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To obtain well spread chromosomes, the cytogenetic protocol for Pangasianodon

hypophthalmus and Clarias gariepinus were optimised. This includes, the colchicine

concentration (0.01, 0.025, 0.05 %) / exposure duration (1, 3, and 5 h), hypotonic solution

(distilled water or 0.075M KCl solution) /exposure duration (30min, 1h, and 2h), the time of

cell suspension preparation (at hypotonic treatment or before slide preparation) and

chromosome aging period (0, 3, and 7 days in Carnoy’s fixative). In addition, the type (i.e.

fin, gill or kidney) and the amount of tissue (10, 50, 100 or 150mg) were also investigated.

Regardless of the species, the result obtained showed that well-spread chromosomes

could be obtained using the following optimised protocol: Juveniles are injected with 0.05%

colchicine (at 1mlkg-1) and allowed to swim for 3h. Then, 50mg of gill tissue is made into

cell suspension in 0.075M KCl for 1h. The cell suspension is treated in Carnoy’s fixative

(changed 3times at 20min interval) and then aged for three days. Finally, chromosome

slides are made and stained with 10% Giemsa for 1h.
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14 Abstract

15 To obtain well spread chromosomes, the cytogenetic protocol for Pangasianodon hypophthalmus 

16 and Clarias gariepinus were optimised. This includes, the colchicine concentration (0.01, 0.025, 

17 0.05 %) / exposure duration (1, 3, and 5 h), hypotonic solution (distilled water or 0.075M KCl 

18 solution) /exposure duration (30min, 1h, and 2h), the time of cell suspension preparation (at 

19 hypotonic treatment or before slide preparation) and chromosome aging period (0, 3, and 7 days 

20 in Carnoy’s fixative). In addition, the type (i.e. fin, gill or kidney) and the amount of tissue (10, 

21 50, 100 or 150mg) were also investigated. Regardless of the species, the result obtained showed 

22 that well-spread chromosomes could be obtained using the following optimised protocol: 

23 Juveniles are injected with 0.05% colchicine (at 1mlkg-1) and allowed to swim for 3h. Then, 

24 50mg of gill tissue is made into cell suspension in 0.075M KCl for 1h. The cell suspension is 

25 treated in Carnoy’s fixative (changed 3times at 20min interval) and then aged for three days. 

26 Finally, chromosome slides are made and stained with 10% Giemsa for 1h.

27 Keywords: African catfish, Asian catfish, Colchicine, Giemsa stain, metaphase.

28 INTRODUCTION

29 The first level of genome analysis of any organism involves karyotyping of mitotic 

30 chromosomes to determine the genome organization at the cytological level (Gormam, 1973). It 

31 is an essential tool in providing basic information on breeding programs such as inter-
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32 specific/generic hybridization (Crego-Prieto et al., 2013), polyploidy induction (Christopher et 

33 al., 2010; Gilna et al., 2014; Thresher et al., 2014), and genetic improvement of commercial 

34 exploited or novel fish stocks targeted towards commercialization (Gui and (Zhu et al., 2012). 

35 An effective method of chromosome preparation is essential for cytogenetic research (Shao et 

36 al., 2010). Several techniques have been optimised to obtain well spread mitotic chromosomes in 

37 fish and this may differ for different species (e.g. as observed by Karami et al., 2010). These are 

38 usually in terms of chemical types, concentration, and duration of exposure. Firstly, the cells 

39 spindle fiber is arrested at metaphase by inoculation with a spindle poison (Rieder and Palazzo 

40 1992; Silva et al., 2011). After which the cells are incubated in an appropriate hypotonic 

41 solution, to ensure swelling and bursting of the nuclei (Moore and Best 2001). This is then 

42 followed by fixation in Carnoy’s fixative solution, preparation of a cell suspension, slide and 

43 finally staining (Moore and Best 2001; Wang et al., 2010; Calado et al., 2013).

44 Despite the ease of chromosome preparation from eggs and larvae of fish (Shao et al., 2010, 

45 Karami et al., 2010; Amar-Basulto et al., 2011; Botwright 2015), cytogenetic studies involving 

46 specific tissues of fingerlings, juvenile or adult fish may have some merits over the use of whole 

47 larvae or egg. Aside the possibility of having a large amount of tissue from which metaphase 

48 chromosome can be isolated; this method has a pride of place in the characterization of 

49 intergeneric distance crosses between different fish species. This is because of the need to match 

50 phenotypic characteristics of the progenies gotten with their equivalent ploidy levels because of 

51 the possible presence of ploidy polymorphism (see e.g. Liu et al., 2007; Zou et al., 2007; Zhao et 

52 al., 2015). However, due to similarities in egg or larvae of fishes, it is practically impossible to 

53 march phenotypic characters to different ploidy levels at this stage of development. 

54 Chromosome preparation in post larvae fishes can be isolated from different tissues. These 

55 includes; fins (McPhail and Jones, 1966), gills (Yoo et al., 2017), scales (Ojima et al., 1972), 

56 kidney (Zhao et al., 2015; Huang et al., 2017) abdominal cavity fluid (Fan and Fox, 1990), 

57 gonads (Tan et al., 2004) to mention but a few. Despite successfully chromosomes isolation from 

58 these tissues, variations in the mitotic cell division rates could result in differences in the quality 

59 and quantity of the chromosome observed. More so, the quantity or amount of tissue used for this 

60 processes could affect the concentration of cell suspension and consequently the visibility of 

61 chromosome spread. However, to the knowledge of the researchers, there has been no report in 
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62 which the tissue amount was optimised. Hence, in addition to colchicine and hypotonic 

63 treatment, this study attempted to optimise different tissue type/amount as well as identify the 

64 appropriate time for making cell suspension and the effects of different aging time on metaphase 

65 chromosomes of two important catfishes namely; Pangasianodon hypophthalmus (Sauvage, 

66 1878) and Clarias gariepinus (Burchell, 1822).

67 Materials and Methods

68 Juveniles of P. hypophthalmus and C. gariepinus (weighing between 10-50g) were obtained 

69 from the School of Fisheries and Aquaculture Science hatchery of the Universiti Malaysia 

70 Terengganu, in Malaysia. They were acclimatized for two weeks in rectangular fiberglass tanks 

71 and fed on a commercial diet (35% Crude Protein) till the experiment was conducted. The 

72 method of Liu et al. (2007) was used as the basis of protocol optimization in a stepwise manner. 

73 For each optimised procedure, five fish were used (per species) for each treatment. Firstly, 

74 colchicine concentration and the duration of inoculation were investigated. Juveniles were 

75 intramuscularly injected with freshly prepared colchicine solution at 0.01, 0.025, and 0.05% 

76 colchicine for 1, 3 and 5 h at 1mlkg-1 of the body weight of the juvenile. Using the selected 

77 concentration and duration of colchicine, the suitability of distilled water and KCl solution 

78 (0.075M) has a hypotonic solution was tested for 0.5, 1 and 2h. It is important to state that 

79 cytogenetic chemical treatment after colchicine treatment was done in a 1.5ml tube and a 

80 uniform volume of 600µl of these chemicals was adopted for comparative purposes. Following 

81 colchicine and hypotonic solution optimization, 10, 50, 100 or 150mg of fins, gill and kidney 

82 were extracted and followed by the procedure of Liu et al. (2007).

83 No alternative fixative, ratio or duration of exposure was considered in this study as freshly 

84 prepared Carnoy’s solution (methanol-acetic acid at ratio 3:1) is commonly used with a 

85 unanimous exposure time of 20 mins with three changes (Fopp-Bayat and Woznicki 2006; 

86 Karami et al., 2010; Pradeep et al., 2011 etc.). However, the best time for making cell suspension 

87 was determined by initiating the process (i.e. chopping the tissue) during hypotonic treatment or 

88 prior to slide preparation (after fixation in Carnoy’s solution). Before every subsequent step in 

89 the formal treatment, the suspension is centrifuged at 2500rcf for 10min, and then the 

90 supernatant is discarded leaving 1ml of the solution above the cell pellet. The cell is then re-

91 suspended using the next solution. Also, the effect of aging was investigated on the quality of 

92 chromosome spread. The cell suspension or tissue was allowed to age for 0, 3 and 7days in the 
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93 Carnoy’s solution followed by slide preparation. In all trial, slides were prepared by dropping 

94 method (two drops of the cell suspension on the slide at 1m height) and incubation in 10% 

95 Giemsa stain (prepared in 0.01M phosphate buffer at pH 7) for 1h. Similarly, the metaphase 

96 spreads in all the trials were microphotographed using a Nikon Eclipse 80i compound 

97 microscope, and the images processed using the NIS element Basic Research software (at 100× 

98 magnification). 

99 In all the trial, the number of the well-spread chromosome was recorded except for the hypotonic 

100 treatment where the percentage of the complete / well-spread chromosome was computed. Prior 

101 to running analyses of data gotten in this study, normality, and homogeneity of data was tested 

102 (Tabachnick and Fidell 2001). For all treatment involving concentration/types vs duration of 

103 exposure (i.e. colchicine, and hypotonic solution respectively), a two-way Analysis of variance 

104 (ANOVA) was employed to evaluate the interactions. A similar analysis was done for tissue type 

105 vs amount (quantity) and for the time of cell suspension preparation vs aging period. All data 

106 analysis in this study was done using Mini tab 14 computer software.

107 Results

108 The result obtained shows that the juveniles injected with 0.05% colchicine (at 1mlkg-1) for 3h 

109 had better chromosome spread in both species when compared to other concentration and 

110 exposure times (Figure 1a and 2a). Treatment in KCL for 1hr (Figure 1b and 2b) and the use of 

111 50mg of gill tissue sample (Figure 1c and 2c) also proved to be more effective in this study. 

112 Also, preparation of cell suspension before hypotonic treatment and ageing for 3days resulted in 

113 well spread chromosomes (Figure 1d and 2d). A sample of the metaphase chromosome produced 

114 in Clarias gariepinus and Pangasianodon hypophthalmus are presented in Figure 3.

115 Discussions

116 The choice of a right concentration and duration of exposure of colchicine is very important. 

117 This is because insufficient amount could fail to arrest the target cells at metaphase stage (Rieder 

118 and Palazzo 1992; Caperta et al., 2006), however too high a concentrations or prolonged 

119 exposure, on the other hand, may lead to chromosomal condensation (Wood et al., 2001). The 

120 optimum values recorded in this study for colchicine (i.e. 0.05% for 3h) is similar to the findings 

121 for optimization in post-larval stages of some other fish species (e.g. Liu et al., 2001; Botwright 
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122 2015; Zhao et al., 2015; Huang et al., 2017). This is, however, at variance with the finding of 

123 Shao et al., (2010) for eggs and larvae of Japanese flounder (Paralichthys olivaceus) and summer 

124 flounder (Paralichthys dentatus) as they reported best metaphase chromosomes with 0.02% for 

125 1-2hours. While this may be a high enough concentration to penetrate the vitelline membrane of 

126 the egg and the tin walls of the larvae, the present study shows that this is not optimum for the 

127 post-larva of African and Asian catfishes. This is despite using intramuscular injection procedure 

128 which delivers the spindle poison directly to the fish bloodstream ensuring effective circulation 

129 to all tissues. 

130 Subsequent upon mitotic spindle inhibition, it is pivotal to use an appropriate hypotonic solution 

131 to swell the nuclei of the mitotic cell to the point of bursting and spread out the chromosomes 

132 (Moore and Best 2001). Choosing an improper hypotonic solution and incubation period may 

133 result in overlapping or significant loss of chromosomes (Baksi and Means 1988). The efficacy 

134 of Potassium chloride (KCl 0.075 M) over distil water was demonstrated in this study. In both 

135 species, the number of clear metaphase chromosome spreads was significantly higher using the 

136 former than the latter. Karami et al., (2010) had earlier stated that using KCl caused extensive 

137 cell burst and chromosomal loss when compared to distil water treated larvae of C. gariepinus. 

138 However, chromosome loses in this study was observed in both hypotonic solutions when the 

139 tissue was incubated beyond 1hour while below this reference point, metaphase chromosomes 

140 were largely overlapping. The differences in observation of the two studies despite the similarity 

141 of the species may be linked to the different developmental stages of fish used.

142 The present study has for the very first time, shown that too much or too little of tissue amount 

143 could affect the quantity of identifiable metaphase chromosomes. The optimum amount as 

144 observed in this study was 50mg. While the scanty number of chromosome observed below 

145 50mg could be explained by reduced cell concentration, the observation beyond the reference 

146 amount may be because of high cell/tissue concentration which resulted into darkening of the 

147 slide background. Hence, this may have covered some well spread metaphase chromosome and 

148 the spaces between chromatids, consequently making them unobservable. However, this may be 

149 remedied (hypothetically) by respectively concentrating or diluting the final volume of cell 

150 suspension prepared in the Carnoy’s solution. The difference in the results from the different 
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151 tissue is largely connected with the mitotic cell division rates of these tissues as earlier stated. 

152 This assumption is similar to the findings of Shelton et al. (1997). 

153 The observation of a higher number of well-spread metaphase chromosomes in the gills may be 

154 connected to the vulnerability of the gills to environmental imbalances (Moyle and Cech, 1996). 

155 This may imply that cell division in this organ could be more rapid to compensate damage from 

156 environmental influences. Wakahara (1972) had earlier demonstrated that the mitotic cell 

157 division rate of the ventral tail-fin epidermis of the larval African clawed frog (Xenopus laevis) is 

158 largely affected by changes in environmental factors. Therefore, future studies can be designed 

159 to understand the effect of environmental changes on the proliferation of the mitotic cell in 

160 different tissues of fish. However, the differences in mitotic division rates may also explain the 

161 differences in the response to colchicine and hypotonic solutions treatment by the two fishes 

162 understudied in this research.

163 The observation from this study suggests that making cell suspension during hypotonic treatment 

164 led to increased number of observable metaphase chromosome than initiating this process prior 

165 to slide preparation. The efficiency of the former is likely connected to the increased surface area 

166 of the dissociated cell to the different chemical treatments, hence making their effect more 

167 pronounced than the latter whose tissue was intact through the chemical treatment phase until 

168 slide preparation. Similarly, aging of the cell suspension or tissue for three days in the Carnoy’s 

169 fixative produces better chromosome spread than preparing slide on the very day of cytogenetic 

170 treatment or seven days after. While the underlining principles responsible for this observation 

171 are not well understood, it was speculated that aging might have dissociation effect on the 

172 chromosomes. This is because appreciable percentages of the identifiable chromosome in the 

173 slide prepared on the very day of cytogenetic treatment were compacted and overlapping, while 

174 significant chromosome loss was characteristics of the observations after seven days of aging. 

175 However, these observations are lesser when cells were aged for just three days. 

176 Conclusions

177 The metaphase chromosome produced in this study could be used for karyotype analysis. 

178 Although species-specific technicalities have been recommended to obtain well-spread 

179 metaphase chromosomes in different species (Karami et al., 2010), the method described in this 
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180 study, however, seem to give a satisfactory result for both species using similar protocol. The 

181 optimised protocol reported in this study may also be effective for cytogenetic studies involving 

182 other closely related catfish species (Clarias macrocephalus, Heterobranchus longifilis 

183 Pangasius gigas etc). This could be the focus of future researches.
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Figure 1(on next page)

Effects of different treatments on the number of clear and identifiable metaphase

chromosome spreads in Clarias gariepinus.

(A) Colchicine concentration × duration of exposure interaction. (B) Tissues type × mass of

tissue interaction. (C) Hypotonic treatment × duration of exposure. (D) Cell suspension

preparation × aging time. Data shown are Mean±SE. Bars with different letters are

significantly different from each other (P≤0.05).
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Figure 1: Effects of different treatments on the number of clear and identifiable metaphase 

chromosome spreads in Clarias gariepinus. (A) Colchicine concentration × duration of 
exposure interaction. (B) Tissues type × mass of tissue interaction. (C)  Hypotonic treatment 

× duration of exposure. (D) Cell suspension preparation × aging time. Data shown are 
Mean±SE. Bars with different letters are significantly different from each other (P≤0.05). 
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Figure 2(on next page)

Effects of different treatments on the number of clear and identifiable metaphase

chromosome spreads in Pangasianodon hypophthalmus.

(A) Colchicine concentration × duration of exposure interaction. (B) Tissues type × mass of

tissue interaction. (C) Hypotonic treatment × duration of exposure. (D) Cell suspension

preparation × aging time. Data shown are Mean±SE. Bars with different letters are

significantly different from each other (P≤0.05).
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Figure 3(on next page)

Figure 3: Metaphase chromosome of (a) Clarias gariepinus (2n=56) and  (b)

Pangasianodon hypophthalmus (2n=60).

Bar =5µm.

PeerJ reviewing PDF | (2018:05:28572:0:1:NEW 30 May 2018)

Manuscript to be reviewed



 
Figure 3: Metaphase chromosome of (a) Clarias gariepinus (2n=56) and  

(b) Pangasianodon hypophthalmus (2n=60). Bar =5µm. 

PeerJ reviewing PDF | (2018:05:28572:0:1:NEW 30 May 2018)

Manuscript to be reviewed


