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species, local genetic variation brought about by environmental factors, short-term 

phenotypic plasticity, and the complex interactions between these 

two, all contribute to those variation in reproductive output (Brown & shine, 

2007).

Optimal egg size (OES) theory predicts that natural selection optimizes egg size within 

populations, thussuch that when sufficient resources are available (not limiting) for 

reproduction, clutch size or number of clutches may increase, females may have larger CS 

(or more clutches) rather than an increase in larger egg size (Smith & Fretwell, 1974; 

Brockelman, 1975). Natural selection predicts that females should optimize resources 

allocated to each egg, and CS should only increase CS after ensuring the production of high-

quality offspring fitness (Lovich et al., 2012). In some reptiles, CS is positively correlated 

with the maternalfemale morphological traits, butwhile egg size is not, consistent with OES 

theory (Congdon & Gibbons, 1987). However, the relationship between egg size and number

is determined by numerous factors, and the trade-offs between egg size and number are not 

always evident in natural populations (Berven, 1982; Liao & Lu, 2011; Wang 

et al., 2011).

In some reptiles, especially in some turtles, egg size is corelated towith female maternal

body size (morphological constraint hypothesis), and both egg size and number increase with

an increase in maternalfemale body size, contrary to OES theory (Dunham & Miles, 1985; 

Clark, Ewert & Nelson, 2001; Mohamed et al., 2012; Ryan & Lindeman, 2007). 

This type of cConstraints between female maternal morphological traits and egg size (e.g., 

egg width being constrained by the pelvic aperture width in some turtles and lizards) results 
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in lack of fit with some species not conforming to predictions offrom OES theory. Especially

wWhen resources are limited, reproductive output is directly correlated with the trade-offs 

between egg size and numberclutch size, and ultimately with the futureoffspring survival 

of the population as well (Brown & Shine, 2009; Congdon & Tinkle, 1982). The size of each 

egg normally determines the success of incubation and the offspring’s survival (Angilletta 

et al., 2004; Räsänen, Laurila & Merilä, 2005). Females may allocate more energy to 

individual eggs, aiming for higher fitnessgreater survival of their offspring.  

Phrynocephalus helioscopus is a small (mean SVL 47.55mm) lizard that is widely 

distributed in Eurasia. Previous research on this species has focused on egg incubation (Wang

et al., 2013) and female reproductive output (Liang et al., 2015). However, among the 

distinct populations of this widely distributed species, neither variation in the female 

reproductive traits and the egg size-number trade-off, nor the effects of 

maternalfemale morphological traits on egg size have been studied. In this study, we 

compared maternalfemale morphological traits and the relationships among 

their, egg length (EL), egg width (EW), egg mass (EM), egg shape (ES) and 

clutch size (CS) inamong three populations. Specifically, and examined the relationship of 

female morphological traits on egg size and CS with an aim 

towardwe: 

1. Testeding whether reproductive female size differs among the three populations, 

2. When sizes vary between populations, to testExamined how that variation is associated with

reproductive traits, especially in fecundity, egg and clutch size, egg shape, and the egg size-

numberclutch size trade-offs;
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3. To test whether variations exist in theexamined the relationships of female traits to egg 

and clutch size and egg number in and among populations.

2 Materials and Methods

2.1 Study site

The populations studied here occur atare in three ecologically distinct 

locationslities: Bei Tun city (BT: 87￮15'' E, 47￮26' N), Fu Yun city (FY: 89￮05' E, 46￮36' N), 

and Yi Ning city (YN: 80￮47' E, 43￮40' N) of the Xinjiang Uyghur Autonomous Region, 

China. The distance between the BT and the YN populations is about 660 km

and their habitats are different, and the geographic variation in their habitat is 

great,. The BT population occupieis in a typical gravel desert with little vegetation, while the

YN population occupiesis in a loam desert with abundant vegetation, especially 

shrubs. Geographic variation in their climates also exist. YN is hotter and wetter has a higher

mean air temperature and more precipitation compared tothan BT. The distance between the 

FY and BT are separated by populations is shorter (about 160 km) than that betweenand FY 

and YN by (about 700 km). However, habitat and precipitation in FY is similar to YN in 

vegetation and rainfallare similar to those in YN, while the mean air temperature of FY is 

similar to Btwhile FY and BT have similar temperature regimes (Fig.1 and Fig.2).

2.2 Animal and egg collection

 From May 2014 to May 2017, we collected specimens of P. helioscopus by hand from 

the outskirts of BT (in 2014, Liang et al., 2015), FY( in 2017), and YN (in 2017) and took 

them . We transported the lizards to the Xinjiang Agricultural University, where 

the female lizards were individually palpated to assessdetermine their reproductive state (Li 
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et al., 2006). Fifty-three gravid females (BT: 13, FY: 24, YN: 16) were housed individually in

plastic cages . These cages were placed in a room withhere ambient temperatures were never 

higher thanabove 28℃ and the room lights were programmed to createwith a 12-hour light 

/12-hour dark cycle. A 250 W light bulb was suspended at one end of each cage, 20 cm above

the cage floor and lizards could freely move to warmer and cooler places within the 

cage. Mealworms (larvae of Tenebrio molitor) and water enriched with vitamins and minerals

were provided ad libitum. Female in cages will continuously dig before they lay 

eggs, which allowed us to . This behaviour helped us collect eggs quickly,  and prevented the

and prevented eggs from absorbing water in the moist substrate. The cages were checked 

every 2 hours for eggs. All eggs are used in this study were collected no more than 20 

minutes after they had been laid. 

2.3 Morphology and Reproductive Traits

We measured female snout-vent length (SVL), body mass (BM, female post-oviposition

mass, 0.01 g), tail base width (TBW), egg length (EL), and egg width (EW)

by using digital calipers (measured to the nearest 0.01 mm). We also recordednoted clutch 

size (CS). We weighed females after oviposition, eggs mass (EM) and clutches mass (CM) by

on an electronic balance (measured to the nearest 0.01g). We calculatedused relative clutch 

mass (RCM, RCM = CM / BM) as a proxymeasure of for female fecundity (Shine, 1992). 

The ratio of egg length /to egg width (EL / EW) value representsindicates the general shape 

of the eggs (egg shape, ES), where 1 is a round egg, and larger values are increasingly 

elongate – a larger value means the egg has an elongated shape, and a smaller value indicates

a rounder shape (Ji & Wang, 2005; Kratochvíl & Frynta, 2006). 
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CS is also related to theEgg shape of the eggs,is also related to clutch size

and larger clutches tend to have more rounded eggs females produce a larger CS when their 

eggs are rounded, and less when elongated (Ji et al., 2002). EL did not significantly differ 

among the three populations (EM as the covariate), but a variation did exist in EW did. The BT

population’s EW Eggs were narrower in BT is smaller than that of the other two populations, 

so the egg shape of the BT population females were more elongated than those laid by the YN 

and FY populations. On the other hand, ES is associated with female and clutch 

sizerelated to the crowdedness of eggs in the female’s uterus due to available space in the 

uterus (Qu et al., 2011; Ji & Wang, 2005). Both the FY and YN populations lay 

more, and rounder eggs (Table 1). Rounder eggs might indicate that the uteri of the females of

these two populations were more tightly packed when they were gravid. 

4.4 Variation in egg size-number trade-offs among the three populations 

The trade-off between egg size and numberclutch size is one of the centralan important

concepts in life-history theory (Kern et al., 2015). The egg size-number trade-offs among the 

three populations here are quite different. A significant negative relationship between 

eEgg size and clutch size were negatively correlated  number existed in the BT and FY 

populations (EM and EL), but not in the YN population, indicating that in the former 

populations the females with larger CS produce smaller eggs by reducing the length of the 

eggs. In the YN population there was no egg size-number trade-off (P > 0.05), which is 

further evidence thatand so intraspecific variation in the relationship between egg size and 

clutch sizenumber is widespread (Liao, Lu & Jehle, 2014; Roitberg et al., 2015).

4.5 Variation in the relationships between egg size, number, and maternalfemale 
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morphologysize indicates that there is no optimal egg size, as in the YN population is attained 

in the YN populations (Escalona, Adams & Valenzuela, 2018). Furthermore, our findings

alsoBut, wew found provide some support to suggest that theirfor the prediction that EW was 

constrained by TBW (Fig. 3), since eggs must fit the female tail base width which they pass 

through on their smallest axis (e.g. EW). In some turtle species, EW but not EL increases with

the size of the female (Rasmussen & Litzgus, 2010). There was a significant positive 

correlation between EL and female SVL in the YN population, suggesting that EL is 

dependent upon on female SVL. Egg size (EL and EW) was not dependent on female body 

size in either the BT or FY population, but there were significant negative correlations between

egg size  and number (Fig. 4), suggesting that the egg size was constrained by CS (non-

morphological factor) in both populations (Brown & Shine, 2009, outcome 4). 

Overall, the relationship between egg size and SVL cannot be completely explained by female

morphological constraints on egg size, especially for EL, because EL can be constrained by 

morphological factors, non-morphological factors (e.g. CS), or their interactions, which may 

indicate that a weak relationship exists between female morphology and EL exists in the YN 

population. The specific mechanisms of the non-morphological factors require further study 

(Kern et al., 2015).

CONCLUSIONS

In summary, our studywe found geographic variation in body size and reproductive 

strategies of the lizard Phrynocephalus helioscopus. Lizards in populations with longer 

growing seasons and abudant vegetation (the FY and YN populations)

exhibitare larger body sizes and have greater reproductive output. The lLizards of the BT 
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population are smaller (perhaps due to food limitation or season 

limitation), because they have the smallest body size and inadequate food availability, their

also have smaller clutches CS was smaller than that of the lizards of the FY and YN 

populations. Due to their larger CS, the FY and YN femalespopulations produce rounder 

eggs, perhaps due to larger body size. This study found that there were morphological 

constraints on egg size  in the larger-bodied females of the YN population – an anomaly for the

morphological constraint hypothesis. Egg size was not constrained by female body size and 

did not follow the optimal egg size hypothesis in the BT and FY populations. Egg size-number

trade-off suggests that egg size was constrained by CS in both populations.

However, whether the existence of genetic variation is related to the differences in the life 

history traits of the three populations of this species has not been examined in this study and 

should be researched in the future.

Ethics approval
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