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ABSTRACT
The role of species’ interactions in structuring biological communities remains
unclear. Mutualistic symbioses, involving close positive interactions between two
distinct organismal lineages, provide an excellent means to explore the roles of both
evolutionary and ecological processes in determining how positive interactions affect
community structure. In this study, we investigate patterns of co-diversification
between fungi and algae for a range of New Zealand lichens at the community,
genus, and species levels and explore explanations for possible patterns related to
spatial scale and pattern, taxonomic diversity of the lichens considered, and the level
sampling replication. We assembled six independent datasets to compare patterns in
phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity
and level of specimen replication. For each dataset, we used the DNA sequences
from the ITS regions of both the fungal and algal genomes from lichen specimens to
produce genetic distance matrices. Phylogenetic congruence between fungi and algae
was quantified using distance-based redundancy analysis and we used geographic
distance matrices in Moran’s eigenvector mapping and variance partitioning to eval-
uate the effects of spatial variation on the quantification of phylogenetic congruence.
Phylogenetic congruence was highly significant for all datasets and a large propor-
tion of variance in both algal and fungal genetic distances was explained by partner
genetic variation. Spatial variables, primarily at large and intermediate scales, were
also important for explaining genetic diversity patterns in all datasets. Interestingly,
spatial structuring was stronger for fungal than algal genetic variation. As the spatial
extent of the samples increased, so too did the proportion of explained variation
that was shared between the spatial variables and the partners’ genetic variation.
Different lichen taxa showed some variation in their phylogenetic congruence and
spatial genetic patterns and where greater sample replication was used, the amount
of variation explained by partner genetic variation increased. Our results suggest that
the phylogenetic congruence pattern, at least at small spatial scales, is likely due to
reciprocal co-adaptation or co-dispersal. However, the detection of these patterns
varies among different lichen taxa, across spatial scales and with different levels of
sample replication. This work provides insight into the complexities faced in deter-
mining how evolutionary and ecological processes may interact to generate diversity
in symbiotic association patterns at the population and community levels. Further,
it highlights the critical importance of considering sample replication, taxonomic
diversity and spatial scale in designing studies of co-diversification.
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INTRODUCTION
Ecologists still do not have a full understanding of how species interactions affect the

structure of biological communities. We have a long history of theoretical and empirical

work on the roles of competition and predation (Chase & Leibold, 2003; Tilman, 1982),

but a much poorer understanding of how positive interactions, such as facilitation

and mutualisms, drive community phenomena, such as species diversity (Gross, 2008;

Stachowicz, 2001). Over the last few decades, there has been an increase in interest in the

role of positive interactions, with many empirical studies showing that it is the balance

between positive and negative interactions that is important in structuring communities

(e.g., Bertness & Callaway, 1994; Elias et al., 2008; LaJeunesse, 2002; Thrall et al., 2007;

Waterman et al., 2011).

Because mutualistic symbioses involve very close positive interactions between two

distinct organismal lineages, they provide an excellent opportunity to specifically explore

how positive interactions influence community structure and to evaluate the relative

importance of evolutionary and ecological processes in the way that positive interactions

affect community structure. Tightly interacting taxa, such as host–parasite systems and

certain plants and their insect pollinators, typically show high degrees of phylogenetic

congruence between hosts and associates, where the phylogeny of one taxon closely tracks

the phylogeny of the partner taxon (Cuthill & Charleston; Light & Hafner, 2008; Quek

et al., 2004; Subbotin et al., 2004), largely due to co-evolutionary processes. What is not

as clear is whether most obligate species-level symbiotic relationships, such as seen in

lichens and corals, also have measureable levels of codivergence. Typically, these diffuse

symbiotic and mutualistic interactions are complicated by variation in partner identity

or where more than one symbiotic partner is involved, such as vascular plants and their

root-inhabiting mutualists (Hollants et al., 2013; Lanterbecq, Rouse & Eeckhaut, 2010;

Walker et al., 2014). Further, it is much less clear that the causal processes involved in

these coevolving symbiotic relationships will produce a pattern of codivergence given the

increased opportunity for host switching.

Lichens are a classic example of a mutualistic symbiosis. Lichen thalli are the result of

an association between a fungus (the mycobiont) and a photobiont, which is usually a

green alga, but may also be a cyanobacterium (Nash, 2008). Around 3–4% of lichens are

tripartite involving a symbiosis of both a green alga and a cyanobacterium (Henskens,

Green & Wilkins, 2012). In all lichens, the photobiont provides photosynthate to the

mycobiont, which in turn provides habitat, water and nutrients to the photobiont

(Honegger, 1991; Nash, 2008). The symbionts of lichens are relatively poorly known

because they are very often difficult to culture and identify, particularly many of the

photobiont partners (Ahmadjian, 1993; del Campo et al., 2013; Grube & Muggia, 2010;
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Honegger, 1991). However, in the last two decades a great deal of molecular work has been

done to address this, showing variable patterns in partner identity and other patterns of

association (DePriest, 2004). This variable, and seemingly diffuse, mutualism provides

a complex model system for addressing questions regarding the role of evolutionary

processes in forming and driving ecological patterns in species interactions and how this

affects community structure.

The first step in understanding how a mutualistic symbiosis might affect community

structure is to determine whether or not there is specificity in the symbiosis. In the case

of lichens, we know that although there is no evidence for very tight co-evolutionary

relationships at the species level, phylogenetic patterns have been observed where

particular fungal taxa preferentially partner with particular algal taxa (Fernández-Mendoza

et al., 2011; Yahr, Vilgalys & Depriest, 2004) resulting in a correlation in the respective

genetic distances of each partner. For example, Widmer et al. (2012) found similar genetic

structures for the lichen symbiosis between the mycobiont, Lobaria pulmonaria, and its

photobiont, Dictyochoropsis reticulata within Europe. Conversely, it seems that some

lichenised algal taxa are capable of partnering with a range of fungal taxa (Beck, 1999);

thus, the specificity of the symbiosis appears to be driven by fungal selectivity (sensu Beck,

Kasalicky & Rambold, 2002). For example, Ruprecht, Brunauer & Printzen (2012) observed

that Antarctic lecideoid lichens were not specific for particular algae, except for two fungal

species, which preferentially associated with a particular algal clade within Trebouxia sp.

Thus, it appears that there is variability in association patterns among different lichen taxa

(Fahselt, 2008).

Several mechanisms are proposed to underpin the patterns in phylogenetic congruence

observed for lichens. First, co-evolutionary processes, whereby one partner adapts to take

better advantage of the symbiosis, may lead to a reciprocal adaptive evolutionary change

in the other partner, although there is little evidence for this in the literature (Yahr, Vilgalys

& DePriest, 2006). Second, many lichens asexually reproduce, either by fragmentation

or specialised structures (Walser, 2004), so that the resulting offspring lichens contain

clones of their parents, otherwise known as ‘vertical transmission’ (Dal Grande et al.,

2012; Werth & Scheidegger, 2011). Sexual reproduction in green algal photobionts (apart

from those in the Trentepholiales) is thought to be extremely rare within lichen thalli

(Friedl & Büdel, 2008; Sanders, 2005), despite evidence of recombination within these

taxa (Kroken & Taylor, 2000). If symbiont co-dispersal is coupled with genetic drift, a

pattern of co-diversification is likely to emerge. However, ‘horizontal transmission’ of

photobionts into newly forming thalli is thought to occur, such as in the form of escaped

zoospores (Beck, Friedl & Rambold, 1998), and population genetics studies show evidence

of algal switching (Dal Grande et al., 2012; Kroken & Taylor, 2000; Nelsen & Gargas, 2008;

Piercey-Normore & DePriest, 2001). Further, most green algal photobionts commonly

occur in a free-living state, although for some taxa, such as Trebouxia, much about their life

cycles and availability in the environment is unknown (Sanders, 2005). A free-living state

is likely to decrease the importance of vertical transmission and decrease the congruence

of phylogenetic patterns. Third, spatial structure in fungal and algal distributions could
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drive patterns in phylogenetic congruence. Spatial structure in either fungi or algae could

arise through dispersal limitation, habitat fragmentation, or niche differentiation, such

as variation in habitat preferences. For example, Werth et al. (2007) showed that the

mycobiont of the cyanobacterial lichen, Lobaria pulmonaria, varied genetically over spatial

scales of less than a few kilometres in a pasture-woodland landscape and suggested that

this could be caused by dispersal limitation among habitat patches. Peksa & Škaloud

(2011) showed that the spatial distribution patterns of Asterochloris in Europe and

North America, the green algal photobiont for two different lichen genera, were driven

by substrate type and relative exposure to rain and sun. If spatial structure in fungal

and algal distributions resulted in limited availability of one or both partners relative

to the other, this would lead to a congruent phylogenetic pattern. For example, Marini,

Nascimbene & Nimis (2011) found that communities of epiphytic lichens with different

photobiont types (Chlorococcoid green algae, Cyanobacteria or Trentepohlia) showed

different biogeographic patterns across climatically different areas within Italy. Thus, if

spatial structure in genetic variation results from differential distributions of algal or fungal

ecotypes, this could result in phylogenetic congruence for specimens compared across

environmental gradients. For example, the patterns in variable algal selectivity that Vargas

Castillo & Beck (2012) observed within the genus Caloplaca in the Atacama Desert in

Northern Chile were related to changing habitat conditions along an altitudinal gradient.

Although much recent research has shown that lichenised fungi specialise on particular

algae regardless of the availability of other species, most work has been conducted at the

within-species and within-genus levels, and much less often at higher levels of phylogenetic

diversity. Such patterns and their explanations, like most ecological phenomena, are likely

to be scale-dependent and related to both small scale processes, such as the dispersal of

lichen propagules, as well as larger scale biogeographic processes and climatic variation.

In addition, these patterns are likely to depend on the amount of phylogenetic diversity

contained within the dataset considered. We expect that if co-evolutionary processes

play a role, then phylogenetic congruence should be stronger when considering higher

levels of phylogenetic diversity because they are the accumulation of a longer period

of evolutionary change. To examine these patterns and effects, we tested patterns of

association for a range of New Zealand lichens at the community, genus, and species

levels. We assembled six independent datasets that varied in the spatial extent of sampling,

taxonomic diversity and the level of specimen replication so that we could compare

patterns in phylogenetic congruence across these variables. We have taken a novel approach

to the analysis of phylogenetic congruence that uses Moran’s eigenvector mapping,

distance-based redundancy analysis and variance partitioning, which allows us to evaluate

the effects of sampling on the quantification of phylogenetic congruence. We interpret

the patterns in the light of the relative importance of the mechanisms driving variation in

co-diversification patterns.
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Table 1 List of the datasets analysed showing the number of specimens sampled, the approximate number of lichen morphotypes, and the
number of sites sampled. Also given are the maximum distance between two sample points (Spatial extent) and the mean (standard deviation)
genetic distance for each matrix. Note that only 28 of the 58 Flock Hill multiple species dataset specimens were mapped and were therefore analysed
separately.

Dataset Number of
specimens

Taxonomic
variation

Number of
sites

Spatial
extent (m)

Algal genetic diversity Fungal genetic
diversity

Mean (S.D.) Range Mean (S.D.) Range

NZ Ramalina 21 Few morphotypes (3) 9 581,576 0.08 (0.05) 0.0–0.16 0.06 (0.04) 0.0–0.11

NZ Usnea 111 Many morphotypes (17) 43 1,251,276 0.09 (0.06) 0.0–0.18 0.05 (0.02) 0.0–0.10

NZ Usnea replicated 83 Several morphotypes (9) 18 882,910 0.10 (0.06) 0.0–0.17 0.05 (0.02) 0.0–0.09

Craigieburn Usnea 36 Several morphotypes (6) 1 1,775 0.04 (0.04) 0.0–0.15 0.03 (0.02) 0.0–0.06

Flock Hill Usnea 66 Few morphotypes (3) 1 1,095 0.03 (0.02) 0.0–0.14 0.03 (0.02) 0.0–0.08

Flock Hill commu-
nity mapped

28 Many lichen genera 1 796 0.05 (0.04) 0.0–0.18 0.11 (0.07) 0.0–0.29

Flock Hill
community

58 Many lichen genera 1 1,141 0.08 (0.07) 0.0–0.49 0.14 (0.06) 0.0–0.30

METHODS
Lichen specimen collection
Lichen thallus samples were collected from many mapped locations around both the North

and South Islands of New Zealand (under New Zealand Department of Conservation

low-impact research and collection permit, CA-31641-FLO). Samples were taken either

from the ground, or from trees and structures like fence posts and stored in paper

envelopes. Each sample was identified to the lowest taxonomic level possible and assigned

a specific sample code. Specimens are held in collections at Lincoln University. Five

non-overlapping sample sets were collected (Table 1): (1) Multiple lichen species collected

on mountain beech (Nothofagus solandri var. cliffortioides) trees within less than 1 km2

of Flock Hill Station (Buckley, 2011), (2) Usnea spp. specimens from Flock Hill Station,

(3) Usnea spp. specimens from Craigieburn Forest Park, (4) Usnea spp. specimens from

sites around New Zealand, and (5) Ramalina spp. specimens from around New Zealand

(Fig. 1).

Molecular analysis
Total DNA was extracted from surface sterilised lichens using the Plant DNA Mini

Kit (Bioline, London, UK) following the manufacturer’s instructions. Photobiont and

mycobiont ITS rRNA were amplified using specific algal (nr-SSU-1780-5′ Algal and ITS4)

and fungal (nr-SSU-1780-5′ Fungal and ITS) primers described by Piercey-Normore &

DePriest (2001). PCR amplification was performed in a 25 µl reaction volume. Each 25 µl

reaction contained 1 × GoTaq® Green Master Mix, 5 pmol of each primer, 10 µg purified

bovine serum albumin (BSA; New England BioLabs, Ipswich, MA, USA) and 1 µl of the

extracted DNA (25–30 µg/µl). The thermal cycle for the algal reaction was as follows:

initial denaturation at 94 ◦C for 2 min, then 35 cycles of denaturation at 94 ◦C for 30 s,

annealing at 50 ◦C for 45 s, extension at 72 ◦C for 2 min, then a final extension at 72 ◦C
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Figure 1 Maps showing sample collection locations for (A) the three New Zealand datasets, (B)
the Craigieburn Usnea dataset and (C) the Flock Hill community and Usnea dataset. Note that the
Craigieburn samples were collected along a road running along an elevation gradient.

for 7 min. The thermal cycle for fungal rRNA amplification was the same as the algal one

except the annealing time was increased to 54 ◦C. Sequences were deposited in GenBank.

We used a GenBank BLAST search of sequences from this dataset to estimate the number of

fungal operational taxonomic units (OTUs) as 19 (see Table S1). In all datasets, including

the Usnea and Ramalina datasets, algal sequences were matched to GenBank sequences

associated with green algae in the genus Trebouxia or closely related genera.

Data analysis
For each of the six datasets, algal and fungal DNA sequences were aligned separately using

‘Prankster’ (Löytynoja & Goldman, 2005) with the default parameters. These alignments

were used to calculate genetic distance matrices (see Table S2) from the raw distances using

uncorrected p-distances (Paradis, 2006) implemented by the ‘dist.dna’ function in the ‘ape’

package in R (R Core Team, 2013). We repeated the analyses using a genetic distance matrix

calculated using the TN93 substitution model (Tamura & Nei, 1993). We also repeated
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these analyses using patristic distances derived from a Bayesian phylogenetic analysis to

enable us to compare this ‘tree-free’ method to one based on a full phylogenetic analysis.

Bayesian trees were calculated using a lognormal molecular clock in BEAST v1.8. We used

these results to calculate patristic distances (sum of branch lengths) from the maximum

likelihood tree (calculated in MEGA v.6.0) using the R package ‘adephylo’. The results

from both alternative analyses (not shown) were congruent with those obtained using

p-distances, so we present the p-distance results only.

To relate fungal and algal genetic distances to each other and to describe their variation

in space, distance matrices were used in a combined analysis using Moran’s eigenvector

mapping and variance partitioning (Borcard, Gillert & Legendre, 2011, pp. 258). This

analysis was used to describe and partition the variation in algal genetic distances between

(a) the fungal genetic distance matrix and (b) a matrix of spatial variables. The spatial

variables were derived using the Moran’s eigenvector maps (MEMs) procedure (Borcard,

Gillert & Legendre, 2011) implemented using the ‘pcnm’ function in the R package ‘vegan’,

which uses a principal coordinates analysis to represent different scales of spatial variation

for the given set of sample locations (Borcard, Gillert & Legendre, 2011). MEM analysis

produces one fewer spatial variables than there are sample points, describing all possible

spatial variation in the data from broad scale variation to very fine scale variation.

Only the most important subset of these spatial variables (MEMs) was included in a

distance-based redundancy analysis (db-RDA) analysis, which relates multivariate data

(algal genetic distance matrix) to explanatory matrices (fungal genetic distance matrix

and spatial variables). The selected MEMs were those that were significantly related

to the algal distance matrix in a distance-based RDA and forward selection procedure

using the ‘capscale’ and ‘ordistep’ functions in the ‘vegan’ package in R (Oksanen et al.,

2013). Variance partitioning calculations were conducted following procedures outlined

in Borcard, Gillert & Legendre (2011). The ‘capscale’ function performs a redundancy

analysis that seeks the series of linear combinations of the explanatory factors that best

describe variation in the response matrix, constrained by the two explanatory matrices

(Borcard, Gillert & Legendre, 2011). The variance partitioning procedure computes R2

canonical values analogous to the adjusted R2 values produced in multiple regression

(Peres-Neto et al., 2006). The analysis indicates how much total variation in the response

matrix (e.g., algal genetic distance) is explained by each of the explanatory matrices alone,

as well as the component of shared variation, e.g., spatially structured variation in fungal

genetic distances. This analysis was also performed using the fungal genetic distance matrix

as the dependent matrix and the algal genetic distance matrix as the explanatory matrix to

allow comparison of the degree of spatial correlation in each of the matrices.

To test the significance of the phylogenetic congruence between fungi and algae for each

of the six datasets, we used the Procrustes approach to co-phylogeny (PACo, Balbuena,

Mı́guez-Lozano & Blasco-Costa, 2012). This procedure performs a principal coordinates

analysis on the algal genetic distance matrix followed by a Procrustes rotation of the fungal

genetic distance matrix, while retaining the information that algae and fungi are paired

in particular lichen specimens (Balbuena, Mı́guez-Lozano & Blasco-Costa, 2012). A sum
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of squares is calculated from the individual residuals for each specimen that represents

the lack of fit of the fungal genetic distance matrix onto the principal coordinate analysis

result for the algal genetic distance matrix (Balbuena, Mı́guez-Lozano & Blasco-Costa,

2012). The algal–fungal pairing matrix, i.e., which alga is paired with which fungus, is then

randomised 10,000 times and the sums of square values recalculated. The observed sum

of squares value is then compared to the distribution of values from the randomisations

to determine the probability of obtaining the observed result under random expectation

(Balbuena, Mı́guez-Lozano & Blasco-Costa, 2012). The magnitude of the residual for each

lichen specimen shows its relative lack of fit to a co-diversification pattern. Therefore, for

three datasets for which we had additional information on specimen traits, we compared

individual residuals among specimens to determine which ones contributed most to

the observed association pattern. These three datasets (and trait information) were the

Flock Hill community (growth form), Flock Hill Usnea and New Zealand Usnea datasets

(apothecia present or absent). Raw genetic and geographic distance matrices are provided

in Tables S1 and S2.

RESULTS
The six datasets captured a wide range of geographic extent and, unsurprisingly, the

datasets with greatest numbers of different lichen morphotypes contained the greatest

fungal genetic diversities (Table 1); fungal genetic diversity was strongly correlated with the

spatial extent of sampling (Pearson’s r = 0.91; n = 6). However, algal genetic diversity was

not correlated with fungal genetic diversity (Pearson’s r = 0.10; n = 6) or with the spatial

extent of sampling (Pearson’s r = −0.10; n = 6).

The db-RDA showed that spatial variables were important for explaining fungal and

algal genetic diversity patterns in all datasets (Table 2, Significant MEMs). Large-scale

variables, i.e., low numbered MEMs, were important for all spatially-structured datasets.

Genetic variation in Ramalina fungi and their associated algae was significantly related

to several large-scale MEMs, showing that spatial pattern in relatedness varied at the

larger scales within this spatial extent, such as between the North and South Islands

(Table 2). Some intermediate scale MEMs were also important, illustrating additional,

more complex, spatial patterns. Similarly, for the Usnea datasets, large-scale MEMs were

of greatest importance, along with some intermediate-scale, but no very fine-scale, MEMs.

Some intermediate-scale MEMs were important in explaining algal and fungal variation in

the Flock Hill community dataset (Table 2).

Variance partitioning showed that a large proportion of variance in both the algal

and fungal genetic variation was explained by genetic variation in the partner (Fig. 2).

In general, the proportion of explained variation was high, at 75% or more (Table 2,

Fig. 2). Interestingly, across all datasets for which spatial variation was important, the

fungal genetic variation was better explained by spatial variables than was the algal genetic

variation for the same lichens (Fig. 2). As the spatial extent of the samples increased, so too

did the proportion of explained variation that was shared between the spatial variables and

the partners’ genetic variation (Fig. 2).

Buckley et al. (2014), PeerJ, DOI 10.7717/peerj.573 8/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.573/supp-1
http://dx.doi.org/10.7717/peerj.573/supp-1
http://dx.doi.org/10.7717/peerj.573/supp-2
http://dx.doi.org/10.7717/peerj.573


Table 2 Results from db-RDA with variance partitioning and Procrustes approach to co-phylogeny giving the P-value from a test randomising
the association matrix for fungi and algae for the six independent datasets and the full Flock Hill community dataset. Note that only 28 of the 58
Flock Hill multiple species dataset specimens were mapped and were therefore analysed separately from the full dataset. Variance partitioning
divides the total variance up into portions explained by the partner genetic distance matrix (Partner), the purely spatial portion (Space), the
spatially structured variation in the partner matrix (Shared) and unexplained variation (Unexpl.). The significant MEMs are given in order of
their significance. For each dataset, there are n − 1 MEMs in the total set and smaller MEM numbers represent larger-scale spatial pattern.

Dataset Significant MEMs Partner Shared Space Unexpl. P

Dependent matrix: algae

NZ Ramalina 1, 5, 3, 2, 7 0.21 0.65 0.09 0.06 0.016

NZ Usnea 1, 4, 6, 12, 17, 7, 3, 9, 2, 5, 45, 8, 63, 38, 41, 28, 54 0.39 0.41 0.08 0.12 <0.001

NZ Usnea replicated 4, 5, 1, 3 0.89 0.07 0.00 0.04 <0.001

Craigieburn Usnea 2, 9 0.87 0.00 0.01 0.12 0.021

Flock Hill Usnea 16 0.62 0.01 0.01 0.35 0.030

Flock Hill community mapped 9, 5 0.64 0.08 0.11 0.12 <0.001

Flock Hill community – 0.65 – – 0.35 <0.001

Dependent matrix: fungi

NZ Ramalina 1, 3, 5, 7, 9, 10, 2 0.32 0.62 0.02 0.03 0.025

NZ Usnea 1, 4, 12, 3, 8, 6, 9, 45, 17, 54, 13, 38, 41, 16, 5, 56, 7 0.45 0.23 0.12 0.2 <0.001

NZ Usnea replicated 4, 3, 31, 1, 17, 5, 9 0.72 0.01 0.02 0.25 <0.001

Craigieburn Usnea 7, 12, 13, 15, 16, 3 0.55 0.02 0.3 0.14 0.024

Flock Hill Usnea 1 0.62 0.00 0.08 0.30 0.022

Flock Hill community mapped 11, 1 0.61 0.05 0.09 0.25 0.002

Flock Hill community – 0.66 – – 0.34 <0.001

PACo analysis showed that the co-diversification for all datasets, regardless of whether

the dependent matrix was the algae or the fungi, was significant at the alpha = 0.05

level (Table 1), indicating that it is very unlikely that the correlations in the fungal and

algal genetic distances have arisen by chance. When comparing the individual residuals

from the PACo analysis, for the Flock Hill community dataset, the Usnea and Ramalina

specimens, which made up all of the fruticose specimens, had relatively good fit to the

co-diversification pattern, compared to most other taxa (Fig. 3). For the Flock Hill Usnea

and New Zealand Usnea datasets, the presence of apothecia did not appear to be related to

the relative specimen contribution to the lack of phylogenetic congruence (Fig. 3).

DISCUSSION
We show that there is a strong and significant pattern of phylogenetic congruence for

the algae and fungi found in New Zealand lichens, both across multiple taxa within

a community and within two widespread genera sampled at spatial extents from less

than 1 km2, to the whole country (c. 260,000 km2). For instance, at the small spatial

scales of the Flock Hill study site, there was surprisingly high phylogenetic congruence,

as demonstrated by the high variance explained by partner genetic variation. Such

congruence suggests that fungi and algae are not randomly distributed across the lichen

symbiosis for the taxa considered. Our results show that this non-random pattern is
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Figure 2 Bar charts showing variance partitioning for six independent datasets modelled as algal
genetic variance as a function of fungal genetic variance and spatial variation (A) and fungal genetic
variance as a function of algal genetic variance and spatial variation (B). The total variation in genetic
distance is explained by partner genetic distance (red), independent spatial variation (blue), and spatially-
structured variation in partner genetic distances (purple). Unexplained variation is shown in grey. The
number of specimens sampled (n) is given for each dataset.

affected by (1) spatial scale, (2) taxon considered, (3) taxonomic diversity and (4) level

of sample replication.

The amount of genetic variation explained by spatially-structured partner genetic

variation increased with increasing spatial extent (Fig. 2) suggesting that a large amount

of phylogenetic congruence is likely to be due to the distributions of fungi and algae at

larger, rather than smaller, spatial scales. In addition, the spatial structuring of Usnea and

Ramalina fungal genetic distances was more prominent than for algae, suggesting that

drivers of fungal distributions were more important in determining these congruence

patterns than drivers of algal distributions. It appears that the algae are more dependent

on the distribution of the fungi than the fungi are on the algae. Thus, the strong spatial

signal in our results shows that at large spatial scales, and consequently larger taxonomic

scales in the case of the four Usnea datasets, at least some of the co-diversification pattern

appears likely to be due to processes other than co-evolution or vertical transmission. If

factors such as variation in habitat preferences or photobiont availability were important,

we would expect to see an increase in the proportions of genetic variance being explained

by spatially-structured variation in the genetic distances of the partners. This is indeed the

result we observe across the four Usnea datasets. One other paper that mentions the effects

of spatial scale on phylogenetic congruence patterns is a study of Cladonia lichens across
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Figure 3 Bar charts showing the individual lichen specimen contribution to the Procrustes sums of
squares for (A) the New Zealand Usnea dataset (n = 111), (B) the Craigieburn Usnea dataset (n = 36)
and(C) the Flock Hill all specimen dataset (n = 58). Dashed line indicates the median sums of squares
value. Bars for (C) are coloured by growth form: crustose (black), foliose (red) and fruticose (green) and
for the other two datasets black bars indicate specimens that had apothecia and white bars are those that
were asexual. Note that in (C) all but the first from the left of the fruticose specimens were specimens of
Usnea or Ramalina.

six discrete rosemary scrub sites in three regions in Florida (Yahr, Vilgalys & Depriest,

2004). Their findings illustrated that, across Florida, photobiont genetic variation was not

significantly spatially structured, despite different fungi occurring at different sites. These

contrasting findings suggest that different patterns of phylogenetic congruence may occur

in different lichen taxa.

The variation in the patterns from the PACo for individual lichen specimens also suggest

that the taxon considered may affect the observed phylogentic congruence pattern. The

fruticose taxa had lower residual values in the PACo analysis showing that they contributed

relatively more to the phylogentic congruence pattern than did crustose and foliose

taxa. However, these lichen specimens were all Usnea and Ramalina suggesting that this

variation may have a phylogenetic basis, rather than being due to the life form. There was

little pattern observed when we related the presence of apothecia to their contribution to

the co-diversification pattern for the Usnea-only datasets (Fig. 3) suggesting that, at least

at this scale and level of replication, ability for the fungal component to sexually reproduce

had little to do with the observed pattern. Residual values are not comparable among

datasets, so it is not possible to evaluate these differences among spatial scales. Overall,
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these results are consistent with the variable patterns in lichen co-diversification in the

literature (Ruprecht, Brunauer & Printzen, 2012; Vargas Castillo & Beck, 2012).

Our study encompassed a range of taxonomic diversities for both fungi and algae.

Specifically, when fungal diversity was very high, algal diversity was also relatively high,

despite the very small spatial scale (Table 1, Flock Hill community dataset). For Usnea,

when fungal genetic diversity was low, algal diversity was low or high depending on

whether the spatial scale was small or large, respectively (Table 1). However, if we consider

only the two datasets at the smallest spatial scale, despite the variation in genetic diversity,

the pattern of phylogenetic congruence did not vary; the Flock Hill datasets both show

high levels of phylogenetic congruence despite having the largest difference in genetic

diversity (Fig. 2). This is consistent with arguments suggesting that coevolution is not

an important driver of the lichen symbiosis (Yahr, Vilgalys & DePriest, 2006), because

if coevolution was important, then we would expect to see an increase in the degree of

phylogenetic congruence with increasing genetic diversity.

By contrasting the result from the NZ Usnea dataset and the NZ Usnea replicated

dataset, we can consider the effects of within-site replication on the phylogenetic con-

gruence signal. This result shows that where greater replication was used, the amount of

variation explained by partner genetic variation increased. This highlights the importance

of considering sampling design in studies of phylogenetic congruence.

This work leads us to more questions regarding variation in phylogenetic congruence

patterns and its causes, which are likely to be scale-dependent. We need better under-

standing of the factors influencing association patterns including algal availability and

niche differentiation, dispersal (metapopulation dynamics), and reproductive traits.

In particular, we need to understand the effects of lichen reproductive modes better as

many lichens reproduce both sexually and asexually. When the fungal component sexually

reproduces, the symbiosis must re-form which gives the fungus an opportunity to change

symbiotic partners. With asexual reproduction, the fungus and alga disperse together,

and so, a predominance of asexual reproduction may be one of the reasons we see such a

strong co-diversification signal in these taxa. However, the results of this study suggest that

the spatial distributions of the fungi and algae may also be important in determining the

nature of the symbiosis, particularly at larger spatial scales, as has been observed in some

parasite lineages (e.g., du Toit et al., 2013). Thus, we need to do more work on algal and

fungal availability to determine if habitat preferences and/or dispersal limitation led to

some of the spatial patterns that we see. In addition, we need better understanding of the

availability of free living algae to lichens and what their microhabitat preferences are.

The analyses used in this study do not require phylogenetic trees. The advantage of

not requiring phylogenetic trees is that we avoid computationally intensive methods

when generating distance matrices, but arrive at the same conclusions in this case. The

disadvantage of not using phylogenetic trees is that the results cannot be placed explicitly in

a phylogenetic context denying the opportunity to reconstruct individual evolutionary

events, such as algal switches among fungal lineages. However, these global analysis

methods provide a broad picture of codiversification patterns, which is a fair, and possibly
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more accurate, reflection of the diffuse nature of the lichen symbiosis. Specifically, this

study is consistent with previous research showing that, despite the diffuse nature of the

lichen mutualistic symbiosis, there is strong selectivity within the association. We show

that despite spatial structuring in algal, and particularly fungal, distributions at large

spatial scales, the phylogenetic congruence pattern, at least at small spatial scales, is due to

either reciprocal co-adaptation or, more likely, to co-dispersal. However, the influence of

these processes is likely to differ among different lichen taxa. This work gives us insight into

some of the complexities we face in determining how evolutionary and ecological processes

may interact to generate diversity in symbiotic association patterns at the population and

community levels.

ACKNOWLEDGEMENTS
The authors would like to thank: Elizabeth Bargh, Jennifer Bannister, Alison Knight,

Mike Bowie, John Marris, Dan Blachon, Brad Case and Sam Case for specimen collection;

Ursula Brandes, Hamish Maule, Ben Myles and Natalie Scott for field assistance;

Richard Hill for land access permission; Ben Myles, David Galloway, Jennifer Bannister,

and Alison Knight for lichen identification; Dalin Brown, Seelan Baskarathevan and

Chantal Probst for assistance with molecular analysis; Norma Merrick for DNA sequenc-

ing; Brad Case for GIS work; the Lincoln University Spatial Ecology and Molecular Ecology

Groups for discussion; and Richard Cowling, Terry Hedderson and one anonymous

reviewer for suggestions that greatly improved this manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Funding for this project was provided by Lincoln University, the Brian Mason Scientific

and Technical Trust, the Canterbury Botanical Society, and the Bayer Boost Scholarships

programme. The funders had no role in study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Lincoln University.

The Brian Mason Scientific and Technical Trust.

The Canterbury Botanical Society.

The Bayer Boost Scholarships programme.

Competing Interests
Hannah L. Buckley is an Academic Editor for PeerJ.

Author Contributions
• Hannah L. Buckley conceived and designed the experiments, performed the experi-

ments, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,

prepared figures and/or tables, reviewed drafts of the paper.

Buckley et al. (2014), PeerJ, DOI 10.7717/peerj.573 13/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.573


• Arash Rafat conceived and designed the experiments, performed the experiments,

analyzed the data, wrote the paper, reviewed drafts of the paper.

• Johnathon D. Ridden performed the experiments, analyzed the data, wrote the paper,

reviewed drafts of the paper.

• Robert H. Cruickshank conceived and designed the experiments, analyzed the data,

contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the

paper.

• Hayley J. Ridgway conceived and designed the experiments, performed the experiments,

contributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or

tables, reviewed drafts of the paper.

• Adrian M. Paterson wrote the paper, reviewed drafts of the paper.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving

body and any reference numbers):

Field collections were approved by the New Zealand Department of Conservation under

a low-impact research and collection permit (CA-31641-FLO).

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.573#supplemental-information.

REFERENCES
Ahmadjian V. 1993. The lichen symbiosis. New York: Wiley.

Balbuena JA, Mı́guez-Lozano R, Blasco-Costa I. 2012. PACo: a novel Procrustes application to
cophylogenetic analysis. PLoS ONE 8:e61048 DOI 10.1371/journal.pone.0061048.

Beck A. 1999. Photobiont inventory of a lichen community growing on heavy-metal-rich rock.
The Lichenologist 31:501–510 DOI 10.1017/S0024282999000651.

Beck A, Friedl T, Rambold G. 1998. Selectivity of photobiont choice in a defined lichen
community: inferences from cultural and molecular studies. New Phytologist 139:709–720
DOI 10.1046/j.1469-8137.1998.00231.x.

Beck A, Kasalicky T, Rambold G. 2002. Myco-photobiontal selection in a Mediterranean
cryptogam community with Fulgensia fulgida. New Phytologist 153:317–326
DOI 10.1046/j.0028-646X.2001.00315.x.

Bertness MD, Callaway R. 1994. Positive interactions in communities. Trends in Ecology &
Evolution 9:191–193 DOI 10.1016/0169-5347(94)90088-4.

Borcard D, Gillert R, Legendre P. 2011. Numerical ecology with R. New York: Springer.

Buckley HL. 2011. Isolation affects tree-scale epiphytic lichen community structure on New
Zealand mountain beech trees. Journal of Vegetation Science 22:1062–1071
DOI 10.1111/j.1654-1103.2011.01315.x.

Chase JM, Leibold MA. 2003. Ecological niches: linking classical and contermporary approaches.
Chicago: The University of Chicago Press.

Buckley et al. (2014), PeerJ, DOI 10.7717/peerj.573 14/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.7717/peerj.573#supplemental-information
http://dx.doi.org/10.1371/journal.pone.0061048
http://dx.doi.org/10.1017/S0024282999000651
http://dx.doi.org/10.1046/j.1469-8137.1998.00231.x
http://dx.doi.org/10.1046/j.0028-646X.2001.00315.x
http://dx.doi.org/10.1016/0169-5347(94)90088-4
http://dx.doi.org/10.1111/j.1654-1103.2011.01315.x
http://dx.doi.org/10.7717/peerj.573


Cuthill JH, Charleston M. Phylogenetic codivergence supports coevolution of mimetic Heliconius
butterflies. PLoS ONE 7:e36464 DOI 10.1371/journal.pone.0036464.

Dal Grande F, Widmer I, Wagner HH, Scheidegger C. 2012. Vertical and horizontal photobiont
transmission within populations of a lichen symbiosis. Molecular Ecology 21:3159–3172
DOI 10.1111/j.1365-294X.2012.05482.x.

del Campo EM, Catala S, Gimeno J, del Hoyo A, Martı́nez-Alberola F, Casano LM, Grube M,
Barreno E. 2013. The genetic structure of the cosmopolitan three-partner lichen Ramalina
farinacea evidences the concerted diversification of symbionts. FEMS Microbiology Ecology
83:310–323 DOI 10.1111/j.1574-6941.2012.01474.x.

DePriest PT. 2004. Early molecular investigations of lichen-forming symbionts: 1986–2001.
Annual Review of Microbiology 58:273–301 DOI 10.1146/annurev.micro.58.030603.123730.

du Toit N, Van Vuuren BJ, Matthee S, Matthee CA. 2013. Biogeography and host-related factors
trump parasite life history: limited congruence among the genetic structures of specific
ectoparasitic lice and their rodent hosts. Molecular Ecology 22:5185–5204
DOI 10.1111/mec.12459.

Elias M, Gompert Z, Jiggins C, Willmott K. 2008. Mutualistic interactions drive ecological niche
convergence in a diverse butterfly community. PLoS Biology 6:e300
DOI 10.1371/journal.pbio.0060300.

Fahselt D. 2008. Individuals and populations of lichens. In: Nash TH, ed. Lichen biology. 2nd
edition. Cambridge: Cambridge University Press.

Fernández-Mendoza F, Domaschke S, Garcı́a MA, Jordan P, Martı́n MP, Printzen C. 2011.
Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata.
Molecular Ecology 20:1208–1232 DOI 10.1111/j.1365-294X.2010.04993.x.
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