1	Modulating factors over the abundance and distribution of Achelous spinimanus
2	(Latreille, 1819) (Decapoda, Portunoidea): a fishery resource in the Southeastern
3	Brazilian littoral
4	Aline Nonato de Sousa ¹ , Giovana Bertini ² , Fabiano Gazzi Taddei ³ , Rogério Caetano Costa ⁴ ,
5	Thiago Elias da Silva ¹ & Adilson Fransozo ¹
6	¹ Núcleo de Estudos em Biologia, Ecologia e Cultivo de Crustáceos (NEBECC), Instituto de
7	Biociências de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu
8	São Paulo, Brasil;
9	² Núcleo de Estudos em Biologia, Ecologia e Cultivo de Crustáceos (NEBECC), Universidade
10	Estadual Paulista "Júlio de Mesquita Filho", Registro, São Paulo, Brasil;
11	³ Laboratório de Estudos de Crustáceos Amazônicos (LECAM), Universidade do Estado do
12	Amazonas, Parintins, Amazonas, Brasil;
13	⁴ Laboratório de Biologia de Camarões Marinhos e de Água Doce (LABCAM), Universidade
14	Estadual Paulista "Júlio de Mesquita Filho", Bauru, São Paulo, Brasil;
15	
16	Corresponding author: Aline Sousa¹
17	E-mail address: alinensousa1@ibb.unesp.br
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	

ABSTRACT

34

35

36

37

38

39

40

41 42

43

44

45

46 47

48

49 50

51

52

53

54 55

56 57

58

59

60

61

62

63

64

65

66

67

This study analyzes the association of environmental factors (bottom water temperature and salinity, and sediment texture and associated organic matter content) and the spatiotemporal distribution of the swimming crab Achelous spinimanus. We collected the swimming crabs from January 1998 through December 1999 by trawling with a shrimp-fishing boat outfitted with double-rig nets. The sampled localities were the following bays: Ubatumirim (UBM), Ubatuba (UBA) and Mar Virado (MV), which present distinct physiographic features, in the northern littoral from São Paulo State (Brazil). We sampled 1.911 crabs (UBM = 351; UBA = 1.509; MV_= 51), with significant differences among their abundances, which were observed in each bay and trawl sites. The specimens' distribution was primarily associated with the sediment features, since the higher abundance of swimming crabs was registered in sites in which sediment was composed mainly ofby sand grains, i.-e., classified in the higher classes of granulometry (gravel, very coarse sand and intermediate sand). However, it is noteworthy that the sampling site, in which wWe registered the highest abundance of A. spinimanus in a naturally excluded fishing site composed of heterogeneous sediment grains is a naturally excluded fishing area, besides, it is composed by heterogeneous sediment grains. Hence, one may consider that the sediment heterogeneity allied to other biotic and abiotic factors are probably the most effectives modulators acting over the abundance and distribution of A. spinimanus throughout the sampling stations.

INTRODUCTION

The abundance and distribution of organisms in the environment, as a rule, are modified according to the variation of the environmental resources (*Organista et al.*, 2005). In this sense, those authors assumed that individuals may be adapted to a wide variation of a given environmental factor (=eurytopic) or not (=stenotopic). Moreover, the relationship of predator-prey and the intra-and/or interspecific competition may alter the seasonal occurrence of the studied species (*Pinheiro*, *Fransozo* & *Negreiros-Fransozo*, 1996). Even slight variations in the environmental conditions might lead individuals to display different behavioral, morphological and physiological responses (*Thompson*, 1991).

The studies on distribution of benthic organisms have evidenced the effects of environmental factors such as temperature, salinity, and sediment texture, and associated organic matter onever the distribution of marine organisms. Thus, this issue has become of importance for scientists; and ittopic has been widely studied for most-of the marine taxaon, in virtually all the oceans (Abelló, Valladares & Castellón, 1988; Fariña, Freire & González-

Commented [LV1]: Please add a comment within or in addition to this sentence to emphasize to the reader the importance of this finding. Why does it matter that sediment heterogeneity is the most critical deterministic factor?

Commented [LV2]: Use one or the other, not and/or (I personally had to break my habit of doing this as well!).

Commented [LV3]: Please cite at least 3-5 papers that support this statement.

Gurriarán, 1997; Cartes et al., 2007; Bertini, Fransozo & Negreiros-Fransozo, 2010; Fransozo et al., 2016; Costa et al., 2016).

According to Mahiques (1995), the Southeastern Brazilian littoral (especially withinthe northern São Paulo State-one) is characterized by a great deal of bays and a-sinuous land, whichat makes its internal borders very irregular, mainly due to the close proximity of ness to the Serra do Mar mountains complex. Such aspects allow the shaping of environments that are These topographic qualities are favorable to the establishment and development of marine organisms; and, consequently, and may lead to a higher regional biodiversity in such areas (Negreiros-Fransozo et al., 1991).

Due to its high productivity, the Ubatuba region is commonly exploited by the shrimp-fishing industryfleet (Mantelatto et al., 2016), that harvests especially aims to capture Farfantepenaeus brasiliensis (Latreille, 1817), F. paulensis (Pérez-Farfante, 1967) and Xiphopenaeus kroyeri (Heller, 1862) (D'incao, Valentini & Rodrigues, 2002). Taking into account that trawling fishery uses a predatory fishing gear in its activities, and causes a great disturbance in the Trawling disturbs benthic communities and diminishes fishing stocks (Branco & Fracasso, 2004), the fishing stocks tend to diminishing. It especially holds true when considering the more profitable species, what led to an essential search for alternative resources. Thus, Achelous spinimanus (Latreille, 1819) has become a new target to the fishing fleet (Santos, Negreiros-Fransozo & Padovani, 1995; Branco, Lunardon-Branco & Souto, 2002; Ripoli et al., 2007), given its body size and particular taste, both suitable for the human consumption.

Besides its economic potential, *A. spinimanus*, together to other swimming crab species, plays a fundamental role in the trophic web from the coastal ecosystems, acting as predators for various invertebrate groups (*Branco & Verani, 1997*). In the Northern littoral of São Paulo State, the representatives of Portunoidea are abundant and present one of the highest species richness values when compared to other brachyuran (*Braga et al., 2005*; *Bertini, Fransozo & Negreiros-Fransozo, 2010*). In the same region, several studies addressing crustaceans, which belong to this taxon, were accomplished, namely: *Santos, Negreiros-Fransozo & Fransozo, (1994)*, *Pinheiro, Fransozo & Negreiros-Fransozo (1996)*, *Pinheiro, Fransozo & Negreiros-Fransozo (2001)*, *Andrade et al. (2013*), *Andrade et al. (2014*), *Lima et al. (2014)*, *Martins et al. (2014*) and *Antunes et al. (2015*). In such studies, the importance of environmental factors on those species biology has been responsible for their distribution patterns.

Formatted: Font: Not Italic

Commented [LV4]: I suggest using common names here with the Latin names in parantheses.

Commented [LV5]: I won't continue the English grammar edits from this point, but I strongly urge the authors to employ the assistance of a native English speaker to help smooth out some of the verbiage in this paper.

Even though, *Santos*, *Negreiros-Fransozo* & *Fransozo*, (1994) and *Santos* (2000) have previously studied *A. spinimanus* achieving the environmental factors that can exert any influence over their distribution patterns, such studies focused only on one bay in the Northern São Paulo State littoral (Fortaleza Bay, Ubatuba, SP). Therefore, there are no comparative studies addressing the distribution pattern of *A. spinimanus* in different locations, with different environmental features, within the same time gap.

Thus, this study aimed to compare the distribution of *A. spinimanus* in three bays (Ubatuba, Ubatumirim and Mar Virado) located in the Northern São Paulo State littoral. Furthermore, our goal was determining possible relationships between the target species' spatiotemporal distribution and the following environmental factors: bottom water temperature and salinity; sediment texture; and organic matter content, in these bays with distinct physiographical features.

MATERIAL & METHODS

Study area

Ubatuba is located at the northern coast of the São Paulo State littoral. Such region has its geological conformation, particularly known by presenting a very sinuous littoral (*Ab'saber*, 1955). This region is affected by the influence of three water masses: Coastal Water (CW: temperature >20°C; salinity <36), Tropical Water (TW: temperature >20°C; salinity >36) and South Atlantic Central Water (SACW: temperature <18°C; salinity <36) (*Castro-Filho, Miranda & Myao, 1987*).

We choose three bays at Ubatuba for this study: Ubatumirim (UBM), Ubatuba (UBA) and Mar Virado (MV) (Fig. 1). They present distinct physiographical features considering both their shape and outfall direction. The UBM bay presents an outfall heading Southwest, with many islands and marine rock banks (Prumirim and Porcos Pequenos Islands facing its entrance, and Couves Island (Bertini, Fransozo & Negreiros-Fransozo, 2010). The UBA outfall faces East and shows a seaward constriction formed by rocky projections, thus delimiting a shallower inner area and an outer and deeper area (>10 m deep) (Mahiques, 1995). Four rivers influence the organic matter content of the sediment in this bay (Cetesb, 1996), especially during rainy seasons, when greater amounts of sewer, originally from the city of Ubatuba, outflow into the area. The MV bay shows a large outflow that faces Southwest, with the Mar Virado Island on the left side of the bay entrance. The predominant substratum verified in this area comes from the sediment of two rivers, namely: Lagoinha and Maranduba (Mahiques, 1995).

Commented [LV6]: I suggest adding some version of this important statement to your abstract as the conclusive sentence, i.e., "This is the first study to examine how different environmental factors may influence the distribution of *A. spinimanus* across geographically distant and distinct habitats."

Commented [LV7]: I can see the value of using data from 3 bathymetrically distinct bays. However, the wording of this sentence does not clarify whether or not you are looking for environmental predictors within each individual bay or across all 3 bays.

Sampling

We collected the swimming crabs monthly, from January 1998 through December 1999, in six sampling stations in each bay. Three sampling sites were located in areas sheltered from the force of waves (5, 7.5 and 10 m deep), while three were located in exposed sites (10, 15 and 20 m deep) (Fig. 1). We used for trawls a commercial shrimp-fishing boat outfitted with double-rig nets. Trawls lasted for 30 minutes each, totalizing an 18,000-m² sampled area. Individuals were identified to species level (*Melo*, *1996*), and sorted by sex, based on the morphological features of the abdomen (male = triangular-shaped abdomen; female = round-shaped abdomen) and number of pleopods (males = two pairs; females = four pairs).

For each sampling station, we sampled sea water using a Nansen bottle, from which we measured salinity (%) and temperature (°C), using an optical refractometer and a mercury thermometer, respectively. After that, we measured the water temperature (for both bottom and surface samples) and salinity (bottom). Sediment samples were taken using a Van Veen grab, from which we obtained sediment texture and its organic matter content. Depth was assessed using an echometer connected to a Global Positioning System (GPS). Shortly after collection, we put each sediment sample into labelled plastic bags. After that, they were frozen to minimize the organic matter decomposition until the laboratory analysis.

Sediment analysis procedures followed the ones proposed by Hakanson & Jansson (1983) and Tucker (1988). Two 50-g subsamples were taken, to which we added 250 ml of a NaOH (0.2 N) solution, aiming to lift up the silt+clay. Afterward, we washed the subsamples using a sieve (mesh_= 0.063 mm), washing away the silt+clay. The remaining sediment was dried and then submitted to a differential sieving, classifying the sediment grains according to the *Wentworth* (1922)'s scale.

Phi (φ) values were calculated based on the equation $phi = -log_2d$, where d= grain diameter (mm), thus obtaining the following classes: -1|-0 (very coarse sand), 0|-1 (coarse sand), 1|-2 (intermediate sand), 2|-3 (fine sand), 3|-4 (very fine sand) e>4 (silt+clay). Based on the obtained values, we calculated the central trend measurements, determining the most frequent granulometric fractions in the sediment. We calculated these values based on data graphically taken from cumulative sediment samples frequency distribution curves. We used values corresponding to the 16^{th} , 50^{th} and 84^{th} percentages to determine the average diameter (AD), using the equation $AD=(\varphi_{16}+\varphi_{50}+\varphi_{84}/3)$ (Suguio, 1973).

In order to determine the percentage of the organic matter content of the sediment, we put the 10-g subsamples in porcelain containers, previously labelled and weighed. After that,

Commented [LV8]: Small note here: I notice this percentage sign differs within the figures. You may want to modify that.

Formatted: Font: Not Italic

Commented [LV9]: I do not italicize references; if you choose to do so, please be consistent.

Formatted: Font: Not Italic

Commented [LV10]: Substitute something other than the "+"; maybe "-".

we put them into an oven (500°C for 3 hours) and weighed them again. The difference between the initial and final weight indicated the organic matter content of the substratum in each sampling station, what was later converted into percentage values.

Data analysis

Prior to analyses, we tested the data concerning their normality (Shapiro-Wilk test) and homoscedasticity (Levene's test) (*Zar, 1999*). Environmental factors (BT= bottom water temperature; ST= surface water temperature; BS= bottom water salinity; %OM= percentage of associated organic matter content; and Phi= sediment texture) were compared between years using a Mann-Whitney test (significance level = 5%). We compared BT, ST, BS, %OM and Phi values among bays, sampling stations and seasons of the year (Summer: January to March, and so on) by means a Kruskal-Wallis test, followed by a post-hoc Dunn test.

Comparisons of the total abundance of specimens among the studied bays, and sampling stations were carried out using a Kruskal-Wallis test, followed by a post-hoc Dunn test (significance level= 5%).

We run a Redundancy Analysis (RDA) to detect possible relationships between the abundance of *A. spinimanus* and the environmental variables, which requires the existence of, at least, two dependent variables, reason why we grouped our biological data into males (M) and females (F). The RDA produces final coordination scores that summarize the linear relation between the explanatory and answering variables, in which only environmental variables with scores higher than 0.4 and lower than -0.4 are considered as biologically significant (*Rakocinski, Lyczkowski-Shultz & Richardson*, 1996). Such analysis was performed by means "Vegan" package in the statistical software "R" (*R Development Core Team, 2013*).

RESULTS

In general terms, according to previous analysis (*Bertini, Fransozo & Costa, 2001; Costa et al., 2007; Almeida et al., 2012*), the mean bottom and surface water temperature values did not significantly differ among the analyzed bays. However, significant differences in the ST, BT and BS were observed when comparing the studied years (Table 1).

Furthermore, the highest variation on the BT and ST values, in all the bays, were recorded in the summer and spring 1998/1999. Concerning the sampling stations belonging to the exposed area (10, 15 and 20 m deep), we observed a clear difference between the mean values of ST and BT (thermocline), especially in spring 1999. During autumn and winter, neither ST nor BT values varied as depth increased.

Commented [LV11]: Please include these texts in your .R file upon resubmission.

Commented [LV12]: This is an ambiguous statement. You are about to present your novel results, but instead you insert references in the middle of the sentence. I suggest you present your results (without stating "in general terms" - be precise!) and then in the discussion, offer these supporting references.

Temporally, the highest BS values were recorded in summer and autumn 1998, while in 1999, its highest means were observed only in the autumn. The highest BS values were recorded in the 20-m deep sampling station; significant variations in this parameter were recorded only in 1999.

Based on data from the BS and BT diagram, the presence of three water masses is noticeable and is typically observed in the studied region. From them, CW was prevalent, during both years, in all the bays; while the SACW and TW influences were noted only in 1999 (Fig. 2 and 3).

The sediment features (both grain diameter and organic matter content) differed among bays and sampling sites (Fig. 4). There was a gradual increase in phi values from north through south, with mean phi values of 3.8, 4.4 and 5.5 in UBM, UBA and MV, respectively. The highest %OM was recorded in UBA (5.9%), followed by MV (4.5%) and UBM (3.6%). The 20-m deep sampling site, in all studied bays, in both studied years, was the one with the lowest %OM average value (3.3%) (p <0.05) (phi = 3.0). With respect to the 10-m deep sampling sites, we observed the highest %OM (6.2%) and phi (5.3) average value, i.e., we observed a trend of increasing %OM as the sediment grain size decreased.

We sampled 1.911 individuals (1.255 in 1998, and 656 in 1999). The highest abundance of *A. spinimanus* was recorded in UBA (1.509), followed by UBM (351) and MV (51). We observed a variation in the abundance of individuals throughout the seasons of the year, with higher occurrences recorded mainly in the fall and spring 1998, in UBA (Table 2). When comparing the abundance of individuals among bays, we observed that MV has significantly lower abundance (p <0.01). In UBM, the highest abundance registered in 1998 was in the 20-m deep sampling station, while in 1999, it was in the 15-m one. In UBA, the highest abundance observed for both 1998 and 1999 was registered in the 7.5-m deep sampling station. In MV, even though we did not observe significant differences in the abundance of swimming crabs among the sampling stations (p >0.05), individuals were sampled only in two sampling sites (7.5 and 20-m deep) (Fig. 5).

When analyzing the results obtained with the RDA, we observed the axis 1 (which explained 92.3% of the variation in our data), the sediment features (%OM and Phi) were the ones that mostly modulated the individuals' distribution in all studied bays, for both the years (Table 3). Based on this analysis, one may attest that the sediment grain size is inversely proportional to the abundance of *A. spinimanus*, since the highest swimming crab abundances were registered in sampling stations with sediment mainly composed by low and intermediate

Phi values. It characterizes a heterogeneous sediment, mainly composed by higher granulometric classes such as gravel, very coarse sand, coarse sand and medium sand.

Commented [LV13]: Language like "one may attest" should not be in the Results section. It confuses the reader. Concise, straightforward stating of results is better, without the conjecture

DISCUSSION

Based on the water temperature and salinity values obtained in this study, we infer that the Coastal Water current prevailed in the three studied bays. This water mass is characterized by salinity values under 36 and temperature higher than 20°C (*Castro-Filho, Miranda & Myao, 1987*). The effects of the South Atlantic Central Waters and Tropical Water masses could only be noticed in the second studied year. *Pires (1992)* consider that the SACW is a cold water mass, with temperatures under 18°C and salinity lower than 36, reaching the deepest layers of the coastal water column, generating a thermocline. In this study, this thermocline was more evident in the sampling sites with depth from 10 to 20 m, especially considering the seasonal water temperature variation, with considerable SACW effects in the spring 1999.

Several studies indicate the influence that the physicochemical characteristics of the SACW exert in the temporal abundance of decapod crustaceans along the southeastern Brazilian coast (*Furlan et al., 2013*; *Bochini et al., 2014*; *Andrade et al., 2014*; *Castilho et al., 2015*). In this study, we could notice the negative influence of this water mass over the abundance of *A. spinimanus*, once its decreases in summer and spring 1999 in UBA. UBA bay seems to be more vulnerable when compared to UBM and MV bays with respect to the effects of oceanic currents as it has no physical protection, such as islands nearby. As a consequence, the effects of the SACW in the UBA bay are greater; in such a way that in 1999, in the UBA bay, there was occurred migration of *A. spinimanus* towards—shelter areas. *Mantelatto & Fransozo (2000)*, studying the same bay, evidenced that, from September 1995 through August 1996, individuals of *A. spinimanus* were grouped in a more sheltered sampling site, in the inner portion of the UBA bay (which was not addressed in this study).

Temperature is widely accepted as a limiting factor to the distribution of organisms (Lewis & Roer, 1988), since many metabolic and physiological processes in crustaceans (such as the molting and growth process, and oocytes maturation in females) depend on this variable (Sastry, 1983). Previous studies (Santos, Negreiros-Fransozo & Fransozo, 1994; Santos, 2000; Bertini & Fransozo, 2004; Lima et al., 2014), carried out in the same area as the present one, have also evidenced the bottom water temperature influence over A. spinimanus biological parameters.

In the UBM bay, the sampling sites with depth from 15 up to 20 m were the only ones showing sediment composed by higher granulometric fractions, even though being exposed to

the effects of water masses, making these areas favorable to the establishment of *A. spinimanus*. Besides that, according to *Antunes et al.* (2015), in the same bay, during the same studied occasion of this study, it was possible noticing greater abundance of *Callinectes danae* Smith, 1869 in the shallower sampling sites. According to *Shinozaki-Mendes, Manghi & Lessa* (2012), *C. danae* shows agonistic and territoriality behaviors, what could difficult the establishment of *A. spinimanus* in the same area. The abundance of one species in a certain place may be considered an ecological answer to the species' adaptations to both the environmental factors and the intra- and interspecific interactive processes (*Shinozaki-Mendes, Manghi & Lessa, 2012*).

This study reveals the texture of the sediment as the main modulating factor acting over the distribution of *A. spinimanus*. In all the covered bays, the sampling sites composed mainly by a heterogeneous sediment were the ones with higher abundance of *A. spinimanus*. This may be explained by the foraging and refuge options as made possible by the heterogeneous sediments, once the chances of the species to prevail is higher in places where there is a great variety of microhabitats (*Bertini, Fransozo & Melo 2004*). Previous studies (*Santos, Negreiros-Fransozo & Fransozo, 1994*; *Bertini & Fransozo, 2004*; *Furlan et al., 2013*, for instance) have described the higher abundance of *A. spinimanus* in areas where the sediment texture is more heterogeneous.

The higher abundance of *A. spinimanus* was recorded in UBA (78.9% from the total number of individuals), in the 7.5-m deep sampling site. It may be associated to the presence of heterogeneous texture of the sediment and a greater percentage of organic matter content in this sampling site. According to *Moore* (1958), areas with sediment composed mainly by finer grains may present a higher percentage of organic matter content, when compared to the ones with thicker grains. However, we observed an association between the higher granulometric fractions and the organic matter content levels, even though this last one was also positively associated with the silt+clay fraction. The higher organic matter amount observed in the 7.5-m deep sampling site is related to gravel-composed sediments, which are of biogenic nature, constituted by remains of mollusk shells, crustacean carapaces and echinoderms.

Lima et al. (2014) studying A. spinimanus in the UBA, during 2000, sampled less A. spinimanus (402 individuals) than in any year addressed in the present study. This fact is probably due to those authors did not collected in the 7.5-m deep sampling station. One may thus, assume that sheltered and heterogeneous-composed sediments areas may provide a favorable habitat to the establishment of A. spinimanus. It is noteworthy that the sampling station mentioned above is a part of a naturally excluded fishing area, that could contributed to

the higher abundance of individuals there; locals that undergo a lower fishing impact maintaing the habitats' complexity, favoring the establishment of individuals (*Kaiser et al.*, 2002; *Fransozo et al.*, 2016). Furthermore, *Fransozo et al.* (2016) describes the fishing activity as predatory and destabilizing to benthic communities, since it does not select the fishery target and jumbles the seafloor, displacing or removing many other organisms from its natural environment.

The low abundance observed in MV can be related to the sediment features observed in that bay. This site shows sediment composed mainly by silt+clay, generated by the influence of the continent, as well as a consequence of the physical barriers formed mainly by the São Sebastião channel, together to the Anchieta and Vitória islands. Corroborating with such statement, *Santos, Negreiros-Fransozo & Fransozo et al.* (1994) sampled 126 specimens of *A. spinimanus* in the Fortaleza bay (November 1998 through October 1989), while *Hiroki* (2012), in the same bay, 20 years later (November 2008 through October 2009), and adopting the same sampling procedure, collected only 5 individuals. It is noteworthy that, besides observing a lower abundance of individuals, *Hiroki* (2012) also observed a decrease in the higher granulometric fractions (grave, very coarse sand, coarse sand and intermediate sand).

Based on our investigation, we highlight the role that environmental factors such as the sediment texture play over the modulation of the establishment and development of *A. spinimanus*. According to *McNaughton & Wolf (1970)*, the prevailing of certain species in a given habitat may be explained mainly by two opposite hypotheses. Firstly, the dominant species are generalists, and are adapted to several environmental conditions, in a way that, usually, they are not limited by environmental factors. Secondly, the dominant species are specialists and are well adapted to one or some aspects of their habitat. In the study carried out by *Bertini, Fransozo & Negreiros-Fransozo (2010)*, some species seemed to be generalists, and they were not restricted to a certain type of substrate [*Callinectes ornatus* Ordway, 1968 and *Hepatus pudibundus* (Herbst, 1785) for instance], while others were frequently associated to specific sediment types (e.g. *Libinia ferreirae* Brito Capello, 1871 and *A. spinimanus*). In this study, *A. spinimanus* showed a specialist-portunid pattern, probably due to their tolerance to higher granulometric fractions (i.e., a stenotopic species).

CONCLUSION

Overall, this study broadens the knowledge about the most appropriate sediment features to the establishment and development of *A. spinimanus*, and collaborates to future improvements on the management measurements and in the sustainable fisheries, such as the creation of marine fishery exclusion.

337	
338	
339	ACKNOWLEDGEMENTS
340	We thank the NEBECC co-workers for their help during the fieldwork and Dr. Maria
341	Lucia Negreiros-Fransozo for her constructive comments and valuable grammar review of this
342	manuscript.
343 344 345	REFERENCES Abelló P, Valladares FJ, Castellón A. 1988. Analysis of the structure of decapod crustacean
346	assemblages off the Catalan coast (North-West Mediterranean). Marine Biology 98:39-
347	49 DOI 10.1007/BF00392657
348	Ab'Saber AN. 1955. Contribuição à geomorfologia do litoral paulista. Revista Brasileira de
349	Geografria 17(1): 3-48.
350	Almeida AC, Fransozo A, Teixeira GM, Hiroki KAN, Furlan M, Bertini G. 2012.
351	Ecological distribution of the shrimp Nematopalaemon schmitti (Crustacea: Decapoda:
352	Caridea) in three bays on the south-eastern coast of Brazil. African Journal of Marine
353	Science 34:93–102 DOI 10.2989/1814232X.2012.673292
354	$ And rade\ LS,\ Frameschi\ IF,\ Costa\ RC,\ Castilho\ AL,\ Fransozo\ A.\ 2014.\ The\ assemblage$
355	composition and structure of swimming crabs (Portunoidea) in continental shelf waters
356	of southeastern Brazil. Continental Shelf Research 94:8–16 DOI
357	10.1016/j.csr.2014.12.005
358	${\bf Andrade\ LS, Fransozo\ V, Cobo\ VJ, Castilho\ AL, Bertini\ G, Fransozo\ A.\ 2013.\ Ontogenetic}$
359	distribution of Callinectes ornatus (Decapoda, Portunidae) in southeastern Brazil.
360	Ciencias Marinas 39(4):371–385 DOI 10.7773/cm.v39i4.2280
361	Antunes M, Fransozo V, Bertini G, Teixeira GM, Fransozo A. 2015. Abundance and
362	distribution of the swimming crab Callinectes danae Smith, 1869 (Crustacea,
363	Decapoda, Portunidae) in the Ubatuba region, southeastern Brazil. Marine Biology
364	Research 11(9):920-932 DOI 10.1080/17451000.2015.1044998
365	Bertini G, Fransozo A. 2004. Bathymetric distribution of brachyuran crab (Crustacea,
366	Decapoda) communities on coastal soft bottom off southeastern Brazil. Marine Ecology
367	Progress Series 279: 193-200 DOI 10.3354/mesps279193
368	Bertini G, Fransozo A, Costa RC. 2001. Ecological distribution of three species of
369	Persephona (Brachyura, Leucosiidae) in the Ubatuba region, São Paulo, Brazil.

Nauplius **9(1):**31-42

373	State, Brazil. Biodiversity & Conservation 13(12):2185-2207 DOI
374	10.1023/B:BIOC.0000047900.96123.34
375	Bertini G, Fransozo A, Negreiros-Fransozo ML. 2010. Brachyuran soft-bottom assemblage
376	from marine shallow waters in the southeastern Brazilian littoral. Marine Biodiversity
377	40(4): 277-29 DOI 10.1007/s12526-010-0049-9
378	Bochini GL, Fransozo A, Castilho AL, Hirose GL, Costa RC. 2014. Temporal and spatial
379	distribution of the commercial shrimp Litopenaeus schmitti (Dendrobranchiata:
380	Penaeidae) in the south-eastern Brazilian coast. Journal of the Marine Biological
381	Association of the United Kingdom 94:1001-08 DOI 10.1017/S0025315414000265
382	Braga AA, Fransozo A, Bertini G, Fumis PB. 2005. Composition and abundance of the crabs
383	(Decapoda, Brachyura) off Ubatuba and Caraguatatuba, northern coast of São Paulo,
384	Brazil. Biota Neotropica 5(2):45-78 DOI 10.1590/S1676-06032005000300004
385	Braga AA, Fransozo A, Bertini G, Fumis PB. 2007. Bathymetric distribution and
386	recruitment of the spider crab Libinia spinosa H. Milne Edwards 1834 in the Ubatuba
387	and Caraguatatuba regions, northern coast of São Paulo, Brazil (Crustacea, Brachyura,
388	Majoidea, Pisidae). Senckenbergiana Biologica 87(1):7-16.
389	Branco JO, Fracasso HAA. 2004. Ocorrência e abundância da carcinofauna acompanhante na
390	pesca do camarão sete-barbas Xiphopenaeus kroyeri (Heller, 1862) (Crustacea,
391	Decapoda), na armação do Itapocoroy, Penha, Santa Catarina, Brasil. Revista Brasileira
392	de Zoologia 21(2): 295-301 DOI <u>10.1590/S0101-81752004000200022</u>
393	Branco JO, Lunardon-Branco MJ, Souto FX. 2002. Estrutura populacional de Portunus
394	spinimanus Latreille (Crustacea, Portunidae) na Armação do Itapocoroy, Penha, Santa
395	Catarina, Brasil. Revista Brasileira de Zoologia 19(3):731-738 DOI 10.1590/S0101-
396	81752004000200022
	Branco JO, Verani R. 1997. Dinâmica da alimentação natural de Callinectes danae Smith
	(Decapoda, Portunidae) na Lagoa da Conceição, Florianópolis, Santa Catarina,
	Brasil. Revista Brasileira de Zoologia 14(4):1003-101.
397	Cartes JE, Serrano A, Velasco F, Parra S, Sánchez F. 2007. Community structure and
398	dynamics of deep-water decapod assemblages from Le Danois Bank (Cantabrian Sea,
399	NE Atlantic): Influence of environmental variables and food availability. <i>Progress in</i>

Oceanography **75:**797-816 DOI 10.1016/j.pocean.2007.09.003

Bertini G, Fransozo A, Melo GAS. 2004. Biodiversity of brachyuran crabs (Crustacea:

 $Decapoda)\ from\ non-consolidaded\ sublittoral\ bottom\ on\ the\ northern\ coast\ of\ S\~{ao}\ Paulo$

371

372

400

in

401	Castilho AL, Bauer RT, Freire FAM, Fransozo V, Costa RC, Grabowski RC, Fransozo
402	A. 2015. Lifespan and reproductive dynamics of the commercially important sea bob
403	shrimp Xiphopenaeus kroyeri (Penaeoidea): Synthesis of a 5-year study. Journal of
404	Crustacean Biology 35:30-40 DOI 10.1163/1937240X-00002300
405	Castro-Filho BM, Miranda LB, Myao SY. 1987. Condições hidrográficas na plataforma
406	continental ao largo de Ubatuba: variações sazonais e em média escala. Boletim do
407	Instituto Oceanográfico 35(2):135-151 DOI:10.1590/S1679-87591987000200004
408	Cetesb (Companhia de Tecnologia de Saneamento Ambiental). 1996. Relatório de
409	Balneabilidade das Praias Paulistas-1995. São Paulo: Secretaria do Meio Ambiente.
410	112 pages.
411	Chacur MM, Negreiros-Fransozo ML. 2001. Spatial and seasonal distributions of Callinectes
412	danae (Decapoda, Portunidae) in Ubatuba Bay, São Paulo, Brazil. Journal of
413	Crustacean Biology 21:414–25 DOI: 10.1163/20021975-99990142
414	Costa RC, Carvalho-Batista A, Herrera DR, Pantaleão JAF, Teodoro SSA, Davanso TM.
415	2016. Carcinofauna acompanhante da pesca do camarão-sete barbas Xiphopenaeus
416	kroyeri em Macaé, Rio de Janeiro, sudeste brasileiro. Boletim do Instituto de Pesca
417	42(3): 1-13 DOI 10.20950/1678-2305.2016v42n3p611
418	Costa RC, Fransozo A, Freire FAM, Castilho AL. 2007. Abundance and ecological
419	distribution of the "sete-barbas" shrimp Xiphopenaeus kroyeri (Heller, 1862)
420	(Decapoda: Penaeoidea) in three bays of the Ubatuba region, southeastern Brazil. Gulf
421	and Caribbean Research 19:33-41 DOI 10.18785/gcr.1901.04
422	D'incao F, Valentini H, Rodrigues ELF. 2002. Avaliação da pesca de camarões nas regiões
423	Sudeste e Sul do Brasil. Atlântica 24:103-116.
424	Fariña AC, Freire J, González-Gurriarán E. 1997. Megabenthic decapod crustacean
425	assemblages on the Galician continental shelf and upper slope (north-west Spain).
426	Marine Biology 127:419-434 DOI 10.1007/s002270050029
427	Fransozo A, Sousa AN, Rodrigues GFB, Telles JN, Fransozo V, Negreiros-Fransozo ML.
428	2016. Crustáceos decápodes capturados na pesca do camarão-sete-barbas no sublitoral
429	não consolidado do litoral norte do estado de São Paulo, Brasil. Boletim do Instituto de
430	Pesca 42(2):369-386 DOI 10.5007/1678-2305.2016v42n2p369
431	Fransozo V, Silva TED, Fumis PB, Bertini G, Lima PAD. 2013. Ecological distribution and
432	population structure of Acantholobulus schmitti (Rathbun, 1930) (Crustacea, Decapoda,
433	Xanthoidea) on the southeastern Brazilian coast. Brazilian Journal of
434	Oceanography 61(4):277-287 DOI 10.1590/S1679-87592013000400008

436	Effect of environmental factors on the abundance of decapod crustaceans from soft
437	bottoms off southeastern Brazil. Anais da Academia Brasileira de Ciências 85(4):1345-
438	1356 DOI 10.1590/0001-3765201394812
439	Hakanson L, Jansson M. 1983. Principles of Lake Sedimentology. Germany: Springer-Verlag.
440	315 pages.
441	Hiroki KAN. 2012. Estrutura e dinâmica das comunidades de crustáceos decápodos no litoral
442	norte do Estado de São Paulo. Doctoral Thesis. Instituto de Biociências de Botucatu,
443	Brazil.
444	Kaiser MJ, Collie JS, Hall SJ, Jennings S, Poiner IR. 2002. Modification of marine habitats
445	by trawling activities: prognosis and solutions. Fish and Fisheries 3:114-136 DOI
446	10.1046/j.1467-2979.2002.00079.x
447	Lewis DH, Roer RD. 1988. Thermal preference in the distribution of blue crabs, Callinectes
448	sapidus, in a power plant cooling pond. Journal of Crustacean Biology 8(2):283-289
449	DOI <u>10.2307/1548320</u>
450	Lima PA, Andrade LS, Alencar CERD, Pereira RT, Teixeira GM, Fransozo A. 2014. Two
451	species of swimming crabs of the genus Achelous (Crustacea, Brachyura):
452	environmental requirements determining the niche. Hydrobiologia 727:197-207 DOI
453	10.1007/s10750-014-1803-y
454	Mahiques MM. 1995. Dinâmica sedimentar atual nas enseadas da região de Ubatuba, Estado
455	de São Paulo. Boletim do Instituto Oceanográfico 43(2):111-122.
456	Mantelatto FLM, Bernardo CH, Silva TE, Bernardes VP, Cobo VJ, Fransozo A. 2016.
457	Composição e distribuição de crustáceos decápodes associados à pesca do camarão-
458	sete-barbas Xiphopenaeus kroyeri (Heller, 1862) no litoral norte do estado de São
459	Paulo. Boletim do Instituto de Pesca 42(2):307-326 DOI 10.5007/1678-
460	2305.2016v42n2p307
461	Mantelatto FLM, Fransozo A. 2000. Brachyuran community in Ubatuba bay, northern coast
462	of São Paulo State, Brazil. Journal of Shellfish Research 19(2):701-710.
463	DOI <u>10.5007/1678-2305.2016v42n2p307</u>
464	Martins BA, Pereira RT, Fransozo V, Teixeira GM, Furlan M, Fransozo A. 2014.
465	Environmental factors modulating the abundance and distribution of Callinectes danae
466	(Decapoda: Portunidae) from two areas of the southeastern coast of Brazil. Biologia
467	69(10): 1356-1364 DOI <u>10.2478/s11756-014-0440-2</u>

Furlan M, Castilho AL, Fernandes-Góes LC, Fransozo V, Bertini G, Costa RC. 2013.

- McNaughton SJ, Wolf LL. 1970. Dominance and the niche in ecological systems. Science
 167:131–139 DOI 10.1126/science.167.3915.131
- 470 Melo GAS. 1996. Manual de Identificação dos Brachyura (caranguejos e siris) do Litoral
 471 Brasileiro. Plêiade: FAPESP.
- 472 Moore Hb. 1958. Marine Ecology. New York: Wiley & Sons.
- 473 Negreiros-Fransozo ML, Fransozo A, Pinheiro MAA, Mantelatto FLM, Santos S. 1991.
- Caracterização física e química da Enseada de Fortaleza, Ubatuba, SP. *Revista Brasileira de Geociências* **21(2):**114-120.
- Organista DE, Morrone JJ, Bousquets JL, Villela OF. 2005. Introducción al análisis de patrones em biogeografia histórica. Facultad de Ciencias: Las Prensas de Ciencias.
- 478 Pinheiro MAA, Fransozo A, Negreiros-Fransozo ML. 1996. Distribution patterns of
 479 Arenaeus cribrarius (Lamarck, 1818) (Crustacea, Portunidae) in Fortaleza Bay,
 480 Ubatuba (SP), Brazil. Revista Brasileira de Biologia 56:705–716.
- 481 Pinheiro MAA, Fransozo A, Negreiros-Fransozo ML. 1997. Dimensionamento e
 482 sobreposição de nichos ecológicos dos portunídeos (Decapoda, Brachyura), na Enseada
 483 da Fortaleza, Ubatuba, São Paulo, Brasil. Revista Brasileira de Zoologia 14:371–378.
- Pires AMS. 1992. Structure and dynamics of benthic megafauna on the continental shelf
 offshore of Ubatuba, southeastern, Brazil. *Marine Ecology Progress Series* 86:63–76.
- 486 R Development Core Team. 2013. R: A Language and Environment for Statistical Computing.
 487 R Foundation for Statistical Computing, Vienna. http://www.R-project.org. ISBN 3 488 900051-07-0
- 489 **Rakocinski CF, Lyczkowski-Shultz J, Richardson SL. 1996.** Ichthyoplankton assemblage 490 structure in Mississippi sound as revealed by canonical correspondence analysis. 491 Estuarine, *Coastal and Shelf Science* **43:**237–257 DOI <u>10.1006/ecss.1996.0067</u>
- 492 Ripoli LV, Fernandes JM, Rosa DM, Araujo CCV. 2007. Dinâmica populacional de
 493 Portunus spinimanus Latreille, 1819 (Crustacea, Portunidae) em um trecho litorâneo da
 494 Ilha do Frade, Vitória ES. Boletim do Instituto de Pesca 33(2):205-212.
- Santos S. 2000. Influência dos fatores ambientais na abundância de *Portunus spinimanus* Latreille, 1819 (Crustacea, Brachyura, Portunidae) na enseada da Fortaleza, Ubatuba,
 SP. Ciência e Natura 22:129-144.
- Santos S, Negreiros-Fransozo ML, Fransozo A. 1994. The distribution of the swimming crab
 Portunus spinimanus Latreille, 1819 (Crustacea Brachyura, Portunidae) in Fortaleza
 Bay, Ubatuba, SP, Brazil. Atlântica 16:125–141.

501	Santos S, Negreiros-Fransozo ML, Padovani CR. 1995. Relação do peso em função da
502	largura da carapaça do siri candeia Portunus spinimanus Latreille, 1819 (Decapoda
503	Portunidae). Arquivos de Biologia e Tecnologia 38(3):715-724.
504	Sastry AN. 1983. Ecological aspects of reproduction. The biology of Crustacea: Environmental
505	adaptations. New York: Academic Press, 179-270.
506	Shinozaki-Mendes RA, Manghi RF, Lessa R. 2012. The influence of environmental factors
507	on the abundance of swimming crabs (Brachyura, Portunidae) in tropical estuary,
508	Northeastern Brazil. Crustaceana 85(11):1317-1331. DOI
509	<u>10.1163/156854012X651510</u>
510	Suguio K. 1973. Introdução à Sedimentologia. Edgard Blucher: EDUSP.
511	Thompson JD. 1991. Phenotypic plasticity as a component of evolutionary chance. Tree
512	6: 246-249 DOI <u>10.1016/0169-5347(91)90070-E</u>
513	Tucker M. 1988. Techniques in Sedimentology. Melbourne: Blackwell Scientific Publications.
514	Wentworth CK. 1922. A scale of grade and class terms for clastic sediments. Journal of
515	Geology 30: 377–92 DOI <u>10.1086/622910</u>
516	Zar JH. 1999. Biostatistical Analysis. Englewood Cliffs: Prentice-Hall.