

Movements and dispersal of brown trout (*Salmo trutta* Linnaeus, 1758) in Mediterranean streams: influence of habitat and biotic factors

Enric Aparicio Corresp., 1, Rafel Rocaspana 2, Adolfo de Sostoa 3, Antoni Palau-Ibars 4, Carles Alcaraz 5

Corresponding Author: Enric Aparicio Email address: enric.aparicio@gmail.com

Abstract Dispersal is a critical determinant of animal distribution and population dynamics, and is essential information for management planning. We studied the movement patterns and the influence of habitat and biotic factors on Mediterranean brown trout (Salmo trutta) by mark-recapture methods in three headwater streams of the Ebro Basin (NE Iberian Peninsula). Fish were sampled by electrofishing on five occasions over 18-24 months and movements of over 3,000 individually tagged trout (age 1+ onwards) were recorded. Most of the tagged fish exhibited limited movement and were recaptured within 100 m from the initial capture section. Small seasonal differences in the movement pattern were observed, but in two of the streams, displacement distances increased prior the spawning period in autumn. The frequency distributions of dispersal distances were highly leptokurtic and skewed to the right and fitted well to a two-group exponential model, thus trout populations were composed of mobile and stationary individuals, the latter being the predominant component in the populations (71.1 - 87.5 % of individuals). The mean dispersal distances, for fish captured at least in three sampling events, ranged 20.7 - 45.4 m for the stationary group and 229.4 - 540.5 m for the mobile group. Moving brown trout were larger than non-moving individuals and exhibited higher growth rates in two of the streams. Habitat features were not consistently linked to movement rates, but there were some interaction effects between stream and habitat characteristics such as depth, cover and water velocity.

¹ Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain

² Gesna Estudis Ambientals, Linyola, Catalonia, Spain

³ Department of Animal Biology and Biodiversity Research Institute (IRBIO), University of Barcelona, Barcelona, Catalonia, Spain

⁴ Department of Environment and Soil Sciences, University of Lleida, Lleida, Catalonia, Spain

⁵ IRTA Marine and Continental Waters, Sant Carles de la Ràpita, Catalonia, Spain

- 1 Movements and dispersal of brown trout (Salmo trutta Linnaeus, 1758) in
- 2 Mediterranean streams: influence of habitat and biotic factors
- 3 Enric Aparicio¹ · Rafel Rocaspana² · Adolfo de Sostoa³ · Antoni Palau-Ibars⁴ · Carles
- 4 Alcaraz⁵
- 5 ¹ (⋈) GRECO, Institute of Aquatic Ecology, University of Girona, E-17071 Girona, Catalonia,
- 6 Spain. e-mail: enric.aparicio@gmail.com ORCID: 0000-0001-8810-0783
- ⁷ Gesna Estudis Ambientals, S.L., Linyola, Catalonia, Spain
- 8 ³ Department of Animal Biology and Biodiversity Research Institute (IRBIO), University of
- 9 Barcelona, Barcelona, Catalonia, Spain
- 10 ⁴ Department of Environment and Soil Sciences, University of Lleida, Lleida, Catalonia, Spain
- 11 ⁵ IRTA Marine and Continental Waters, Carretera Poble Nou Km 5.5, E-43540 Sant Carles de la
- 12 Ràpita, Catalonia, Spain

Abstract

Dispersal is a critical determinant of animal distribution and population dynamics, and is
essential information for management planning. We studied the movement patterns and the
influence of habitat and biotic factors on Mediterranean brown trout (Salmo trutta) by mark-
recapture methods in three headwater streams of the Ebro Basin (NE Iberian Peninsula). Fish
were sampled by electrofishing on five occasions over 18-24 months and movements of over
3,000 individually tagged trout (age 1+ onwards) were recorded. Most of the tagged fish
exhibited limited movement and were recaptured within 100 m from the initial capture section.
Small seasonal differences in the movement pattern were observed, but in two of the streams,
displacement distances increased prior the spawning period in autumn. The frequency
distributions of dispersal distances were highly leptokurtic and skewed to the right and fitted well
to a two-group exponential model, thus trout populations were composed of mobile and
stationary individuals, the latter being the predominant component in the populations (71.1 - 87.5
% of individuals). The mean dispersal distances, for fish captured at least in three sampling
events, ranged 20.7 - 45.4 m for the stationary group and 229.4 - 540.5 m for the mobile group.
Moving brown trout were larger than non-moving individuals and exhibited higher growth rates
in two of the streams. Habitat features were not consistently linked to movement rates, but there
were some interaction effects between stream and habitat characteristics such as depth, cover and
water velocity.

Introduction

33	Dispersal, defined as the movement of individuals between locations, is a key process that
34	allows fish to occupy the most suitable habitat for survival, growth and breeding by adapting to
35	both temporal and spatial changes in environmental or biotic conditions (Railsback et al., 1999;
36	Lucas & Baras, 2001). Fish movement can be highly variable between individuals, species and
37	streams (Rodríguez, 2002). Most research on fish dispersal in streams shows heterogeneous
38	populations comprising both sedentary and mobile individuals (Rodríguez, 2002; Rasmussen &
39	Belk, 2017). The movement distribution (i.e. distance moved vs. probability of occurrence) is
40	then best predicted by leptokurtic dispersal models which are characterized by high peaks
41	associated with the sedentary fish, and longer tails associated with a lower proportion of mobile
42	fish (Skalski & Gilliam, 2000; Rodríguez, 2002). This modelling framework has been applied to
43	describe the general movement patterns of fish and a predictive tool was recently developed
44	based on the positive correlation of movement distances with four variables: fish length, aspect
45	ratio of the caudal fin, stream size, and duration of the study (Radinger & Wolter, 2014). At a
46	local scale, both abiotic and biotic factors affect the degree of movement, variability and
47	dispersal rates. For instance, some studies have reported an increase in exploratory behaviour
48	(i.e. higher proportions of mobile fish) with decreasing habitat heterogeneity (Albanese,
49	Angermeier & Dorai-Raj, 2004; Heggenes et al., 2007); the presence of fish cover (e.g. woody
50	debris and boulders) has been related to a reduction in fish movement (Aparicio & Sostoa, 1999;
51	Harvey, Nakamoto & White, 1999); and population density has been positively linked to fish
52	movement rates (Hesthagen, 1988).
53	The mobility and dispersal patterns of brown trout Salmo trutta Linnaeus, 1758, have been
54	reported to be largely variable. Some populations are mainly sedentary (Northcote, 1992; Burrell

55	et al., 2000; Knouft & Spotila, 2002), while others are dominated by individuals that move
56	extensively (Clapp, Clark Jr & Diana, 1990; Meyers, Thuemler & Kornely, 1992; Ovidio et al.,
57	1998). The movement patterns of brown trout have been widely studied within its native range in
58	central and northern Europe, as well as in its introduced range in North America (see Rodríguez,
59	2002, and references therein), but the information on brown trout movements in rivers flowing to
60	the Mediterranean Sea, in its southern native range, is scarce. There is only a study in the Rhône
61	River focussed on the movements of age 0+ individuals (Vatland & Caudron, 2015). Brown trout
62	populations in the Mediterranean Basin are highly genetically differentiated from central and
63	northern Europe populations and are considered as distinct lineages (Bernatchez, 2001; Cortey,
64	Pla & García-Marín, 2004). These populations have experienced a marked decline in the last
65	decades due to stream habitat degradation (Benejam et al., 2016), overfishing (Almodóvar &
66	Nicola, 2004), and introgressive hybridization with hatchery stocks (Aparicio et al., 2005).
67	Climate change scenarios for the Mediterranean predict additional reductions in brown trout
68	distributional range, due to rising water temperatures (Almodóvar et al., 2012). Consequently,
69	there is an urgent need to develop sound conservation and management strategies for preserving
70	these populations. With increasing river fragmentation, quantifying the scale and magnitude of
71	Mediterranean brown trout dispersal patterns and determining the factors that drive these, are
72	necessary to optimize management planning.
73	The overall purpose of this study was to examine the movement patterns of brown trout
74	populations from three separate streams of a Mediterranean catchment of the Iberian Peninsula
75	and the influence of biotic and abiotic factors. The three study streams are small, have a high
76	gradient, and considerable habitat heterogeneity. When all habitats required to complete the
77	cycle of a fish's life-history are in spatial proximity, lower movement distances are expected

(Albanese, Angermeier & Dorai-Raj, 2004). Also, structural habitat complexity increases protection from predators, refuge from disturbances (*e.g.* flooding) and prey availability, reducing territory size and fish mobility (Heggenes et al., 2007; Závorka et al., 2015). The objectives of this study were to employ mark-recapture approaches over a period of 18 – 24 months to determine (1) the degree of mobility (*i.e.* proportion of stationary and mobile individuals) and extent of displacement distances, (2) seasonal variations in the pattern of movements, and (3) the effect of habitat characteristics and biotic factors on trout movement.

Materials and methods

Study area

The marking and recapturing of individuals were conducted in three streams (Noguera Pallaresa, Flamisell and Noguera Vallferrera) of the Segre River basin (Catalonia, NE Iberian Peninsula) (Fig. 1). The Segre is the largest catchment in the Southern Pyrenees (265 km long, 22580 km² of basin area and about 100 m³ s⁻¹ of average water flow), and is the main tributary of the Ebro River, the river with the highest water flow in the Iberian Peninsula (annual mean is about 426 m³ s⁻¹) discharging into the Mediterranean Sea (for more details see Rovira, Alcaraz & Ibáñez, 2012). A tributary of the Segre River is the Noguera Pallaresa River (154 km of length and 37.1 m³ s⁻¹ of average flow), where three different reaches were selected (Fig. 1): the main stem (42° 44′N, 0° 58′E, hereafter NP) and two tributaries, the Flamisell (42° 27′N, 0° 59′E, FLM) and the Noguera Vallferrera (42° 34′N, 1° 19′E, NV). The three reaches had a mean stream width less than 10 m, showed a high gradient, and channel morphology consisted primarily of pool-run-riffle sequences under a forest canopy. Physical characteristics of study

reaches are shown in Table 1. The hydrological regime is snow-fed, thus, the highest flows generally occur in spring after snowmelt (Ebro Water Authority; http://www.chebro.es/). Brown trout was the only fish species present and populations belong to the Mediterranean lineage (Aparicio et al., 2005). During the study, sport fishing was closed in the study area.

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

101

102

103

104

Sampling design

Study reaches were continuous and ranged from 2400 m long in the NP, 1500 in the FLM to 1200 m long in the NV. The reaches were selected on the basis of being wadeable and the absence of barriers to fish movement or significant tributaries within the study boundaries. Each reach was divided into 25-40 m-long sections (mean length: $30.6 \text{ m} \pm 4.3 \text{ SD}$), the boundaries of which usually coincided with habitat discontinuities in the channel morphology (pool-run-riffle sequence). Brown trout were marked in October 1992 in NP and in March 1993 in NV and FLM. Four subsequent mark-recapture sampling events were conducted in each reach: NP was sampled in 1993 (May and October) and 1994 (July and October), and both NV and FLM reaches were sampled in 1993 (July and October) and 1994 (July and October). Autumn surveys (October) were performed just prior or at the beginning of the spawning season, which in the study area occurs from the end of October to early December. Therefore, movement data from October sampling included the possible fish displacements related to spawning. Sampling sections were isolated with block nets (mesh size 5 mm) and three-pass electrofishing removal was conducted in an upstream direction (500 V, 1.0 A pulsed DC). Captured fish were anaesthetised (MS-222 solution), measured for fork length (FL, mm), and weighed (g). Sex was determined externally for mature individuals in autumn (i.e. October) surveys by the production of milt or visible

124 constituted a permanent batch mark to distinguish recaptured individuals. 125 All fish larger than 120 mm FL (corresponding at least to age 1+ individuals, see 126 Supplementary Figure 1-3) were tagged with uniquely coded Visible Implant Tags (VI-tags; 127 Northwest Marine Technology, Shaw Island, Washington, USA) in the adipose tissue posterior 128 to eye. Fish smaller than 120 mm were not tagged, because the tissue available for placing the 129 tag was too thin, thus leading to extremely low retention rates (Niva, 1995). After handling, fish 130 were allowed to recover from anaesthesia and released into the mid-point of the capture section. 131 In recapture surveys, each fish's VI-tag code was read, and those untagged fish larger than 120 132 mm FL (i.e. captured for the first time or having lost the VI-tag) were tagged following the 133 above procedure. 134 Habitat variables were measured along transects perpendicular to the flow at 10-m intervals. 135 Water depth and mean water velocity (at 0.6 times total water depth) were measured every 1m 136 along transects, and averaged for each section. For each transect, the percent cover of each 137 substrate category (Table 1) was visually estimated, averaged per section and an index of 138 substrate coarseness was derived for each section following Bain, Finn & Booke (1985). Fish 139 cover was estimated as the percentage area of a section covered by woody debris, rocks or 140 undercut banks. 141 Permission for electrofishing and capture of S. trutta individuals was approved by the 142 competent authorities: Departament de Medi Ambient i Habitatge de la Generalitat de Catalunya 143 (current Departament d'Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural) (SF/602) of 144 the regional authorities of Catalonia. 145

evidence of eggs beneath the body wall. The adipose fin was clipped on all captured fish, which

1	1	1
ı	4	n

Data analyses

Fish movement (i.e. distance covered) was measured from the midpoint of the recapture
section to the midpoint of its previous capture section. A movement distance of 0 m was
assigned to individuals captured and recaptured in the same section. Thus, the minimum
detectable movement was the distance between two or more sections (i.e. larger than 25-40 m).
Movement patterns were quantified using frequency distributions (two-tailed) of distances
moved. Positive values were assigned to upstream movements and negative values to
downstream movements. Mark-recapture studies are generally biased since long movements are
less frequently measured than short distances (Albanese, Angermeier & Gowan, 2003). To assess
this source of bias, all movement observations were weighted by determining the total possible
movements sampled for each distance and weighting the under-sampled distances (Porter &
Dooley, 1993; Albanese, Angermeier & Gowan, 2003). The movement distributions were not
significantly different after adjustment (Kolmogorov-Smirnov test, $P > 0.40$ for all comparisons),
suggesting a good study design (Porter & Dooley, 1993). Therefore, unweighted distributions
were used for all analyses.
Trout were classified as moving (individuals leaving the home section between sampling
events) and non-moving (sedentary individuals not leaving the home section) individuals.
Differences in distance covered by moving fish among streams and sampling events were
analysed with analysis of variance (two-way ANOVA). The kurtosis and skewness of the
frequency distribution of distances moved by brown trout were obtained with the package
moments (version 0.14) for program R, and were used as an indicator of individual level
variation in movement behaviour (Skalski & Gilliam, 2000). Dispersal range was estimated as

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

169 the distance between the two most distant sections in which an individual was recorded, and only 170 fish captured at least in three sampling events (elapsed time between first and last capture was 7 to 24 months) were included in the analyses. The frequency distribution of dispersal range was 172 fitted to a two-group exponential function (Rodriguez 2002):

$$f(x) = p\frac{\lambda_s}{2}e^{-\lambda_s x} + (1-p)\frac{\lambda_m}{2}e^{-\lambda_m x}$$

where x is the distance covered, λ_s correspond to the inverse of mean dispersal distance for the stationary component, λ_m correspond to the inverse of mean dispersal distance for the mobile component, p is the proportion of stationary individuals, and thus, 1-p is the proportion of mobile individuals. Parameters p, λ_s and λ_m are estimated from movement data (see Rodriguez, 2002). Estimated movement parameters were then compared to the expected movement parameters for stream-resident brown trout obtained with the package *fishmove* (version 0.3-3) for program R, which models dispersal in relation to species, fish length, aspect ratio of the caudal fin, stream size and duration of the study (Radinger & Wolter, 2014). In order to examine the relationship between fish growth rate and movement, the specific growth rate (SGR, in % day⁻¹) for a given fish in the summer period was calculated as SGR = $(\ln(\text{final fork length}) - \ln(\text{initial fork length})) \times 100 / (\text{days between captures})$. Differences in the growth rate-fork length relationship between moving and non-moving individuals were tested with analysis of covariance (ANCOVA), for each stream. Software Pop/Pro 1.0 (Kwak, 1992) was used to estimate population size per section and capture probability per size class (i.e. trout smaller and larger than 120 mm) from the three-pass electrofishing data. Fish density (individuals ha⁻¹) and biomass (kg ha⁻¹) per section were estimated by dividing number and

weight by the area sampled. Variations in fish density and biomass among streams were analysed

with multiple analysis of variance (MANOVA). MANOVA is used when several dependent

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

variables are measured on each sampling unit. MANOVA compares the mean vectors of k groups; whereas equality of the mean vector implies that the k means are equal for each variable, if two means differ for just one variable then we conclude that the mean vectors of the k groups are different (Sokal & Rohlf, 1995). We used n^2 (eta squared) as a measure of effect size (i.e. importance of factors). Similarly to r^2 , η^2 is the proportion of variation explained for a certain effect. The effects of biotic and abiotic stream features of sampling sections on trout departure ratio (defined as the proportion of individuals leaving section i from the total number of recaptures of trout initially marked in section i) were analysed with Generalized Linear Models (GLMs). We performed a global analysis including the three different streams, and then streams were analysed separately. In each case, an information-theoretic approach was used to find the best approximating models (Burnham & Anderson, 2002). GLMs were built including all possible combinations of environmental and biotic variables, excluding interactions, due to the large number of variables included. Two additional criteria were used to define the set of candidate models: those performing significantly better than the null model and with a variance inflation factor ≤ 5, in order to avoid multicollinearity effects. The second order Akaike Information Criterion (AICc) was used to assess the degree of support for each candidate model. AICc was rescaled to obtain \triangle AICc values (\triangle AICc = AICc_i – minimum AICc), since models with \triangle AICc \leq 2 have the most substantial support. The relative plausibility of each candidate model was assessed by calculating Akaike's weights (w_i) , which range from 0 to 1, and can be interpreted as the probability that a given model is the best model in the candidate set. Because no model was clearly the best one (i.e. $w_i \ge 0.9$) model-average regression coefficients were calculated using the relative importance of each independent variable (Burnham & Anderson, 2002). Model-

averaged coefficients were compared with those from the full model to assess the impact of model selection bias on parameter estimates. All data analyses were performed with R software version 3.3.2.

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

215

216

217

Results

Recapture rates and VI-tag retention

A total of 13,340 individuals were captured and fin-clipped during the study period, and 7050 of them were larger than 120 mm FL and tagged (NP: 2201; FLM: 1181; NV: 3668). Mean FL of tagged fish was 165.1 mm \pm 34.7 SD in the NP, 162.8 mm \pm 38.1 SD in the FLM and 183.0 mm \pm 42.1 SD in the NV. Capture probabilities estimated from electrofishing depletion surveys ranged from 0.40 to 0.88 ($\mu = 0.65$) for trout larger than 120 mm, and from 0.14 to 0.49 $(\mu = 0.38)$ for individuals smaller than 120 mm. The proportion of the new trout individuals (i.e. fish not fin-clipped) larger than 120 mm FL captured for the first time was similar among streams and decreased sharply until the end of the study, with a maximum reduction of about 60 % between the first and the second sampling (Figure 2). The decline in the proportion of new individuals smaller than 120 mm FL captured in the second survey was less pronounced (Figure 2), probably because of recruitment and reduced capturability. Despite the high recapture rates, the recovery percentage of VI-tag (i.e. fish larger than 120 mm) was relatively low due to tag loss. Overall, mean VI-tag retention rate was 45.0 % but varied in relation to fish size. Trout smaller than 180 mm FL at tagging showed mean retention rates of 32.4 % whereas the rate was 74.9 % for trout larger than 240 mm FL.

236

237

Movements and dispersal patterns

Overall, movements of brown trout between consecutive sampling events were relatively
short since the 53.4 % (ranging between 48.1 and 54.4 %) of the total recaptures ($N = 3073$) were
in the same stream section of previous capture. When fish moving out from home section were
analysed separately, most of the displacements were between contiguous sections, and long-
range movements were infrequent; for instance, only the 2.18 % of the movements were over
400 m in NV, being 2.37 % in NP and 3.35 % in FLM. Distance covered by fish moving out
from home section was not significantly related to fork length (ANCOVA, $P > 0.29$ in all rivers)
or length \times season interaction ($P > 0.15$), so an ANOVA was used. Distance covered by fish
showed significant temporal variations in both the NP (ANOVA, $F_{3,426} = 4.49$, $P = 0.004$, $\eta^2 =$
0.24) and NV ($F_{3,795} = 9.45$, $P < 0.0001$, $\eta^2 = 0.26$) streams, with trout covering larger distances
in autumn (Figure 3), but seasonal differences were not significant in the FLM stream ($F_{3, 198}$ =
1.08, P = 0.36).
In the three streams the distance-frequency distributions were highly leptokurtic and skewed
to the right, the Kurtosis values were 28.9 for FLM, 19.6 for NV and 144.6 for NP. The two-
group exponential model provided a good fit to the frequency distributions of dispersal range
(Figure 4). Based on the estimates of p , the proportion of stationary individuals in the three
streams ranged from 71.1 to 87.5 % and, thus, the percentage of mobile individuals varied from
12.5 to 28.9 % (Table 2). The mean dispersal range, calculated as $1/\lambda$ (see methods), ranged
from 20.7 to 45.4 m for the stationary group and from 229.4 to 540.5 m for the mobile group
(Table 2). These dispersal ranges were similar to that expected by the general model for stream
resident brown trout estimated with fishmove package, which calculates a mean movement
distance of 25.1 m for the stationary group and 428.3 m for the mobile group.

Influence of biotic and abiotic factors on movements

262	Several biotic and abiotic factors were associated with brown trout movement patterns.
263	Overall, the information theoretic analysis of the candidate set of GLMs selected eight plausible
264	models (i.e. \triangle AICc < 2) to explain variability in departure ratio (i.e. proportion of individuals
265	leaving section i from the total number of recaptures of trout initially marked in section i) in
266	relation to stream features. The best explanatory variables (SP values in Table 3), were water
267	depth, fish cover and fish biomass. Interestingly, fish biomass was preferentially selected over
268	density, despite the high correlation between them (Pearson's $r = 0.94$, $N = 246$, $P < 0.0001$). All
269	three variables (water depth, cover and biomass) were negatively related to departure ratio; in
270	contrast, organic substrate, water velocity, substrate coarseness and fish density had a positive
271	relationship with departure ratio. Season had the weakest relationship with trout departure ratio.
272	However, the lower correlation between observed and predicted values and larger parameters
273	bias indicated some differences among streams (Table 3, Supplementary Table 1). When
274	analysed separately by streams, similar patterns were observed, with some variations linked to
275	specific stream habitat characteristics (Table 1, Table 3). For instance, in the FLM stream where
276	higher departure ratios (ANOVA, $F_{2,243} = 11.67$, $P < 0.0001$) and lower biomass and density
277	values (MANOVA, Wilks's $\lambda = 0.513$; $F_{4,484} = 47.92$; $P < 0.0001$) were reported, physical
278	features (i.e. fish cover, substrate coarseness and water depth) and fish biomass were the best
279	explanatory variables. Seasonal variation in departure ratio confirmed previous observed results
280	(Figure 3); thus, while no seasonal differences were observed in the FLM stream, autumn
281	departure ratio (i.e. pre-spawn movements) was higher in the NV stream, and lower in the NP
282	stream. In the NV stream, along with fish biomass and season, the most important variable was
283	water velocity, all negatively related to departure ratio. In the NP stream, fish density and

biomass showed a contrasting pattern (Table 3), which might be explained by differences in fish length, since NP fish were the smallest (ANOVA, $F_{2,3070} = 184.60$, P < 0.0001).

Moving brown trout were significantly larger than non-moving individuals in the three study streams (P < 0.029 and $\eta^2 > 0.16$, in all cases), but distances moved were not significantly correlated with trout fork length (P > 0.15, in all cases). In both FLM and NV streams, specific growth rate of moving trout ($\mu \pm$ standard error: 0.132 ± 0.006 % day⁻¹ in the FLM and 0.057 ± 0.002 % day⁻¹ in the NV) was significantly higher than non-moving trout (0.103 ± 0.005 and 0.050 ± 0.001 % day⁻¹) (ANCOVA, $F_{1,242} = 5.73$, P < 0.05, $\eta^2 = 0.19$, in FLM, and $F_{1,1262} = 6.07$, P < 0.05, $\eta^2 = 0.28$ in NV), but no significant differences were observed in the NP stream (0.048 ± 0.002 % day⁻¹ for moving fish and 0.052 ± 0.002 % day⁻¹ for non-moving fish) ($F_{1,327} = 1.06$, P = 0.31).

Discussion

Movements and dispersal patterns

Brown trout exhibited limited mobility and few fish performed long-range movements. Between successive sampling events, a significant proportion of fish moved from their home section, but most of them moved less than 100 m and settled in contiguous sections (*i.e.* adjacent channel units). Individuals move in response to changing resource abundance and quality, thus movement extent should depend on the distance to a suitable habitat (Fausch et al., 2002), with longer movement distances presumably occurring when suitable habitats are widely spaced (Wiens, 2001). Therefore, the low mobility exhibited by brown trout from this study could indicate that the different habitats required to complete its life cycle are in spatial proximity

(Northcote, 1992; Gowan et al., 1994; Albanese, Angermeier & Dorai-Raj, 2004). Spatial habitat
heterogeneity is usually higher in small streams than in larger rivers, where habitat units are
more widely spaced (Gorman & Karr, 1978), and habitat heterogeneity reduces territory size and
mobility (Heggenes et al., 2007). Consequently, limited movements of no more than a few
hundred meters are frequently reported for trout populations in small streams (Heggenes, 1988;
Knouft & Spotila, 2002) when compared to those from large and long rivers, where longer
movements, up to several kilometres, have been observed (Clapp, Clark Jr & Diana, 1990;
Young, 1994; Zimmer, Schreer & Power, 2010). Therefore, the size of the study streams could
have influenced the limited range of movements observed (Woolnough, Downing & Newton,
2009).
Although there was substantial intra-population variation in movement behaviour, the
studied populations were dominated by stationary individuals, in concordance with most of the
studies on movement in stream salmonids (Rodriguez, 2002, and references therein). Our results
also match the estimated movement parameters (i.e. proportion of stationary and mobile
individuals, and mean dispersal distances) provided by predictive models for stream-resident
brown trout (Radinger & Wolter, 2014), for both the stationary and the mobile component. The
displacement range of the stationary component was less than 50 meters, and thus, is considered
as a restricted movement (Rodríguez, 2002). Despite being in low proportion, mobile individuals
are important since they are responsible for exchange between populations and successful
colonization of new habitats (Vera et al., 2010; Kennedy, Rosell & Hayes, 2012).
Many studies dealing with brown trout movements showed a seasonal increase in mobility
due to upstream spawning migration and downstream movement for overwintering (Clapp, Clark
Jr & Diana, 1990; Meyers, Thuemler & Kornely, 1992; Ovidio et al., 1998). Our results showed

330	temporal differences in the distance covered by moving fish, thus suggesting that seasonal
331	changes in environmental conditions or the reproductive cycle of fish affected trout movements.
332	There was an increase in distances moved in autumn surveys in both the NP and the NV stream,
333	just before the spawning period, although this cannot be considered a true spawning migration
334	because movement did not involve most of the population nor were distances moved long-range
335	In streams where spawning sites are located in or near the rearing habitats, as occurred in the
336	studied reaches where gravel beds were widely distributed, spawning-related movements may be
337	minimal or involve short distances (Northcote, 1992; Nakamura, Maruyama & Watanabe,
338	2002).
339	Movement data were based on recaptured (i.e. surviving) tagged fish, thus several potential
340	sources of bias could have affected our results. For instance, VI-tag insertion and adipose fin
341	clipping may result in different behaviour or mortality rate compared to the non-tagged fish.
342	However, studies on salmonid species suggest that adipose fin clipping and VI tag insertion do
343	not affect condition, growth or survival (e.g. Bryan & Ney, 1994; Shepard et al., 1996), thus the
344	behaviour of tagged fish is representative of the population. Another potential source of bias
345	could be related to the relatively low percentage of VI-tags recovered, not only due to tag loss
346	but also to natural mortality, which is expected in a nearly two years study. Although it was not
347	measured, annual mortality for adult brown trout is estimated to be 43-72 % in similar Pyrenean
348	rivers (Gouraud et al., 2000). Tag loss may bias abundance estimates from mark-recapture
349	methods (Frenette & Bryant, 1996), but movement estimates are not biased since differences in
350	behaviour between tagged and tag-loss fish are not expected. Therefore, both mortality and tag
351	loss only affect movement estimates by reducing total data gathered, but this was avoided by
352	maximizing sample size increasing the number of fish tagged. Trout leaving the sampling area

probably also accounted for a percentage of missed recaptures, thus leading to an underestimation of long-range movements (Gowan et al., 1994). However, the high proportion of recaptures of fin-clipped fish suggests that the emigration from the study area was proportionally low compared to the trout population monitored (Gowan et al., 1994).

Relationship of habitat and biotic factors with brown trout movements

Fish movements are mediated by biotic and abiotic factors affecting individual fitness (Gowan et al., 1994; Railsback et al., 1999; Bélanger & Rodríguez, 2002). Our results showed that departure ratio was not consistently linked to particular habitat features, suggesting that movement behaviour probably does not depend on a single parameter but on a complex combination and availability of several factors. For instance, fish inhabiting shallower sections in the FLM stream showed higher departure ratios than those from deeper waters. Among the study streams, the FLM had the lowest mean water depth, therefore deeper waters, which confer greater protection against predators (Lonzarich & Quinn, 1995), were a valuable resource motivating trout movement. In the same sense, sections with higher fish cover in the FLM and NP stream showed lower departure ratios, probably because of the refugia provided from predators and fast currents (Harvey, Nakamoto & White, 1999; Ayllón et al., 2014). Finally, the negative effect of water velocity on departure ratio in the NV stream could be mediated by an increase in prey delivery rate in high velocity areas (Leung, Rosenfeld & Bernhardt, 2009), thus promoting residency.

Movements of stream fishes have been associated with fish size and growth rates. There is evidence from previous studies that movement distances increase with fish length, particularly

for trout larger than 300-400 mm FL (Meyers, Thuemler & Kornely, 1992; Young, 1994; Quinn & Kwak, 2011). In the three study streams moving fish were larger than non-moving trout, but there was no relationship between distance moved and fish size. Results are probably skewed by the scarcity of large fish, since only few individuals (< 0.5 %) exceeded 300 mm FL, or the fact that large dominant fish could displace subordinate individuals, thus leading a movement cascade of fish of all sizes and obscuring length-related patterns (Gowan & Fausch, 2002; Railsback & Harvey, 2002). Mobility is energetically expensive and increases risk of predation since fish have to move through unfamiliar space (Pépino, Rodríguez & Magnan, 2015). Nevertheless, mobility appeared to confer an advantage on trout growth rate. Several authors have reported that, when resources are scattered, mobile fish maximize food supply and compensate energetic costs of movement, thus increasing growth rate (e.g. Hilderbrand & Kershner, 2004; Závorka et al., 2015).

Management implications

Most of the remnant brown trout populations of the Mediterranean lineage are confined to streams where many artificial in-stream barriers have been built for hydropower generation. For example, more than 400 weirs and dams are distributed in the Spanish Pyrenean rivers (Espejo & García, 2010), mainly for small-scale hydropower production. Barriers can restrict movement pathways among critical habitats for spawning, feeding or refuge (Dunham, Vinyard & Rieman, 2011), thus stream longitudinal connectivity is a key consideration in the management and conservation of the brown trout. The low rate of average movement at population level reported here suggests that management of brown trout populations in headwater streams, similar to those

studied here, should focus on the conserving high quality habitats, whereas stream connectivity may not be as critical since relatively small stream length may provide sufficient habitat to meet all life-history needs. However, connectivity could become important when other anthropogenic impacts are present or the population verges the threshold of the minimum viable size (Hilderbrand & Kershner, 2011). Then, the importance of medium and long distance movements may be higher for population persistence, by allowing fish to withstand locally unfavourable conditions or favouring the recolonization after the disturbance (Fausch et al., 2009).

Finally, since brown trout is an important game species, in populations with limited dispersal fishing regulations could exert a high influence on trout abundance. Overfishing and depletion of fishery stocks seem more probable in stream reaches inhabited by trout populations with low mobility because substantial immigration of new individuals or eventual displacement of fish to safer areas (*i.e.* closed fishing reaches) are infrequent. To improve native trout abundance in streams with significant fishing pressure, no-kill regulations are advised or, at least, hardening existing regulations to avoid overexploitation.

Acknowledgements

Authors wish to thank the many people who assisted to fieldwork, especially to F. Casals, M. A. Puig, J. M. Olmo, M. J. Vargas, J. Malo, C. Franco and J. Laborda. We are grateful to the anonymous reviewers for their feedback which was very helpful in improving the manuscript.

References

420	Albanese B, Angermeier PL, Gowan C. 2003. Designing mark–recapture studies to reduce
421	effects of distance weighting on movement distance distributions of stream fishes.
422	Transactions of the American Fisheries Society 132:925–939. DOI: 10.1577/T03-019
423	Albanese B, Angermeier PL, Dorai-Raj S. 2004. Ecological correlates of fish movement in a
424	network of Virginia streams. Canadian Journal of Fisheries and Aquatic Sciences 61:857-
425	869. DOI: 10.1139/f04-096
426	Almodóvar A, Nicola GG. 2004. Angling impact on conservation of Spanish stream-dwelling
427	brown trout Salmo trutta. Fisheries Management and Ecology 11:173–182. DOI:
428	10.1111/j.1365-2400.2004.00402.x
429	Almodóvar A, Nicola GG, Ayllón D, Elvira B. 2012. Global warming threatens the persistence
430	of Mediterranean brown trout. <i>Global Change Biology</i> 18:1549–1560. DOI:10.1111/j.1365
431	2486.2011.02608.x
432	Aparicio E, Sostoa A. 1999. Pattern of movements of adult Barbus haasi in a small
433	Mediterranean stream. Journal of Fish Biology 55:1086-1095. DOI:10.1111/j.1095-
434	8649.1999.tb00743.x
435	Aparicio E, García-Berthou E, Araguas RM, Martínez P, García-Marín JL. 2005. Body
436	pigmentation pattern to assess introgression by hatchery stocks in native Salmo trutta from
437	Mediterranean streams. Journal of Fish Biology 67:931–949. DOI: 10.1111/j.1095-
438	8649.2005.00794.x
439	Ayllón D, Nicola GG, Parra I, Elvira B, Almodóvar A. 2014. Spatio-temporal habitat selection
440	shifts in brown trout populations under contrasting natural flow regimes. <i>Ecohydrology</i>
441	7:569–579. DOI:10.1002/eco.1379

142	Bain MB, Finn JT, Booke HE. 1985. Quantifying stream substrate for habitat analysis studies.
143	North American Journal of Fisheries Management 5:499–500. DOI: 10.1577/1548-
144	8659(1985)5 <mark><499:QSSFHA>2.0.CO;2</mark>
145	10.1577/1548-8659(1985)5<499:QSSFHA>2.0.
146	Bélanger G, Rodríguez MA. 2002. Local movement as a measure of habitat quality in stream
147	salmonids. Environmental Biology of Fishes 64:155-164. DOI: 10.1023/A:1016044725154
148	Benejam L, Saura-Mas S, Bardina M, Solà C, Munné A, García-Berthou E. 2016. Ecological
149	impacts of small hydropower plants on headwater stream fish: from individual to community
150	effects. Ecology of Freshwater Fish 25:295–306. DOI:10.1111/eff.12210
151	Bernatchez L. 2001. The evolutionary history of brown trout (Salmo trutta L.) inferred from
152	phylogeographic, nested clade and mismatch analyses of mitochondrial DNA variation.
153	Evolution 55:351–379. DOI: 10.1554/0014-3820(2001)055[0351:TEHOBT]2.0.CO;2
154	Bryan RD, Ney JJ. 1994. Visible implant tag retention by and effects on condition of a stream
155	population of brook trout. North American Journal of Fisheries Management 14:216-219.
156	DOI: 10.1577/1548-8675(1994)014<0216:VITRBA>2.3.CO;2
157	Burnham KP, Anderson DR. 2002. Model Selection and Multimodel Inference: A Practical
158	Information-Theoretic Approach. New York: Springer-Verlag.
159	Burrell KH, Isely JJ, Bunnell Jr DB, Van Lear DH, Dolloff CA. 2000. Seasonal movement of
160	brown trout in a southern Appalachian river. Transactions of the American Fisheries Society
161	129:1373–1379. 10.1577/1548- <mark>8659(2000)129<1373:SMOBTI>2.0.CO;2</mark> Clapp DF, Clark
162	Jr RD, Diana JS. 1990. Range, activity, and habitat of large, free-ranging brown trout in a
163	Michigan stream. Transactions of the American Fisheries Society 119:1022–1034. DOI:
164	10.1577/1548-8659(1990)119 <mark><1022:RAAHOL>2.3.CO;2</mark>

465 Cortey M, Pla C, García-Marín JL. 2004. Historical biogeography of Mediterranean trout. 466 Molecular Phylogenetics and Evolution 33:831–844. DOI:10.1016/J.YMPEV.2004.08.012 Espejo C, García R. 2010. Agua y energía: producción hidroeléctrica en España. *Investigaciones* 467 Ge áficas 51:107–129. 468 469 Fausch KD, Torgersen CE, Baxter CV, Li HW. 2002. Landscapes to riverscapes: bridging the 470 gap between research and conservation of stream fishes. *BioScience* 52:483-498. DOI: 471 10.1641/0006-3568<mark>(2002)052[0483:LTRBTG]2.0.CO;2</mark> Fausch KD, Rieman BE, Dunham JB, Young MK, Peterson DP. 2009. Invasion versus isolation: 472 473 trade-offs in managing native salmonids with barriers to upstream movement. Conservation 474 Biology 23:859–870. DOI: 10.1111/j.1523-1739.2008.01159.x 475 Frenette BJ, Bryant MD. 1996. Evaluation of visible implant tags applied to wild coastal 476 cutthroat trout and dolly varden in Margaret Lake, Southeast Alaska. North American Journal of Fisheries Management 16:926–930. DOI: 10.1577/1548-477 478 8675(1996)016<0926:EOVITA>2.3.CO;2 479 Gorman OT, Karr JR. 1978. Habitat structure and stream fish communities. *Ecology* 59:507– 480 515. DOI: 10.2307/1936581 481 Gouraud V, Baran P, Lim P, Sabaton C. 2000. Dynamics of a population of brown trout (Salmo 482 trutta) and fluctuations in physical habitat conditions - experiments on a stream in the Pyrenees; first results. In: Cowx IG, ed. Management and ecology of river fisheries. Oxford: 483 484 Fishing News Books, Blackwell Science, 126–142. 485 Gowan C, Young MK, Fausch KD, Riley SC. 1994. Restricted movement in resident stream 486 salmonids: A paradigm lost? Canadian Journal of Fisheries and Aquatic Sciences 51:2626-487 2637. DOI: 10.1139/f94-262

488	Gowan C, Fausch KD. 2002. Why do foraging stream salmonids move during summer?
489	Environmental Biology of Fishes 64:139-153. DOI: 10.1023/A:1016010723609
490	Harvey BC, Nakamoto RJ, White JL. 1999. Influence of large woody debris and a bankfull flood
491	on movement of adult resident coastal cutthroat trout (Oncorhynchus clarki) during fall and
492	winter. Canadian Journal of Fisheries and Aquatic Sciences 56:2161-2166. DOI:
493	10.1139/f99-154
494	Heggenes J. 1988. Effect of experimentally increased intraspecific competition on sedentary
495	adult brown trout (Salmo trutta) movement and stream habitat choice. Canadian Journal of
496	Fisheries and Aquatic Sciences 45:1163-1172. DOI: 10.1139/f88-139
497	Heggenes J, Omholt PK, Kristiansen JR, Sageie J, Økland F, Dokk JG, Beere MC. 2007.
498	Movements by wild brown trout in a boreal river: response to habitat and flow contrasts.
499	Fisheries Management and Ecology 14:333–342. DOI: 10.1111/j.1365-2400.2007.00559.x.
500	Hesthagen T. 1988. Movements of brown trout, Salmo trutta, and juvenile Atlantic salmon,
501	Salmo salar, in a coastal stream in northern Norway. Journal of Fish Biology 32:639-653.
502	DOI:10.1111/j.1095-8649.1988.tb05404.x
503	Hilderbrand RH, Kershner JL. 2004. Are there differences in growth and condition between
504	mobile and resident cutthroat trout? Transactions of the American Fisheries Society
505	133:1042-1046. DOI: 10.1577/T03-015.1
506	Hilderbrand RH, Kershner JL. 2011. Conserving Inland Cutthroat Trout in Small Streams: How
507	Much Stream is Enough? North American Journal of Fisheries Management 20:513-520.
508	DOI: 10.1577/1548-8675(2000)020<0513:CICTIS>2.3.CO;2

09	Dunham JB, Vinyard GL, Rieman BE. 2011. Habitat Fragmentation and Extinction Risk of
10	Lahontan Cutthroat Trout. North American Journal of Fisheries Management 17:1126-1133
11	DOI: 10.1577/1548-8675(1997)017<1126:HFAERO>2.3.CO;2
12	Kennedy RJ, Rosell R, Hayes J. 2012. Recovery patterns of salmonid populations following a
13	fish kill event on the River Blackwater, Northern Ireland. Fisheries Management and
14	Ecology 19:214–223. DOI:10.1111/j.1365-2400.2011.00819.x
15	Knouft JH, Spotila JR. 2002. Assessment of movements of resident stream brown trout, Salmo
16	trutta L., among contiguous sections of stream. Ecology of Freshwater Fish 11:85–92. DOI:
17	10.1034/j.1600-0633.2002.110203.x
18	Kwak TJ. 1992. Modular microcomputer software to estimate fish population parameters,
19	production rates and associated variance. <i>Ecology of Freshwater Fish</i> 1:73-75. DOI:
20	10.1111/j.1600-0633.1992.tb00009.x
21	Leung ES, Rosenfeld JS, Bernhardt JR. 2009. Habitat effects on invertebrate drift in a small trou
22	stream: implications for prey availability to drift-feeding fish. <i>Hydrobiologia</i> 623:113-125.
23	DOI: 10.1007/s10750-008-9652-1
24	Lonzarich DG, Quinn TP. 1995. Experimental evidence for the effect of depth and structure on
25	the distribution, growth, and survival of stream fishes. Canadian Journal of Zoology
26	73:2223–2230. DOI: 10.1139/z95-263
527	Lucas MC, Baras E. 2001. Migration of Freshwater Fishes. Oxford: Blackwell Science.
28	Meyers LS, Thuemler TF, Kornely GW. 1992. Seasonal movements of brown trout in northeast
29	Wisconsin. North American Journal of Fisheries Management 12:433–441. DOI:
30	10.1577/1548-8675 <mark>(1992)012<0433:SMOBTI>2.3.CO;2</mark>)

531	Nakamura T, Maruyama T, Watanabe S. 2002. Residency and movement of stream-dwelling
532	Japanese charr, Salvelinus leucomaenis, in a central Japanese mountain stream. Ecology of
533	Freshwater Fish 11:150–157. DOI: 10.1034/j.1600-0633.2002.00014.x
534	Niva T. 1995. Retention of visible implant tags by juvenile brown trout. <i>Journal of Fish Biology</i>
535	46:997–1002. DOI:10.1111/j.1095-8649.1995.tb01404.x
536	Northcote T. 1992. Migration and residence in stream salmonids-some ecological considerations
537	and evolutionary consequences. Nordic Journal of Freshwater Research 67:5-17.
538	Ovidio M, Baras E, Goffaux D, Birtles C, Philippart JC. 1998. Environmental variability rules
539	the autumn migration of brown trout (Salmo trutta) in the Belgian Ardennes. Hydrobiologia
540	371/372:263–274. DOI: 10.1023/A:1017068115183
541	Pépino M, Rodríguez MA, Magnan P. 2015. Shifts in movement behavior of spawning fish
542	under risk of predation by land-based consumers. <i>Behavioral Ecology</i> 26:996–1004. DOI:
543	10.1093/beheco/arv038
544	Porter JH, Dooley JL. 1993. Animal dispersal patterns: a reassessment of simple mathematical
545	models. Ecology 74:2436-2443. DOI: 10.2307/1939594
546	Quinn JW, Kwak TJ. 2011. Movement and survival of brown trout and rainbow trout in an
547	Ozark Tailwater river. North American Journal of Fisheries Management 31:299-304. DOI:
548	10.1080/02755947.2011.576204
549	Radinger J, Wolter C. 2014. Patterns and predictors of fish dispersal in rivers. Fish and
550	Fisheries 15:456–473. DOI:10.1111/faf.12028
551	Railsback SF, Lamberson RH, Harvey BC, Duffy WE. 1999. Movement rules for individual-
552	based models of stream fish. Ecological Modelling 123:73-89. DOI:10.1016/S0304-
553	3800(99)00124-6

54	Railsback SF, Harvey BC. 2002. Analysis of habitat-selection rules using an individual-based
555	model. Ecology 83:1817-1830. DOI: 10.1890/0012-
556	9658(2002)083[1817:AOHSRU]2.0.CO;2)
557	Rasmussen JE, Belk MC. 2017. Individual Movement of Stream Fishes: Linking Ecological
558	Drivers with Evolutionary Processes. Reviews in Fisheries Science & Aquaculture 25:70-83.
59	DOI: 10.1080/23308249.2016.1232697
60	Rodríguez M. 2002. Restricted movement in stream fish: the paradigm is incomplete, not lost.
61	Ecology 83:1–13. DOI: 10.2307/2680115
62	Rovira A, Alcaraz C, Ibáñez C. 2012. Spatial and temporal dynamics of suspended load at-a-
63	cross-section: The lowermost Ebro River (Catalonia, Spain). Water research 46:3671–3681.
64	DOI: 10.1016/j.watres.2012.04.014
65	Shepard BB, Robison-Cox J, Ireland SC, White RG. 1996. Factors influencing retention of
666	visible implant tags by westslope cutthroat trout in-habiting headwater streams of Montana.
67	NorthAmerican Journal of Fisheries Management 16:913–920. DOI: 10.1577/1548-
68	8675(1996)016<0913:FIROVI>2.3.CO;2
69	Skalski GT, Gilliam JF. 2000. Modelling diffusive spread in a heterogeneous population: A
70	movement study with stream fish. Ecology 81:1685-1700. DOI: 10.1890/0012-
71	9658 <mark>(2000)081[1685:MDSIAH]2.0.CO;2</mark>
72	Sokal RR, Rohlf FJ. 1995. Biometry: the principles and practice of statistics in biological
73	research. Freeman, New York.
74	Vatland S, Caudron A. 2015. Movement and early survival of age-0 brown trout. Freshwater
75	Biology 60:1252–1262. DOI:10.1111/fwb.12551

576	Vera M, Sanz N, Hansen MM, Almodóvar A, García-Marín JL. 2010. Population and family
577	structure of brown trout, Salmo trutta, in a Mediterranean stream. Marine and Freshwater
578	Research 61:672-681. DOI: 10.1071/MF09098
579	Wiens JA. 2001. The landscape context of dispersal. In: Clobert J, Danchin E, Dhondt AA,
580	Nichols JD, eds. <i>Dispersal</i> . New York: Oxford University Press, 97–109.
581	Woolnough DA, Downing JA, Newton TJ. 2009. Fish movement and habitat use depends on
582	water body size and shape. Ecology of Freshwater Fish 18:83-91. DOI: 10.1111/j.1600-
583	0633.2008.00326.x
584	Young MK. 1994. Mobility of brown trout in southcentral Wyoming streams. Canadian Journal
585	of Zoology 72:2078–2083. DOI: 10.1139/z94-278
586	Závorka L, Aldvén D, Näslund J, Höjesjö J, Johnsson JI. 2015. Linking lab activity with growth
587	and movement in the wild: explaining pace-of-life in a trout stream. Behavioral Ecology
588	26:877-884. DOI: 10.1093/beheco/arv029
589	Zimmer M, Schreer JF, Power M. 2010. Seasonal movement patterns of Credit River brown trout
590	(Salmo trutta). Ecology of Freshwater Fish 19:290–299. DOI: 10.1111/j.1600-
591	0633.2010.00413.x
592	

Table 1(on next page)

Stream features during the sampling period.

FLM: Flamisell, NP: Noguera Pallaresa, and NV: Noguera Vallferrera. Mean \pm standard deviation, when necessary, is shown.

Waniah la	Stream							
Variable	FLM	NP	NV					
Length (m)	1500	2400	1200					
Mean elevation (m)	1250	1780	1175					
Mean slope (m km ⁻¹)	53.3	20.8	62.5					
Mean base flow (m ³ s ⁻¹)	1.52	0.95	1.29					
Temperature range (°C)	4.2 - 15.3	0.1 - 15.1	2.5 - 15.4					
pH range	7.3 - 8.9	7.4 - 8.8	6.7 - 8.1					
Conductivity range (µS cm ⁻¹)	77 - 171	46 - 187	20 - 95					
Mean stream width (m)	4.97 ± 1.39	4.34 ± 2.36	6.80 ± 1.09					
Mean water depth (cm)	9.94 ± 4.66	20.02 ± 6.46	17.14 ± 2.77					
Mean current velocity (m s ⁻¹)	0.66 ± 0.26	0.59 ± 0.27	0.70 ± 0.14					
Mean bottom substrate (%)								
Boulders (> 256 mm)	31.47 ± 13.82	30.84 ± 18.74	48.87 ± 12.67					
Cobble $(65 - 256 \text{ mm})$	34.14 ± 11.89	34.68 ± 15.17	32.45 ± 10.95					
Gravel $(2 - 65 \text{ mm})$	15.01 ± 6.17	14.89 ± 10.37	7.69 ± 3.04					
Sand $(0.1 - 2 \text{ mm})$	10.60 ± 4.23	10.77 ± 10.16	3.74 ± 3.04					
Silt (< 0.1 mm)	3.45 ± 2.55	4.41 ± 4.54	2.04 ± 1.13					
Organic	4.33 ± 3.04	4.13 ± 3.17	5.17 ± 3.01					
Mean fish density (Ind. ha ⁻¹)	1345.9 ± 1322.2	1901.4 ± 989.3	3862.5 ± 1559.0					
Mean fish biomass (Kg ha ⁻¹)	67.5 ± 59.8	107.8 ± 82.8	344.7 ± 182.7					
Mean fish cover (%)	15.46 ± 8.81	10.18 ± 7.57	22.47 ± 6.52					

Table 2(on next page)

Parameter estimates from the two-group exponential model to calculate the proportion of stationary (p) and mobile (1 - p) individuals, and mean dispersal range $(1/\lambda)$ of brown trout population.

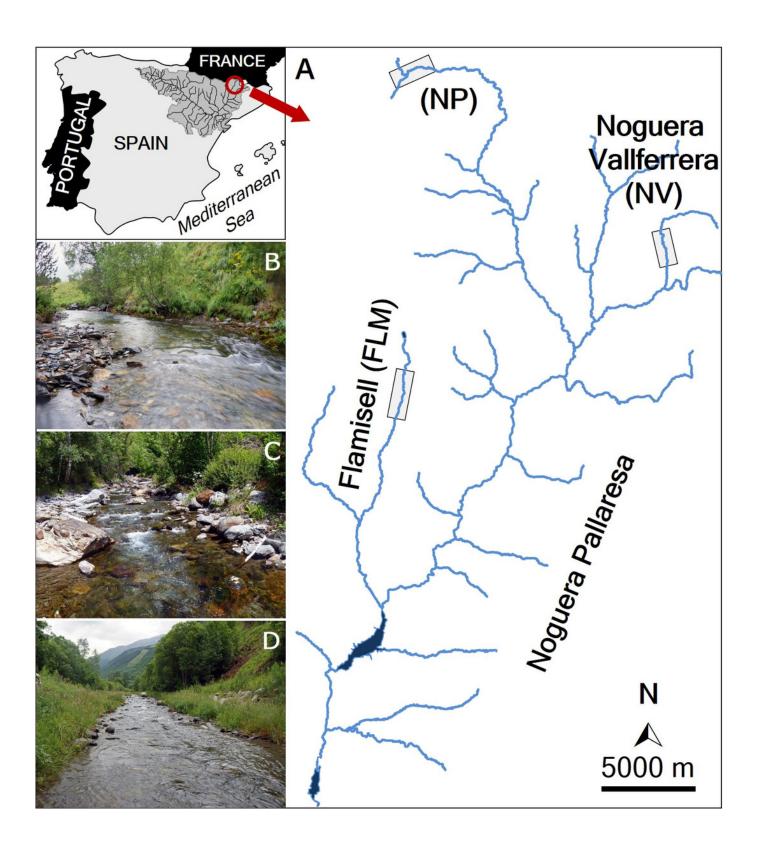
FLM: Flamisell, NP: Noguera Pallaresa, and NV: Noguera Vallferrera. λ (m⁻¹) is the inverse of the mean displacement range, lower values of λ correspond to more mobile individuals.

Stream	Population component	Proportion (%)	Parameter estimate	Mean dispersal range (m)
FLM	Stationary Mobile	87.5 12.5	$\lambda_s = 0.02201$ $\lambda_m = 0.00185$	
NP	Stationary Mobile	85.6 14.4	$\lambda_s = 0.04184$ $\lambda_m = 0.00269$	
NV	Stationary Mobile	71.1 28.9	$\lambda_s = 0.04822$ $\lambda_m = 0.00436$	

Table 3(on next page)

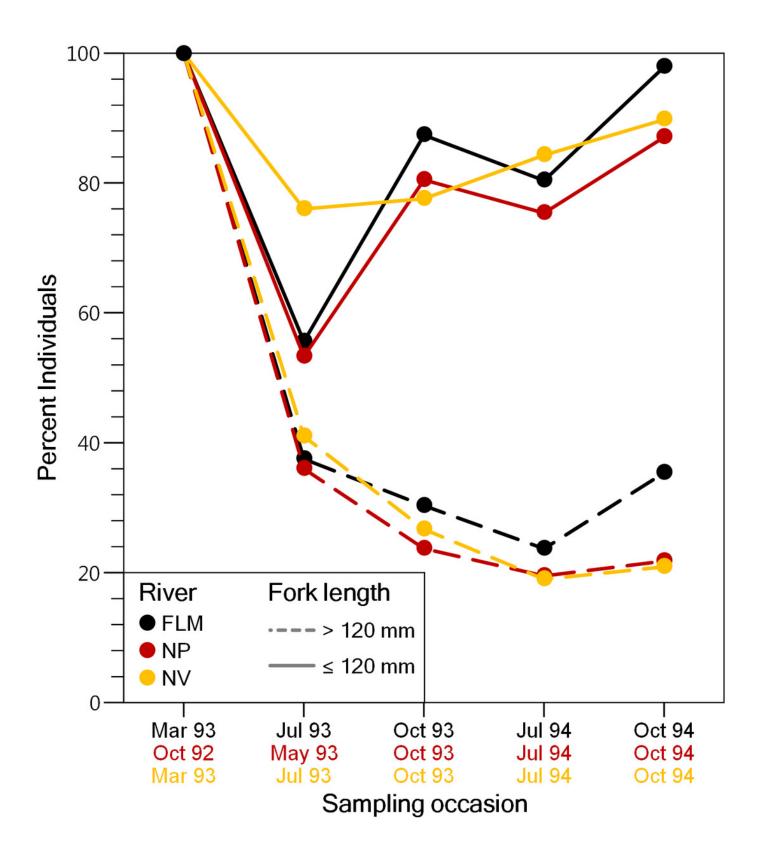
Model averaged parameter estimates, by means of an information theoretic approach, from GLMs analysis of the influence of stream features of sampling sections on brown trout departure ratio (see text for definition).

FLM: Flamisell, NP: Noguera Pallaresa, and NV: Noguera Vallferrera. Model-averaged regression coefficients (β) are parameter coefficients averaged by model weight (w_i) across all candidate models (Δ AlCc < 2) in which the given parameter occurs; selection probability (SP) indicates the importance of an independent variable, and parameter bias is the difference between the averaged estimates (β) and the full model coefficients. The number (N) of candidate models (Δ AlCc < 2) and Pearson's correlation coefficient (r) between observed and model predicted values are also shown.

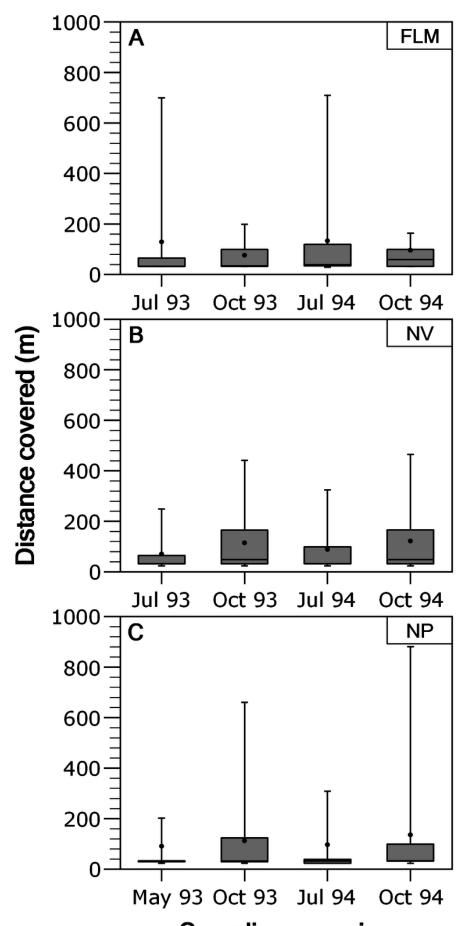


Model parameter	All Rivers Model $N = 8$; $r = 0.47$		FLM Model N = 3; r = 0.79		NP Model N = 12; r = 0.62			NV Model N = 5; r = 0.72				
	β	SP	Bias	β	SP	Bias	β	SP	Bias	β	SP	Bias
Intercept	74.999		0.237	-73.138		-0.227	4.288		4.772	91.815		0.030
Mean Depth (cm)	-1.442	1.000	-0.021	-2.745	1.000	-0.239	-0.123	0.208	-2.289	2.352	0.224	0.019
Fish Cover (%)	-1.109	1.000	-3.069	-1.772	1.000	0.242	-1.339	1.000	-0.396	-0.264	0.366	-0.239
Fish Biomass (kg ha ⁻¹)	-0.017	0.623	-0.782	-0.097	1.000	-0.515	-0.025	0.148	-3.881	-0.038	1.000	-1.123
Organic Substrate (%)	0.118	0.182	-5.555	1.246	0.126	-2.124	0.390	0.292	-2.289	0.761	0.464	0.104
Water Velocity (m s ⁻¹)	0.991	0.153	-10.204	-5.704	0.323	0.867	5.981	0.318	-0.923	-55.562	1.000	-0.214
Fish Density (Ind ha-1)	0.012	0.147	-29.545	Not	select	ed	0.014	0.891	-1.178	No	t selecte	ed
Substrate Coarseness	0.305	0.104	6.702	46.146	1.000	0.021	2.951	0.339	-1.425	4.977	0.212	0.004
Pre Spawn Season	-0.125	0.077	2.550	Noi	select	ed	-9.752	1.000	0.112	14.314	1.000	-0.131

Map of the study area.

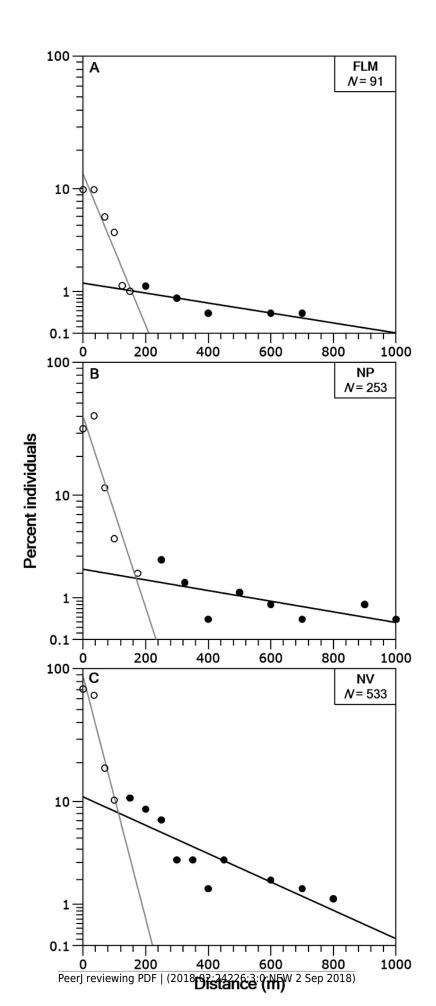

(A) Location of the study streams: Noguera Pallaresa (NP), Flamisell (FLM) and Noguera Vallferrera (NV). Location of the sampled stream reaches is highlighted with a rectangle. The photos show representative habitats in the streams sampled. (B) NP. (C) NV. (D) FLM.

Evolution of the percentage of brown trout \leq 120 mm fork length and >120 mm fork length captured for the first time (*i.e.* adipose fin not clipped), on each sampling event in the study streams.


FLM: Flamisell. NP: Noguera Pallaresa. NV: Noguera Vallferrera.

Box-plot of absolute distance moved, by brown trout individuals recaptured out from home section, per sampling occasion in the study streams.

The box corresponds to the 25th and 75th percentiles, the dark line inside the box represents the median, the error bars are the confidence intervals at the 95 % confidence level, and the filled circle is the mean. (A) Flamisell. (B) Noguera Pallaresa. (C) Noguera Vallferrera.


PeerJ reviewing PDF | (2018 Sampling Occasion

Brown trout frequency distributions of the dispersal range fitted with a two-group exponential model in the study streams.

The solid lines are the linear regression fits for the estimated stationary (open circles) and mobile (filled circles) components of the fish populations. Distance classes are calculated from absolute values of distance moved, y-axis is in logarithmic scale. (A) Flamisell. (B) Noguera Pallaresa. (C) Noguera Vallferrera.

