

122 Or,

123 ii. It is [+, 0], in at least one dataset and [0, +] in at least one of the remaining datasets 

124 while there is no downregulation in any one of them

125 The same procedure was repeated for the downregulated genes.

126 When the selection criteria was made more stringent by demanding the selection of a gene in at 

127 least two datasets, the number of selected genes reduced by almost 50 percent as shown in Fig. 2. 

128 Since the aim of the study was to identify all the important signaling associated with the RA-

129 associated process we decided to proceed with the selection criteria of presence in at least one 

130 dataset.

131 Finally, we prepared a list of up and downregulated genes which we named as “common-up” and 

132 “common-down” respectively. 

133 Pathway Analysis:

134 The common-up and common-down gene lists were separately examined for the enrichment of 

135 pathways listed in the Kyoto Encyclopedia Of Genes And Genomes (KEGG) database (Kanehisa 

136 et al., 2017) using Database for Annotation, Visualization and Integrated Discovery (DAVID). 

137 For the enrichment analysis, we created a custom background by combining the total probesets 

138 present on all four microarray platforms and annotating them with Entrez IDs using the DAVID 

139 gene ID conversion tool. The pathways which were significantly over-represented in the 

140 common-up or common-down gene lists with an EASE score <= 0.05 and fold enrichment >= 
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141 1.5 were considered to be affected in RA (Huang, Sherman & Lempicki, 2009a). EASE score is 

142 a modified one-tailed Fisher exact probability used in enrichment analysis (Hosack et al., 2003). 

143 The pathways were grouped according to their KEGG categories. Those belonging to the 

144 categories “human diseases”, “metabolism” or the ones lacking protein-protein interactions were 

145 not considered further. The category “human diseases” contains pathways that represent specific 

146 disease conditions. These were excluded because they do not reflect the protein-protein 

147 interaction in healthy conditions. “Metabolism” contains pathways that describe interconversions 

148 of metabolites. Since this study focused on PPI involved in the RA affected synovium, we did 

149 not consider the metabolic pathways. The remaining pathways were categorized based on their 

150 functional specificity. The pathways which result in a specific function like platelet activation 

151 were tagged as process pathways, whereas the pathways describing more general signaling 

152 events like the activation of multiple transcription factors through T cell receptor signaling, were 

153 considered as signaling pathways.

154 The list of genes present in each selected pathway was downloaded from KEGG using the 

155 KEGGREST (Tenenbaum, 2017) package in R. For each one of the selected pathway, the list of 

156 genes that were common between the pathway and the microarray platforms was created. We 

157 name this as “S-list”. By the pairwise intersection of the S-list of each process pathway with 

158 every one of the non-disease pathway, we obtained the DEGs shared between the pairs of 

159 process and non-disease pathways. The number of DEGs shared by each pair was examined. The 

160 pairs of pathways sharing at least five upregulated or five downregulated genes were retained for 

161 our study. Figure 3 shows the number of up or downregulated genes common to the pair of 

162 pathways. It is evident from this figure that the above mentioned criterion did not result in a bias 

163 towards pairs of larger pathways.
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164 Construction of network:

165 We constructed a PPI network for the osteoclast differentiation. The osteoclast differentiation 

166 pathway (ODP) proteins, obtained from KEGG were defined as a set of core proteins. Interactors 

167 of the core proteins (first-shell interactors) were extracted from the STRING database (version 

168 10) (Szklarczyk et al., 2015). The protein list was restricted by considering only experimentally 

169 validated interactions with a score of >= 0.9. This score on a scale of 0 to 1 represents the 

170 confidence of experimental validation with maximum confidence being 1. We obtained the 

171 directions for these interactions from the literature references used in STRING, when available, 

172 or with a separate literature search in Pubmed. The complete network was built in Cytoscape 

173 (Shannon et al., 2003) using all the obtained interactions. The proteins corresponding to the 

174 DEGs in RA synovium obtained from the microarray data analysis were indicated in this 

175 network.

176 Analysis of the network:

177 The network was a mixed network consisting of the undirected protein binding edges and the 

178 directed edges of activation, inhibition or the post-translational modification (PTM). The nodes 

179 are labelled using the official gene symbols corresponding to the proteins used to create the 

180 network. The interactions involved undirected protein-protein interactions or directional PTM 

181 like phosphorylation, methylation, acetylation, ubiquitination etc. We included activation or 

182 inhibition as an interaction whenever the reference mentioned that the target protein is activated 

183 or inhibited as a result of the interaction. We created a version of this directed network without 

184 UBC and its edges. We named this version as “directed ODP network”.
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185 We conducted GO enrichment analysis on the directed ODP network proteins using the GO 

186 molecular function (GOMF) and GO biological process (GOBP) terms. Terms with an EASE 

187 score <= 0.05 and fold enrichment >=1.5 were considered as enriched. We combined 23 enriched 

188 GOMF terms to identify the proteins that bind to DNA. In the case of the GOBP terms, we 

189 selected the enriched signaling terms that contained differentially regulated genes for T cell 

190 receptor signaling, B cell receptor signaling and FC-ε receptor signaling. For NF-κB signaling, 

191 TLR signaling and TGFβ signaling pathways we combined six, nine and three enriched terms 

192 respectively and examined their differential regulation. Using the selected enriched signaling 

193 terms, we extracted subnetworks corresponding to each signaling pathway from the directed 

194 ODP network. All the subnetworks demonstrate the flow of information from the first-shell 

195 interactor proteins to the core proteins of the ODP network. The details of the GOMF and GOBP 

196 signaling terms enriched in the analysis is provided in the Tables S1 and S2 respectively.

197 The database DrugBank (Wishart et al., 2018) was explored to locate the target proteins of drugs 

198 that are commonly used in the treatment of RA. We used the information to pinpoint the network 

199 proteins which are targets of the RA drugs. The details regarding the drugs and their targets are 

200 submitted in Table S3. 

201 We converted all the edges of the directed ODP network to single undirected protein binding 

202 edges to create an “undirected ODP network”. We analysed this network using the Cytoscape 

203 plugin NetworkAnalyzer (Assenov et al., 2008). We used the plugin MCODE v1.5.1. (Bader & 

204 Hogue, 2003) to identify the clusters in the network.

205 Results

206 Differentially expressed genes in RA synovium
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207 We analysed seven Affymetrix microarray datasets from five different platforms. Out of 21,246 

208 Entrez annotated genes measured, 1018 upregulated and 893 downregulated genes were 

209 identified in the RA synovium compared to the healthy controls. The differentially regulated 

210 genes are submitted in Table S4. Only three genes STAT1, IL7R and IGKC were upregulated in 

211 all seven datasets. Interestingly, three AP1 proteins FOSB, JUN and JUNB were downregulated. 

212 Table 3 shows the datasets in which the genes were downregulated.

213 Diverse pathways are involved in the disease processes affecting the RA synovium

214 Using the DEGs from the microarray analysis as the input, we found that 52 KEGG pathways 

215 were enriched in the upregulated gene list, and 29 in the downregulated gene list. The EASE 

216 scores of the selected pathways were much less that the cut-off of 0.05. The enrichment analysis 

217 when performed with the combined DEG list (1018 up genes + 893 down genes) resulted in only 

218 55 pathways. Among these, only two pathways were newly obtained when compared to the 

219 previous list of 52 upregulated and 29 downregulated pathways. As the combined analysis 

220 proved less informative, the 52 up and 29 downregulated pathways were considered for the 

221 study. Three pathways, namely, Extra cellular matrix (ECM)-receptor interaction, Focal adhesion 

222 and Proteoglycans in cancer occurred in both the up and downregulated pathway lists because 

223 each pathway had a significant number of up and downregulated genes. The KEGG category-

224 wise distributions of the enriched pathways are shown in Fig. 4 and Fig. 5 and the detailed 

225 results of the pathway analysis are given in the Table S5 and S6. 26 of the upregulated pathways 

226 and four of the downregulated pathways belonged to the KEGG category “human diseases”.

227 Among the upregulated non-disease pathways, the category “immune system” had the highest 

228 number of enriched pathways. Most of the immune receptor signaling pathways in this category 

229 were upregulated. Among the other signaling pathways, NF-κB and JAK-STAT signaling 
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230 pathways were upregulated in our analysis. All the signaling pathways which belong to the 

231 KEGG categories, “immune system” and “signal transduction” that were enriched in the 

232 upregulated gene list are shown in Table 4.

233 Specialized cells called osteoclasts which facilitate bone resorption are also present in the 

234 invading pannus of the RA joints (Gravallese et al., 1998; Jung et al., 2014; Nevius, Gomes & 

235 Pereira, 2016). All the five microarray datasets which provided information on the disease state, 

236 GSE1919, GSE12021 (U133A), GSE12021 (U133B), GSE55235 and GSE55457, used tissue 

237 from patients with more than ten years of disease. Patients from the other dataset GSE77298, 

238 were at the end stage of the disease. Since osteoclast differentiation is reported in severely 

239 inflamed RA synovium, the process is likely to be detected in the synovial tissue used for the 

240 datasets. It is noteworthy that our analysis identified the pathway osteoclast differentiation as one 

241 of the enriched pathways with a fold enrichment of 3.11 (EASE score of 2.41 e-8) in the RA 

242 synovium. In addition, our analysis detected the upregulation of two well-known osteoclast 

243 markers Cathepsin K (CTSK) and tartarate resistant acid phosphatase (ACP5) in the synovium.

244 The category highly represented in the list of downregulated pathways was “signal transduction”. 

245 All the signal transduction pathways enriched in the downregulated gene list are given in Table 

246 5. In contrast to the upregulated pathways, the downregulated pathways included several 

247 metabolic pathways such as fatty acid degradation, fatty acid elongation etc. Some endocrine 

248 system pathways like regulation of lipolysis in adipocytes, insulin signaling pathway, which are 

249 closely related to metabolic regulation were also listed among the downregulated pathways.

250 RA affected signaling pathways interact to orchestrate osteoclast differentiation in the 

251 synovium 
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252 We categorised the 26 upregulated and 25 downregulated non-disease pathways based on their 

253 functional specificity. In this analysis we identified 12 process pathways and 19 signaling 

254 pathways among the differentially regulated pathways. This list of 31 pathways includes the 

255 process pathway focal adhesion which was differentially regulated in both directions. While four 

256 and ten process and signaling pathways respectively were downregulated, nine process and 

257 signaling pathways each were upregulated. The detailed information about the number of 

258 upregulated, downregulated and total genes in each of the selected pathway is submitted as Table 

259 S7 and S8. 

260 We examined the overlap of the process pathways with all the non-disease pathways based on 

261 the shared number of DEGs. The overlapping pathways are represented as a pathway interaction 

262 network in Fig. 6. Several of the signaling pathways share DEGs with the process pathways 

263 indicating that the process is influenced by these signaling pathways. The details of the DEGs 

264 shared by each pathway pair is presented in the Table S9.

265 Figure 7 is a graphical representation of the number of genes shared between the Osteoclast 

266 differentiation pathway and other non-disease pathways. Signaling pathways, represented by 

267 light blue bars, constitute eight out of the 13 non-disease pathways that interact with osteoclast 

268 differentiation. All the pathways sharing genes with osteoclast differentiation pathways are 

269 upregulated pathways. Similar graphs were created for all upregulated process pathways and are 

270 available in the supplementary figures: Fig. S1 - Fig. S7. Figure 8 shows the overlap analysis for 

271 the downregulated signaling pathways.

272  Among the downregulated process pathways shown in Fig. 8, vascular smooth muscle 

273 contraction interacted with platelet activation and cGMP-PKG signaling pathway, via 

274 downregulated genes in the RA synovium.  Regulation of lipolysis in adipocytes interacted only 
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275 with down signaling pathways through downregulated genes. Finally, the pathway adherens 

276 junction did not overlap with any other pathways.

277 Our study revealed that the processes of natural killer cell mediated cytotoxicity as well as 

278 osteoclast differentiation involved a network of several interacting pathways in the RA 

279 synovium. However, osteoclast differentiation was influenced by the highest number of signaling 

280 pathways. This indicates that the differentiation of osteoclasts in the RA synovium is coordinated 

281 by several signaling pathways. In order to understand the collective effect of these signaling 

282 pathways on the osteoclast differentiation, we created a detailed PPI network for the process in 

283 the RA synovium. Among all the interactions obtained from the STRING database, we used only 

284 the experimentally validated ones published in literature, for the creation of the network. In this 

285 network, we indicated the differentially regulated genes from the microarray analysis to show the 

286 possible ways by which the altered signaling promotes osteoclastogenesis in RA synovium. 

287 A comprehensive PPI network for the differentiation of osteoclasts in RA synovium

288 The PPI network, created in our study, had 433 proteins and 1790 interactions. The network 

289 consisted of three connected components. The two smaller connected components were the 

290 interactions between CD47 and SIRPA, and IL1A and S100A13. 

291 The protein Ubiquitin which has the highest number of interactions in the network was found to 

292 interact with 175 network proteins. This is expected, as ubiquitination is a very common PTM 

293 that marks the proteins for proteasomal degradation. In our network, ubiquitination was 

294 represented as interaction of a protein with ubiquitin as well as with ubiquitin ligases. We 

295 removed ubiquitin from our network since most of the edges of ubiquitin and those of the 

296 ubiquitin ligases were redundant. The resulting network had 432 proteins and 1595 interactions. 
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297 In this network, in addition to the two small connected components, four proteins, PPP3R1, 

298 PPP3CA, PPIA and RCAN1 were disconnected from the main network and formed a new 

299 connected component. The network now had four components: CD47-SIRPA, IL1A-S100A13, 

300 PPP3R1-PPP3CA-PPIA-RCAN1, and one large component.

301 We removed the three smaller connected components from the main network. The large 

302 connected component, consisting of 424 protein nodes and 1589 interactions, was used for 

303 further analysis. Henceforth, we refer to this as directed ODP network. The directed ODP 

304 network contains 82 core proteins belonging to the KEGG osteoclast differentiation pathway. 

305 The portion of the directed ODP network containing the 82 core proteins and their 152 

306 connections is termed as the “core network” (directed). The rest of the network consisting of the 

307 first shell interactors and their edges is the “shell network” (directed). The core network 

308 contains proteins which are directly involved in the osteoclast differentiation. The shell network 

309 represents the protein milieu in the RA synovium facilitating the osteoclast differentiation. The 

310 complete directed ODP network is provided as a supplementary file S1. A second supplementary 

311 file S2 contains the information about the core and shell proteins of the ODP network.

312 The DNA-binding proteins of the directed ODP network

313 In a PPI network, the terminal responders of the signals are the DNA-binding proteins such as a 

314 transcription factors (TF), coactivator etc. or the proteins that generate non-protein signaling 

315 molecules like secondary messengers. Using the enriched terms in the category GOMF, we 

316 classified 82 of the 424 nodes as DNA-binding proteins (Fig. S8). 18 DNA- binding proteins 

317 which include STAT, NF-κB and AP1 TF belong to the core network. Along with the differential 

318 expression of STAT1, JUN, JUNB and FOSB, the STAT protein STAT2 was upregulated in this 

319 study.
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320 In addition to STAT and AP1 proteins, the other DNA binding core protein PPARG was 

321 observed to be downregulated which is in agreement with the results of Li et al (Li et al., 2017). 

322 The attachment of the shell network resulted in the inclusion of nine differentially regulated 

323 DNA-binding proteins in the directed ODP network. The possible roles of these proteins in 

324 osteoclastogenesis are described in context of their GOBP terms.

325 The signaling pathways of the directed ODP network

326 GOBP over-representation analysis of the directed ODP network proteins identified several 

327 immune signaling terms. These terms included five out of the eight upregulated KEGG signaling 

328 pathways which were found to interact with the osteoclast differentiation (Fig. 7). These 

329 pathways are: T cell receptor signaling pathway, B cell receptor signaling pathway, Fc-ε receptor 

330 signaling pathway, NF-κB signaling pathway and Toll-like receptor (TLR) signaling pathway. 

331 Among these, T cell receptor signaling pathway had the most number of DEGs, with 14 up and 

332 one downregulated nodes. The proteins belonging to the T cell receptor signaling term were 

333 extracted as a subnetwork (Fig. S9). In this subnetwork, the T cell surface molecules CD3E and 

334 CD28 were upregulated whereas CD247 did not show differential regulation. The downstream 

335 signaling molecules ZAP70, LCK, ITK, CSK, LAT, LCP2, FYB, PAG1, PIK3CD, MAPK1, 

336 PLCG2 and INPP5D were upregulated. Among them, PIK3CD, MAPK1, LCK, LCP2 and 

337 PLCG2 are the core network proteins. 

338 The B cell receptor signaling pathway (Fig. S10) term shared six proteins with the core network. 

339 Five of these core proteins were upregulated. In addition, ZAP70, LYN and PRKCB, which are 

340 part of the shell network, were found to be upregulated. 
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341 The Fc-ε receptor signaling pathway (Fig. S11) showed the MAP Kinase, NF-κB, Rac signaling 

342 components. The term showed nine upregulated genes which included the receptor FCER1G. 

343 Six GOBP terms were combined to extract 75 proteins of the NF-κB signaling pathway from the 

344 directed ODP network (Fig. S12). This NF-κB subnetwork contained five receptors including 

345 one core protein (TNFRSF1A). Out of the 11 DEGs in the subnetwork, TNFSF11 (RANKL) and 

346 STAT1 were the core proteins. REL, a component of NF-κB transcription factor dimers was 

347 upregulated. The osteoclast differentiation and activation factor, RANKL, an activator of NF-κB 

348 pathway was highly upregulated with a log2 fold change of 3.32. It is known that REL 

349 participates in the canonical NF-κB signaling (Shih et al., 2011). Of the many possible signaling 

350 routes leading to REL, we observed DEGs in the following pathways: TCR-PRKCQ-CARD11-

351 BCL10; IL1R1-MyD88-IRAK4; TNFSF11 (RANKL)-TRAF6-IKK; CD27-TRAF2-IKK. We 

352 have extracted all these routes and created a subnetwork for activation of REL in the RA 

353 synovium (Fig. 9).

354 We combined nine over-represented GOBP terms to extract the TLR signaling pathway proteins 

355 (Fig. S13). The extracted subnetwork featured the signaling from the receptors TLR3 and TLR4 

356 to the IκB kinase complex (IKK). Although the pathway is upregulated in the RA synovium, the 

357 TLR receptors in the ODP network did not show any differential regulation. 

358 Interestingly, the directed ODP network demonstrated a downregulation of all the DEGs 

359 participating in the TGFβ signaling pathway. The TGFβ subnetwork (Fig. S14) showed the 

360 presence of the ligands TGFB1, TGFB2 and TGFB3 and the receptors TGFBR1, TGFBR2 and 

361 TGFBR3. Among the downstream SMADs, SMAD3 was downregulated.

362 Protein clusters in the directed ODP network
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363 The analysis done using the MCODE application of the Cytoscape tool revealed 19 clusters 

364 which may indicate functional protein complexes. The details of these 19 clusters are submitted 

365 as Table S10. Among them, 12 clusters included a mixture of core and shell proteins. In three of 

366 the clusters (Cluster2, Cluster 4 and Cluster 10), the core proteins were differentially regulated. 

367 Cluster 2 comprised of three core proteins and six shell proteins. The cluster had two DEGs 

368 which were DNA-binding proteins STAT1 and PPARG. Cluster 4 was a TGFβ cluster and 

369 cluster 10 was an NCF cluster. The TGFβ cluster had two downregulated proteins, of which 

370 SMAD3 was a shell protein. The NCF cluster had four core proteins, of which NCF2, NCF4 and 

371 CYBA were upregulated. The upregulated shell protein in the NCF cluster was NCF1.

372 Discussion

373 This study is aimed at understanding the mechanisms involved in a specific RA-related 

374 phenotype. We have used a large number of microarray studies and relaxed inclusion criteria for 

375 differential expression across datasets, to obtain relatively large number of DEGs that are likely 

376 to be involved in RA. We have combined this gene expression data with pathway analysis and 

377 identified various process pathways and several signaling pathways to be affected by RA. In 

378 systemic diseases like RA, pathways responsible for a particular phenotype operate in an 

379 environment consisting of various other disrupted pathways. Thus it becomes important to 

380 understand the effect of this environment on the pathway immediately responsible for the 

381 phenotype. We attempted to achieve this by overlapping the various process pathways with the 

382 enriched signaling pathways in the synovium. Interestingly, the process pathway osteoclast 

383 differentiation overlapped with several of the enriched signaling pathways. In order to 

384 understand the signaling involved in osteoclast differentiation in the RA synovium, for the first 
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385 time, we created a detailed PPI network responsible for the phenomenon. Each interaction in this 

386 network was manually verified from literature enabling the inclusion of directions of the 

387 interactions and specific post translational modifications whenever such information was 

388 available. While creating the network using all the possible interactions available in STRING, 

389 we found that some proteins in the repository have more number of interactions reported than the 

390 others. We acknowledge that this might have led to a bias in the directed ODP network. The 

391 network lacks the important non-protein molecules involved in triggering the ectopic 

392 differentiation of osteoclasts in the inflamed synovium. In addition, gene expression regulation 

393 resulting from activation or repression of transcription factors was not depicted in the network. 

394 Since the RA specific data used in this network was only gene expression data, information on 

395 the activation state of specific proteins that are known to be involved in the disease, e.g., 

396 phosphorylation state of STAT1 was missing. Though the network lacks these information, it is 

397 the most comprehensive and informative PPI network till date describing the process of 

398 osteoclast differentiation.

399 The differentially regulated genes in the RA synovium

400 In order to identify the DEGs in the RA synovium, seven microarray datasets generated by five 

401 different studies were used. Among the seven datasets, the RA patients belonging to the datasets 

402 GSE1919, GSE12021 (U133A), GSE12021 (U133B), GS55235 and GSE55457 had similar high 

403 values for the inflammatory markers, ESR and CRP. Additionally, the tissue used in GSE77298 

404 were described as end stage RA synovial biopsies. Therefore, we surmise that the RA tissues 

405 were highly inflamed. However, we observed that few genes were differentially expressed across 

406 most of the datasets (Fig. 2). Since the level of inflammation in RA tissues were comparable, we 

407 attribute this lack of concordance between the datasets to the heterogeneity of the disease.
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408 The enriched pathways in the RA synovium

409 KEGG pathway enrichment analysis of the upregulated genes (common-up) resulted in 26 

410 upregulated disease pathways. As expected, Rheumatoid arthritis was one of these disease 

411 pathways. Staphylococcus aureus infection and Tuberculosis, the two upregulated infectious 

412 disease pathways in the results of the pathway enrichment analysis are known to be associated 

413 with RA (Sams et al., 2015; Jeong et al., 2017). The upregulated infectious disease pathways 

414 share several genes with immune system pathways. Differential regulation of the immune 

415 pathways is expected in RA since it is an immune disorder. Therefore, the upregulation of the 

416 immune genes explains the enrichment of the infectious disease pathways in the up pathway list.

417 Several pathways belonging to the category “immune system” were enriched in the common-up 

418 genes. The enrichment of these immune pathways is likely as infiltration of activated immune 

419 cells has been observed in the RA synovium (McInnes & Schett, 2011). In addition, the resident 

420 cells of the inflamed pannus exhibit activation of several immune signaling pathways (McInnes 

421 & Schett, 2007). Among the pathways from Table 4, the Fc-ε RI signaling pathway shows an 

422 upregulation of the IgE receptor Fc-ε RI. Elevated presence of IgE and activated mast cells have 

423 been detected in the RA synovium (Gruber, Ballan & Gorevic, 1988; Tetlow & Woolley, 1995). 

424 It has been demonstrated by in vitro experiments that the RA synovial mast cells express Fc-ε RI 

425 and can be activated via the Fc-ε RI signaling pathway (Lee et al., 2013). However, the 

426 contribution of the pathway to the pathological alteration of synovial tissue function needs to be 

427 addressed in future studies.

428 Among the enriched downregulated pathways, seven belong to the category “signal 

429 transduction” (Table 5). The AMPK signaling pathway which is known for its anti-inflammatory 

430 effect shows downregulation in our analysis (Speirs et al., 2018). The downregulation of the 

PeerJ reviewing PDF | (2018:04:27886:2:0:NEW 7 Sep 2018)

Manuscript to be reviewed



431 FOXO signaling pathway is also observed in this study. This reflects the results of the earlier 

432 studies which have shown downregulation and inactivation of the FOXO transcription factors in 

433 the RA affected synovium (Ludikhuize et al., 2007; Grabiec et al., 2015). Additionally, the 

434 FOXO proteins are inhibited by NF-κB signaling, and activated by AMPK as shown in the 

435 FOXO signaling pathway listed in KEGG pathway database. The pathway enrichment results 

436 from our analysis show upregulation in NF-κB signaling and downregulation in AMPK 

437 signaling, which explains the downregulation of FOXO signaling. Further, the cGMP-PKG 

438 signaling is known to be essential for the vascular smooth muscle response to the inflammatory 

439 cytokines (Browner, Sellak & Lincoln, 2004). The downregulation of genes in this pathway 

440 needs to be studied in detail to analyse the effects of RA synovial inflammation on the blood 

441 vessels in the affected tissue. The cAMP signaling pathway is known to facilitate regulatory T 

442 cell function and T cell anergy (Raker, Becker & Steinbrink, 2016). The downregulation in this 

443 pathway might indicate the pro-inflammatory nature of the infiltrating T cells in the synovium. It 

444 is difficult to explain the importance of downregulation in the Wnt signaling pathway and the 

445 MAPK signaling pathway in the RA synovium. Wnt signaling, which is required for repair of 

446 bone erosions, is suppressed in mouse models of inflammatory arthritis (Lories, Corr & Lane, 

447 2013). However, Wnt signaling has also been linked to proinflammatory cytokine production in 

448 the affected synovium (Miao et al., 2013). In our study, the KEGG Wnt signaling pathway is 

449 enriched in downregulated genes. Among the downregulated genes, two are Wnt receptors FZD4 

450 and LRP6, whereas three are the Wnt antagonists SFRP1, SFRP2 and SFRP. Thus no 

451 conclusions can be made about the role of Wnt signaling pathway from its presence in the list of 

452 downregulated pathways. Similarly, no clear picture can be drawn about the role of MAPK 

453 signaling pathway in the RA synovium. This is because the KEGG MAPK signaling pathway is 
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454 very large, with 252 genes and several genes are grouped together under terms like RTK 

455 (receptor tyrosine kinase) and GF (growth factor), making the pathway extremely general.

456 Construction of the directed ODP network

457 Three small connected components were removed while creating the directed ODP network. One 

458 of the components contained the proteins PPP3R1 and PPP3CA which are the subunits of 

459 calcineurin, an important regulator of osteoclast differentiation. The immunosuppressant drug 

460 cyclosporin used in the treatment of RA acts as an inhibitor of calcineurin by forming a ternary 

461 complex with PPIA and calcineurin (Wang & Heitman, 2005). The remaining protein in the 

462 connected component, RCAN1 is an inhibitor of calcineurin. Both in the KEGG pathway 

463 database and in literature, these proteins are described as participating in the RANKL signaling 

464 pathway which regulates the differentiation of osteoclasts. Calcineurin participates in the 

465 RANKL signaling pathway downstream of the non-protein components inositol triphosphate and 

466 calcium ions. Since our network is based on protein-protein interactions, it failed to capture the 

467 connection of calcineurin and its adjacent proteins to the large connected component, in spite of 

468 showing the connections of other RANKL pathway proteins.

469 Analysis of the directed ODP network

470 The directed ODP network was analysed to examine three main aspects. Firstly, the proteins 

471 binding to DNA were explored because they are involved in regulating gene expression. 

472 Secondly, the proteins involved in signal transduction were studied for their role in facilitating 

473 the process of osteoclast differentiation in the RA affected synovium. Finally, the clusters of 

474 highly interconnected proteins were identified in the network. Several proteins function as part of 

475 protein complexes. The protein clusters we identified may represent the protein complexes. We 

476 also examined the differential expression of the proteins in the clusters. Protein clusters with 
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477 differentially regulated proteins may represent complexes actively involved in the 

478 osteoclastogenesis in RA synovium.

479 DNA binding proteins in the directed ODP network

480 Among the DNA-binding proteins in the directed ODP network, the downregulation of the AP1 

481 proteins JUN and JUNB is in contrast to the earlier studies which reported their upregulation in 

482 RA synovium (Kinne et al., 1995). As shown in Table 3, the AP1 downregulation was observed 

483 in five of the seven datasets, with the three proteins FOSB, JUN and JUNB being downregulated 

484 in three out of the seven datasets. The presence of consistent downregulation in the datasets from 

485 different studies shows that the downregulation of these proteins is not due to dataset specific 

486 factors. As mentioned earlier, four of the five datasets showing downregulation had patients with 

487 similar clinical characteristics. This may suggest a connection between the stage of the disease 

488 and the downregulation of the AP1 proteins. Further studies are required to explain the 

489 downregulation of these AP1 proteins in the synovium of a subset of RA patients. 

490 According to previous reports, another AP1 protein FOS is upregulated in the RA synovium 

491 (Dooley et al., 1996). However, our analysis does not show any differential regulation of FOS. 

492 FOS is an indispensable transcription factor for osteoclast differentiation (Grigoriadis et al., 

493 1994). In the ODP network, the upregulation of MAPK1 and RPS6KA1 presents a possible 

494 mechanism for FOS activation. In addition, our network reveals the activation of FOS by the 

495 upregulated TF STAT1. Along with STAT1, the TF STAT2, the kinase JAK2 and the receptor 

496 IFNAR2 were upregulated in the IFN pathway of the ODP network. TNFSF11 (RANKL) 

497 induces expression of IFNβ which serves as a feedback inhibitor of osteoclastogenesis via 

498 STAT1 (Xiong et al., 2016). The upregulation of the IFNβ receptor, IFNAR2 and the TF STAT1 

499 may indicate that the feedback inhibition is functional in the RA synovium.
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500 Signaling pathways in the directed ODP network

501 The examination of the enriched GOBP terms of the network showed an involvement of T cell 

502 receptor signaling pathway, B cell receptor signaling pathway, Fc-ε receptor signaling pathway 

503 and NF-κB signaling pathway in the differentiation of osteoclasts in the RA synovium. Figure 9 

504 depicts the signaling routes that lead to activation of REL in the RA synovium. The figure shows 

505 activation of REL by PKC. The network shows T cell receptor mediated activation of PRKCQ 

506 and its subsequent activation of CARD11. Based on earlier studies (Szamel, Bartels & Resch, 

507 1993; Sommer et al., 2005), we speculate that another isoform of PKC, PRKCB is also involved 

508 in the activation of CARD11 in the affected synovium. It is known that the activated CARD11 

509 via the formation of a trimeric complex with BCL10 and MALT1 activates the IKK complex 

510 (Turvey et al., 2014). The IKK complex in turn activates NF-κB proteins including REL by 

511 removing their inhibition by NFKBIA and NFKBIB. Figure 9 shows that the ODP network has 

512 captured the interactions of these proteins. In this pathway, the upregulation of PRKCB and REL 

513 and the downregulation of NFKBIA indicate activation of REL via this pathway in the RA 

514 affected synovium. It is also known that NF-κB proteins are activators of RANKL (TNFSF11) 

515 gene expression in activated T cells (Fionda et al., 2007). Our network, through the presence of 

516 DEGs in the RA synovium, shows how TCR signaling aids in activation of REL which leads to 

517 RANKL expression and osteoclastogenesis. In addition, the upregulation of TNFSF11 and 

518 downregulation of its competitive inhibitor TNFRSF11B marks another route to the activation of 

519 REL via TRAF6. PPARG, a known inhibitor of TNFSF11-mediated osteoclastogenesis, was 

520 downregulated in the ODP network. This result agrees with the findings of Li et al (Li et al., 

521 2017). The upregulation of CD27 receptor is in accordance with the reports of high levels of 

522 CD27 in the synovial tissue of RA patients (Tak et al., 1996). As CD27 also activates TRAF6, 
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523 we speculate that the upregulation of CD27 contributes to the activation of REL via this route in 

524 the RA synovium. Among the DEGs involved in the REL activation via IL1 pathway, CASP1 

525 was upregulated whereas the inhibitor PELI1 was downregulated. This is balanced against the 

526 upregulation of IL1RN, a competitive inhibitor of IL1R1. It is known that both the cytokines, 

527 IL1 and TNF, activate NF-κB through TRAF6. However, we did not observe differential 

528 regulation of the TNF pathway proteins leading to the activation of NF-κB. On the other hand, 

529 the apoptosis related proteins such as FAS and CASP8 which are downstream to TNF receptor, 

530 were upregulated. Earlier studies have established that the death signaling pathways are 

531 antagonized by the activity of BIRC2, BIRC3 and XIAP (Vasudevan & Ryoo, 2015). The 

532 upregulation of BIRC3 points to suppression of TNF mediated apoptosis and the activation of 

533 NF-κB via TNF receptor signaling in the RA synovium. This reflects the possibility that TNF 

534 signaling results in both CASP8 mediated apoptosis and BIRC3 mediated NF-κB activation in 

535 different parts of the RA synovium. The network also captures the activation of IKK by the 

536 upregulated NOD2 through MAP3K7. Studies have reported that RA synovial cells express high 

537 levels of NOD2 (Franca et al., 2016). We hypothesize that NOD-dependent activation of NF-κB 

538 also contributes to the osteoclastogenesis in RA synovium. All the routes that lead to activation 

539 of NF-κB points to the canonical signaling. PEL1 is known to be a negative regulator of REL 

540 (Chang et al., 2011). REL, which functions only in the canonical NF-κB pathway, is the only 

541 NF-κB protein showing differential regulation in this analysis (Shih et al., 2011). The 

542 upregulation of REL, BIRC3 and PRKCB and the downregulation of PELI1 also support the 

543 predominance of canonical NF-κB signaling in RA synovium osteoclastogenesis (Lutzny et al., 

544 2013; Varfolomeev et al., 2007).
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545 The GOBP analysis revealed enrichment of TGFβ signaling pathway terms. The role of TGFβ 

546 signaling pathway in osteoclastogenesis is not captured in the KEGG osteoclast differentiation 

547 pathway as it shows only the receptor-ligand interaction. Our network connects the TGFβ 

548 receptors to downstream DNA-binding proteins, of which Forkhead box proteins, SMAD3 and 

549 ATF3 were downregulated. The consistent downregulation of all the DEGs in the TGFβ pathway 

550 implies their negative regulatory role in the osteoclastogenesis. Although the published studies 

551 support a mixed role of TGFβ pathway in the RA synovium, Karst et al showed that high 

552 concentration of TGFβ is involved in the inhibition of osteoclastogenesis (Karst et al., 2004). 

553 Therefore, we hypothesize that the downregulation of the TGFβ pathway produces a favourable 

554 environment for osteoclastogenesis in the RA synovium.

555 A proposed model of enhanced ROS production mediating osteoclastogenesis in RA 

556 synovium

557 It is known that the Nox2 complex generates ROS which act as secondary messengers during 

558 osteoclast differentiation (Kang & Kim, 2016). ROS are also known to cause activation of 

559 canonical NF-κB pathway (Gloire, Legrand-Poels & Piette, 2006). In the ODP network, the 

560 upregulation of NCF1, NCF2, NCF4 and CYBA, the four components of Nox2 complex, may 

561 indicate the osteoclast differentiation as well as oxidative burst by phagocytic cells in the RA 

562 synovium (Rosen et al., 1995). The NCF cluster, selected by MCODE analysis, demonstrates the 

563 activation of the core proteins NCF2, NCF4, CYBA and RAC1 by the shell proteins NCF1, 

564 PRKCZ and PARD6G. It is known that PRKCZ is activated by T cell receptor (Bertrand et al., 

565 2010). In our analysis, it was observed that multiple T cell receptor signaling molecules were 

566 upregulated. We hypothesize that the TCR signaling via PRKCZ activates NCF complex which 

567 may subsequently generate ROS in the RA synovium. It is known that ROS can diffuse across 

PeerJ reviewing PDF | (2018:04:27886:2:0:NEW 7 Sep 2018)

Manuscript to be reviewed



568 cell membranes to take part in intracellular signaling (Fisher, 2009). We believe that the 

569 activation of PRKCZ leading to the generation of ROS is one of the routes facilitating osteoclast 

570 differentiation in RA synovium. Our network also illustrated an upregulation of the catalytic 

571 subunit of PI3K, PIK3CD which is another downstream molecule of T cell receptor signaling.  

572 This is supported by the findings of Bartok et al (Bartok et al., 2012). PI3K-AKT pathway results 

573 in inhibition of the Forkhead box proteins, FOXO1 and FOXO3 (Patel & Mohan, 2005). It was 

574 shown that FOXO upregulates antioxidant enzymes that inhibit osteoclastogenesis (Bartell et al., 

575 2014). In the ODP network, the downregulation of FOXO1 and FOXO3 is a possible indication 

576 of the presence of ROS mediated osteoclastogenesis in RA synovium. Bartell et al (Bartell et al., 

577 2014), experimentally proved the role of RANKL in the downregulation of the Forkhead box 

578 proteins. In accordance with this, our analysis showed an upregulation of RANKL in the ODP 

579 network. Finally, our analysis reported the upregulation of the cytokine receptor CSF1R which is 

580 also required for osteoclastogenesis via PI3K-AKT pathway. The proposed model consisting of 

581 all the signaling routes promoting osteoclastogenesis via generation of ROS in the RA synovium 

582 is summarized in Fig. 10.

583 Conclusion

584 In this study, we have created a PPI network for osteoclast differentiation in the RA synovium 

585 for the first time using gene expression under RA conditions from microarray experiments, 

586 pathway enrichment analysis and protein protein interaction data. This network captures all the 

587 signaling routes that lead to osteoclastogenesis in the synovium and depicts the roles of T cell 

588 receptor signaling, canonical NF-κB pathway and ROS generation.
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589 Data Availability: All the data generated and used for the analysis are included in this 

590 manuscript and in the Supplementary information. Abbreviations used are included in Table S11.

591 Abbreviations

592 ACP5 Acid Phosphatase 5, Tartrate Resistant (Tartrate-Resistant Acid 

593 Phosphatase – TRAP)

594 AKT Akt Serine/Threonine Kinase 1 (protein Kinase B)

595 AMPK 5' Adenosine Monophosphate-Activated Protein Kinase

596 AP1 Activator Protein 1

597 BCL10 B Cell Cll/Lymphoma 10

598 BIRC2 Baculoviral Iap Repeat-Containing Protein 2 (Cellular Inhibitor Of 

599 Apoptosis 1)

600 BIRC3 Baculoviral Iap Repeat-Containing Protein 3 (Cellular Inhibitor Of 

601 Apoptosis 2)

602 CARD11 Caspase Recruitment Domain Family Member 11

603 CASP1 Caspase 1

604 CD247 T-Cell Surface Glycoprotein CD3 Zeta Chain

605 CD27 T-Cell Activation Antigen CD27

606 CD28 T-Cell-Specific Surface Glycoprotein Cd28

607 CD3E T-Cell Surface Glycoprotein CD3 Epsilon Chain
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608 CD47 Leukocyte Surface Antigen CD47 (integrin Associated Protein)

609 cGMP Cyclic Guanosine Monophosphate

610 CRP C-Reactive Protein

611 CSF1R Colony Stimulating Factor 1 Receptor

612 CSK C-Terminal Src Kinase

613 CTSK Cathepsin K

614 CYBA Cytochrome B-245 Alpha Chain

615 DAVID Database for Annotation, Visualization and Integrated Discovery 

616 DEG Differentially expressed gene

617 EASE Expression Analysis Systematic Explorer 

618 ECM Extra cellular matrix

619 ESR Erythrocyte Sedimentation Rate

620 FAS Fas cell Surface Death Receptor (CD95)

621 FCER1G High Affinity Immunoglobulin Epsilon Receptor Subunit Gamma 3

622 FOS Fos proto-oncogene

623 FOSB Fosb Proto-Oncogene, Ap-1 Transcription Factor Subunit

624 FOXO1 Forkhead Box Protein O1

625 FOXO3 Forkhead Box Protein O3
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626 FYB Fyn Binding Protein

627 FZD4 Frizzled Class Receptor 4

628 GEO Gene Expression Omnibus

629 GF Growth Factor

630 GO Gene Ontology

631 GOBP Gene Ontology Biological Process

632 GOMF Gene Ontology Molecular Function

633 GRN Gene Regulatory Network

634 ID Identifier

635 IFNAR2 Interferon Alpha And Beta Receptor Subunit 2

636 IFNβ Interferon Beta

637 IgE Immunoglobulin E

638 IGKC Immunoglobulin Kappa Constant Region

639 IKK Inhibitor Of Nuclear Factor Kappa B Kinase

640 IL1A Interleukin 1 Alpha (hematopoietin 1)

641 IL1A Interleukin 1 Alpha

642 IL1R1 Interleukin 1 Receptor Type 1

643 IL1RN Interleukin 1 Receptor Antagonist
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644 IL7R Interleukin 7 Receptor

645 INPP5D Inositol Polyphosphate-5-Phosphatase D

646 IĸB Nf-Kappa-B Inhibitor

647 IRAK4 Interleukin 1 Receptor Associated Kinase 4

648 ITK Il2 Inducible T Cell Kinase

649 JAK2 Janus Kinase 2

650 JUN Jun proto-Oncogene, Ap-1 Transcription Factor Subunit

651 JUNB Junb Proto-Oncogene, Ap-1 Transcription Factor Subunit

652 KEGG Kyoto Encyclopedia Of Genes And Genomes

653 LAT Linker For Activation Of T Cells

654 LCK Lymphocyte-Specific Protein Tyrosine Kinase

655 LCP2 Lymphocyte Cytosolic Protein 2 (Sh2 Domain Containing Leukocyte 

656 Protein Of 76kda)

657 LRP6 Ldl Receptor Related Protein 6

658 LYN Lck/Yes-Related Novel Protein Tyrosine Kinase

659 MAP3K7 Mitogen-Activated Protein Kinase Kinase Kinase 7 (TGF-Beta Activated 

660 Kinase 1)

661 MAPK1 Mitogen-Activated Protein Kinase 1

662 MAS5 Microarray Suite 5.0

PeerJ reviewing PDF | (2018:04:27886:2:0:NEW 7 Sep 2018)

Manuscript to be reviewed



663 MYD88 Myeloid Differentiation Primary Response 88

664 NCF Neutrophil Cytosol Factor

665 NCF1 Neutrophil Cytosolic Factor 1

666 NCF2 Neutrophil Cytosol Factor 2

667 NCF4 Neutrophil Cytosol Factor 4

668 NF-κB Nuclear Factor Kappa-Light-Chain-Enhancer Of Activated B Cells

669 NFKBIA Nf-κb Inhibitor Alpha

670 NFKBIB Nf-κb Inhibitor Beta

671 NOD2 Nucleotide Binding Oligomerization Domain Containing Protein 2

672 Nox2 NADPH Oxidase 2

673 ODP Osteoclast Differentiation Pathway

674 PAG1 Phosphoprotein Associated with Glycosphingolipid-enriched 

675 microdomains 1

676 PARD6G Par-6 Family Cell Polarity Regulator Gamma

677 PELI1 Pellino E3 Ubiquitin Protein Ligase 1

678 PI3K Phosphatidylinositol-4,5-Bisphosphate 3-Kinase

679 PIK3CD Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Delta

680 PIK3CD Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Delta

681 PKG cGMP Dependent Protein Kinase (protein Kinase G)
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682 PLCG2 Phospholipase C Gamma 2

683 PPARG Peroxisome Proliferator Activated Receptor Gamma

684 PPI Protein-Protein Interaction

685 PPIA Peptidylprolyl Isomerase A (cyclophilin A)

686 PPP3CA Protein Phosphatase 3 Catalytic Subunit Alpha (calcineurin A Alpha)

687 PPP3R1 Protein Phosphatase 3 Regulatory Subunit B, Alpha (calcineurin Subunit 

688 B Type 1)

689 PRKCB Protein Kinase C Beta

690 PRKCQ Protein Kinase C Theta

691 PRKCZ Protein Kinase C Zeta

692 PTM Post Translational Modification

693 RA Rheumatoid Arthritis

694 RAC1 Rac Family Small GTPase 1

695 RANKL Receptor Activator Of Nuclear Factor Kappa B Ligand

696 RCAN1 Regulator Of Calcineurin 1

697 REL Rel proto-Oncogene, Nf-κb Subunit

698 RMA Robust Multiarray Average

699 ROS Reactive Oxygen Species

700 RPS6KA1 Ribosomal Protein S6 Kinase A1

PeerJ reviewing PDF | (2018:04:27886:2:0:NEW 7 Sep 2018)

Manuscript to be reviewed



701 RTK Receptor Tyrosine Kinase

702 S100A13 S100 Calcium-Binding Protein A13

703 SFRP1 Secreted Frizzled Related Protein 1

704 SFRP2 Secreted Frizzled Related Protein 2

705 SFRP4 Secreted Frizzled Related Protein 4

706 SIRPA Signal Regulatory Protein Alpha

707 SMAD3 Mothers Against Decapentaplegic Homolog 3

708 STAT1 Signal Transducer And Activator Of Transcription 1

709 STAT2 Signal Transducer And Activator Of Transcription 2

710 STRING Search Tool For The Retrieval Of Interacting Genes/Proteins

711 TCR T Cell Receptor

712 TF Transcription Factor

713 TGFB1 Transforming Growth Factor Beta-1

714 TGFB2 Transforming Growth Factor Beta-2

715 TGFB3 Transforming Growth Factor Beta-3

716 TGFBR1 Tgf-Beta Receptor Type-1

717 TGFBR2 Tgf-Beta Receptor Type-2

718 TGFBR3 Tgf-Beta Receptor Type-3
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719 TGFβ Transforming Growth Factor Beta

720 TLR Toll Like Receptor

721 TLR3 Toll Like Receptor 3

722 TLR4 Toll Like Receptor 4

723 TNFRSF11B Tnf Receptor Superfamily Member 11b (Osteoprotegerin)

724 TNFRSF1A Tumor Necrosis Factor Receptor 1

725 TNFSF11 Tumor Necrosis Factor Superfamily Member 11 (RANKL)

726 TRAF2 TNF Receptor Associated Factor 2

727 TRAF6 TNF Receptor Associated Factor 6

728 UBC Ubiquitin C

729 XIAP X-Linked Inhibitor Of Apoptosis

730 ZAP70 Zeta Chain Associated Protein Kinase 70
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Table 1(on next page)

The details of the databases used in this study.

The name and the reference of the database is listed in the column named “Database”. The

type of data used from the database and the features of the database are described in the

table. The rationale for using the data from each of the databases in our study is included in

the table.
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1

Database Type of data 

obtained for 

this study

Features Rationale

GEO 

(Edgar, Domrachev 

& Lash, 2002)

microarray 

gene 

expression data

GEO is a public 

repository with easy 

access to high 

throughput data, 

including microarray 

data and related 

metadata such as 

tissue type, disease 

state etc.  

Microarray data from 

GEO database was used to 

identify DEGs in the RA 

synovium

DAVID - Gene ID 

conversion tool 

(Huang, Sherman 

& Lempicki, 

2009b)   (Huang, 

Sherman & 

Lempicki, 2009a)

Gene ID types The DAVID 

knowledge base 

supports conversion 

between more than 20 

gene ID types, 

including Affymetrix 

probe IDs.  

The DAVID gene ID 

conversion table was used 

to convert Affymetrix 

probe IDs to Entrez IDs.

KEGG pathway

(Kanehisa et al., 

2017)

molecular 

pathways

KEGG pathways are 

manually drawn and 

frequently updated. 

 References are 

provided for each 

pathway.

The KEGG pathway 

database was used to 

identify the enriched 

pathways from the list of 

DEGs.

String (v10)

(Szklarczyk et al., 

2015)

protein-protein 

interaction

String integrates 

information from 

several sources 

including 

experimental results 

from literature, and 

provides a confidence 

score for the 

interaction.  

The String database was 

used to identify the 

proteins that directly 

interacted with KEGG 

osteoclast differentiation 

pathway proteins. These 

proteins (KEGG 

osteoclast differentiation 

pathway proteins and their 

interactors) were used to 

create a PPI network for 

osteoclast differentiation. 

Gene Ontology

(“Expansion of the 

Gene Ontology 

knowledgebase and 

functional 

annotation

Gene Ontology 

annotation associates 

genes to specific 

functional terms. A 

GO enrichment was used 

to identify the functions 

associated with the 

proteins in the osteoclast 
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resources.,” 2017) GO enrichment 

analysis provides 

information about 

functions that a set of 

genes may be involved 

in. 

differentiation PPI 

network.  

DrugBank

(Wishart et al., 

2018)

drug targets DrugBank provides 

comprehensive 

information of drug 

targets and drug types 

(small molecule, 

biologics etc.)

DrugBank was used to 

identify proteins in the 

network that are targets of 

RA drugs.

2
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Table 2(on next page)

The details of the microarray datasets from GEO repository used in our study

The accession number and the reference of the datasets is listed in the column named

“Accession Number”. The title of the Affymetrix platform used by the particular dataset in

included in the “Platform” column of the table. The information on the number of the RA

patients and healthy controls used in each dataset are included in this table. Gender

distribution is provided for the datasets GSE12021(U133A) and 12021 (U133B).
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1

Accession Number Platform Rheumatoid arthritis 

samples

Healthy control 

samples

GSE1919(Ungethue

m et al., 2010)

Affymetrix Human 

Genome U95A Array

5 5 

GSE7307 Affymetrix Human 

Genome U133 Plus 

2.0 Array

5 9

GSE12021(Huber et 

al., 2008)

Affymetrix Human 

Genome U133A 

Array

12 [3m/9f] 9 [7m/2f]

Affymetrix Human 

Genome U133B 

Array

12 [3m/9f] 4 [3m/1f]

GSE55235(Woetzel 

et al., 2014)

Affymetrix Human 

Genome U133A 

Array

10 10

GSE55457(Woetzel 

et al., 2014)

Affymetrix Human 

Genome U133A 

Array

13 10

GSE77298(Broeren 

et al., 2016)

Affymetrix Human 

Genome U133 Plus 

2.0 Array

16 7

PeerJ reviewing PDF | (2018:04:27886:2:0:NEW 7 Sep 2018)

Manuscript to be reviewed



Table 3(on next page)

Datasets showing downregulation of AP1 proteins in the RA synovium.

This table includes the information about the downregulation of the AP1 proteins as obtained

by different microarray datasets used in our study.
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Dataset FOSB JUN JUNB

GSE1919 Downregulation No differential 

regulation

No differential 

regulation

GSE7307 No differential 

regulation

Downregulation No differential 

regulation

GSE12021 [U133A] Downregulation Downregulation Downregulation

GSE55235 Downregulation Downregulation Downregulation

GSE55457 Downregulation Downregulation Downregulation

1
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Table 4(on next page)

Upregulated signaling pathways in the RA synovium and their KEGG categories.

The numbers prefixed with “hsa” are the KEGG identifiers for each pathway. The KEGG

pathway term name along with the KEGG pathway identifier is listed in the column named

“Pathways”. The “Fold enrichment” is calculated based on the number of upregulated genes

which belong to the KEGG pathway term (“Count”), total number of upregulated genes which

are part of the KEGG pathway database (“List Total”), total number of genes that belong to

the KEGG Pathway database (“Population Total”) and number of the KEGG Pathway database

genes which are part of the KEGG pathway term (“Population Hits”). Precisely, the “Fold

enrichment” is the proportion of “Count”/ “List Total” to “Population Hits”/ “Population Total”

The “EASE score” represents the significance of obtaining “Count” genes in the “List Total”

for the given KEGG pathway term which has “Population Hits” genes in the background

“Population Total”.
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Pathways KEGG Categories Fold enrichment EASE score

hsa04064:NF-κB signaling pathway Signal transduction 3.92 6.25 e-9

hsa04664:Fc-ε RI signaling pathway Immune system 3.19 8.96 e-5

hsa04621:NOD-like receptor 

signaling pathway Immune system 3.11 6.68 e-4

hsa04662:B cell receptor signaling 

pathway Immune system 3.05 1.53 e-4

hsa04620:Toll-like receptor signaling 

pathway Immune system 2.89 1.35 e-5

hsa04062:Chemokine signaling 

pathway Immune system 2.82 4.96 e-9

hsa04660:T cell receptor signaling 

pathway Immune system 2.30 1.69 e-3

hsa04630:JAK-STAT signaling 

pathway Signal transduction 1.96 4.45 e-3

1
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Table 5(on next page)

Downregulated signaling pathways in the RA synovium and their KEGG categories.

The numbers prefixed with “hsa” are the KEGG identifiers for each pathway. The KEGG

pathway term name along with the KEGG pathway identifier is listed in the column named

“Pathways”. The “Fold enrichment” is calculated based on the number of downregulated

genes which belong to the KEGG pathway term (“Count”), total number of downregulated

genes which are part of the KEGG pathway database (“List Total”), total number of genes

that belong to the KEGG Pathway database (“Population Total”) and number of the KEGG

Pathway database genes which are part of the KEGG pathway term (“Population Hits”).

Precisely, the “Fold enrichment” is the proportion of “Count”/ “List Total” to “Population

Hits”/ “Population Total” The “EASE score” represents the significance of obtaining “count”

genes in the “List Total” for the given KEGG pathway term which has “Population Hits” genes

in the background “Population Total”.
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Pathways KEGG Categories Fold enrichment EASE score

hsa04350:TGF-beta signaling 

pathway

Signal transduction 2.42 9.49 e-3

hsa04152:AMPK signaling 

pathway

Signal transduction 2.30 2.56 e-3

hsa04068:FoxO signaling 

pathway

Signal transduction 2.09 6.57 e-3

hsa04022:cGMP-PKG signaling 

pathway

Signal transduction 1.90 9.85 e-3

hsa04310:Wnt signaling pathway Signal transduction 1.83 3.26 e-2

hsa04024:cAMP signaling 

pathway

Signal transduction 1.62 4.37 e-2

hsa04010:MAPK signaling 

pathway

Signal transduction 1.55 3.27 e-2

1
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Figure 1

The workflow.

(A). Selection of a KEGG pathway representing a phenotype exhibited by the RA

synovium. The differentially expressed genes in the RA synovium were identified from the

analysis of the microarray datasets obtained from GEO database. A KEGG pathway

enrichment analysis was performed on the differentially expressed gene lists. The enriched

pathways were categorized into process and signaling pathways. Based on the shared

differentially expressed genes, a pathway overlap network was created. Osteoclast

differentiation pathway was selected as the pathway of interest as it overlapped with most

number of signaling pathways. (B). Construction and analysis of the osteoclast

differentiation network. The proteins belonging to the KEGG osteoclast differentiation

pathway were termed as “core proteins”. The core proteins were used as an input to the

String DB to obtain the proteins interacting with them (first shell proteins). The interactions

among all the proteins (core and first shell) were also extracted from String DB. The

interactions were validated using PubMed. The directions of the protein interactions were

also obtained. The proteins and the interactions were used to construct a network for

osteoclast differentiation. The gene ontology term enrichment analysis was performed on the

network. Differentially regulated genes were indicated in the network. The gene ontology

term enrichment analysis and the differentially regulated genes were used to identify the

important protein interactions that lead to osteoclast differentiation in the RA synovium. The

protein targets of the drugs used in RA treatment were obtained from DrugBank database

and were indicated in the network.
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Figure 2

Number of up and downregulated genes obtained based on the selection criteria.

The numbers on x-axis represent the following: “1”: selection of the genes at least once by

the algorithm MAS5 and RMA, “2”: selection of the genes at least twice by both the

algorithms, “3”: selection of the genes at least thrice by both the algorithms and so on. The

y-axis represents the number of selected up and downregulated genes. The number of

differentially expressed genes selected at least once by both the algorithms are used in this

study.
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Figure 3

Number of up and downregulated genes shared by pairs of pathways.

The numbers on x-axis represent the sum of all the genes belonging to the pathway pairs.

The y-axis represents the number of up and downregulated genes common to the pairs. The

pathway pairs sharing at least 5 up or 5 downregulated genes are used in this study.
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Figure 4

The KEGG category-wise distribution of the enriched pathways in the upregulated genes

of the RA synovium.

The x-axis represents the KEGG categories as listed in the KEGG database whereas the y-axis

denotes the number of enriched pathways from our study belonging to the KEGG categories.
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Figure 5

The KEGG category-wise distribution of the enriched pathways in the downregulated

genes of the RA synovium.

The x-axis represents the KEGG categories as listed in the KEGG database whereas the y-axis

denotes the number of enriched pathways from our study belonging to the KEGG categories.
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Figure 6

The interaction network of overlapping pathways.

The blue and red pathway nodes denote the process and the signaling pathways

respectively. The white pathway nodes denote the other non-disease pathways. The

connection between the pathway nodes represents sharing of at least five upregulated or

five downregulated genes by the pair of pathway nodes. The size of the node represents the

number of genes present in the pathway. Larger nodes show pathways having more number

of genes, and smaller nodes represents pathways with lower number of genes.
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Figure 7

Overlap analysis of the upregulated process pathway osteoclast differentiation with

other enriched non-disease pathways in the RA synovium.

The x-axis represents the enriched non-disease pathways with which the osteoclast

differentiation pathway share DEGs. The y-axis denotes the number of DEGs shared between

the osteoclast differentiation pathway and each of the enriched non-disease pathways.

Upregulated signaling pathway genes are shown in light blue and upregulated non-signaling

pathway genes in dark blue. The pathway osteoclast differentiation does not share genes

with downregulated pathways.
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Figure 8

Overlap analysis of the enriched downregulated process pathways in the RA synovium.

The x-axis represents the enriched non-disease pathways with which the downregulated

process pathways share DEGs. The y-axis denotes the number of DEGs shared between the

downregulated process pathways and each of the enriched non-disease pathways.

Downregulated signaling pathway genes are shown in light pink and downregulated non-

signaling pathway genes in red. (A) Number of DEGs shared by the pathway “Regulation of

lipolysis in adipocytes” with downregulated pathways. (B) Number of DEGs shared by the

pathway “Vascular smooth muscle contraction” with upregulated pathways. (C) Number of

DEGs shared by the pathway “Vascular smooth muscle contraction” with downregulated

pathways.

PeerJ reviewing PDF | (2018:04:27886:2:0:NEW 7 Sep 2018)

Manuscript to be reviewed



Figure 9

Activation of NF- κB proteins in the osteoclast differentiation network.

The core proteins are represented by thick borders and the shell proteins by thin borders.

Rectangle nodes represent the DNA-binding proteins. The RA drug targets are indicated by

red borders. The degree of differential regulation of the nodes is denoted as follows: red to

grey - downregulation and green – upregulation. The edges of PRKCB are included from

literature.
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Figure 10

A schematic of enhanced ROS production mediating differentiation of osteoclasts in the

RA synovium.

The degree of differential regulation of the nodes in the RA synovium is denoted as follows:

red - downregulation and green – upregulation. The cytokine (TNFSF11) and the membrane

receptors (CSF1R and CD3E) are above the horizontal line. Genes corresponding to the Nox2

complex and the Forkhead Box proteins are within rectangular boxes. The colors of the edges

denote the following: green – activation, red – inhibition, blue – phosphorylation and black –

PP. The dotted edges represent the interactions which involve other intermediate molecules.

The inhibition of Forkhead box proteins by TNFSF11 are included from literature.
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