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We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-

field fundus images (Optos) with deep learning, which is a machine learning technology.

The study included 910 Optos color images (715 normal images, 195 MH images). Of these

910 images, 637 were learning images (501 normal images, 136 MH images) and 273

were test images (214 normal images and 59 MH images). We conducted training with a

deep convolutional neural network (CNN) using the images and constructed a deep-

learning model. The CNN exhibited high sensitivity of 100% (95% confidence interval [CI],

93.5–100%) and high specificity of 99.5% (95% CI, 97.1–99.9%). The area under the curve

was 0.9993 (95% CI, 0.9993–0.9994). Our findings suggest that MHs could be diagnosed

using an approach involving wide angle camera images and deep learning.
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18 Abstract

19 We aimed to investigate the detection of idiopathic macular holes (MHs) using ultra-wide-field 

20 fundus images (Optos) with deep learning, which is a machine learning technology. The study 

21 included 910 Optos color images (715 normal images, 195 MH images). Of these 910 images, 

22 637 were learning images (501 normal images, 136 MH images) and 273 were test images (214 

23 normal images and 59 MH images). We conducted training with a deep convolutional neural 

24 network (CNN) using the images and constructed a deep-learning model. The CNN exhibited 

25 high sensitivity of 100% (95% confidence interval [CI], 93.5–100%) and high specificity of 

26 99.5% (95% CI, 97.1–99.9%). The area under the curve was 0.9993 (95% CI, 0.9993–0.9994). 

27 Our findings suggest that MHs could be diagnosed using an approach involving wide angle 

28 camera images and deep learning.

PeerJ reviewing PDF | (2018:03:26404:1:2:CHECK 10 Jul 2018)

Manuscript to be reviewed

mailto:t.nagasawa@tsukazaki-eye.net


29

30 Introduction

31 In 1988, Gass described idiopathic macular holes (MHs) as a retinal break commonly involving 

32 the fovea (Gass, 1998), and in 1991 Kelly and Wendel reported that MHs can be successfully 

33 repaired through vitreous surgery (Kelly & Wendel, 1991). The age and gender adjusted annual 

34 incidences of primary MH have been reported at 7.9 eyes and 7.4 respectively per 100 000 

35 inhabitants, and the male to female ratio was 1:2.2 (Forsaa et al., 2017). The development of 

36 optical coherence tomography (OCT) and improvement of image resolution have made the 

37 diagnosis of macular diseases substantially easy (Kishi & Takahashi, 2000).

38 In addition, the advent of wide angle fundus cameras has made the observation of the entire 

39 retina possible through a simple and noninvasive approach (Nagiel et al., 2016). An example of 

40 such a camera is the ultra-wide-field scanning laser ophthalmoscope (Optos 200 Tx; Optos PLC, 

41 Dunfermline, United Kingdom), which is known as Optos. It is capable of photographing the 

42 fundus without mydriasis, and it is used for making judgments regarding the diagnosis, follow-
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43 up, and treatment effects of various fundus diseases (Prasad et al., 2010; Wessel et al., 2012; 

44 Ogura et al., 2014). Optos can minimize the risk of a rise in pupillary block caused by mydriasis 

45 and intraocular pressure increase. This makes Optos suitable for medical use in remote areas 

46 where the services of ophthalmologists are limited, as the device can be safely used by 

47 orthoptists and other medical professionals.

48 Recently, image processing technology applying deep learning, a sub-field of machine 

49 learning algorithm studies, has attracted attention because of its very high classification 

50 performance. The use of this technology for medical images is being actively studied (LeCun, 

51 Bengio & Hinton, 2015; Liu et al., 2015; Litjens et al., 2016). In the ophthalmic field, there are 

52 reports on the use of the ocular fundus camera and deep learning and on the improvement in the 

53 accuracy of automatic diagnosis of diabetic retinopathy and retinal detachment with these 

54 approaches (Gulshan et al., 2016; Ohsugi et al., 2017; Ryan et al., 2018). However, the 

55 diagnostic accuracy of the wide angle ocular fundus camera for macular diseases is yet to be 

56 reported. Deep neural networks have been used to diagnose skin cancer with as much accuracy 
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57 as that attained by dermatologists (Esteva et al., 2017). We decided to assess the diagnostic 

58 capability of deep neural networks for macular holes as compared with ophthalmologists’ 

59 diagnoses.

60 The present study assessed the presence of MHs, which are considered as a macular disease, 

61 using ultra-wide-field fundus images with deep learning in order to determine the accuracy of 

62 deep learning, and to compare the ophthalmologist and the deep neural network for MHs.

63

64 Materials and Methods

65 Data set

66 The study dataset included 910 Optos color images obtained at the Tsukazaki Hospital (Himeji, 

67 Japan) and Tokushima University Hospital (715 normal images and 195 MH images). Of the 910 

68 images, 637 were used for training purposes (80%; 501 normal images and 136 MH images; 

69 learning images) and 273 were used for testing purposes (20%; 214 normal images and 59 MH 

70 images; test images).
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71 The 637 learning images underwent image processing and were amplified to 5000 images 

72 (3887 normal images and 1113 MH images). The image amplification process comprised 

73 contrast adjustment, γ correction, histogram equalization, noise addition, and inversion. We 

74 performed training on these learning images with a deep convolutional neural network (CNN) 

75 and constructed a deep learning model.

76 Cases of MHs were confirmed by a retinal specialist who conducted fundus examinations 

77 using an ophthalmoscope and OCT. For OCT, a swept-source OCT system (SS-OCT; DRI OCT-

78 1 Atlantis, TOPCON Corporation, Tokyo, Japan) was used. All Optos images obtained from the 

79 MH patient database were considered for inclusion. Images from patients complications, such as 

80 vitreous hemorrhage, asteroid hyalosis, intense cataract, and retinal photocoagulation scars, and 

81 other conditions, such as fundus diseases, were excluded. Additionally, images with poor clarity 

82 were excluded. Moreover, images from patients with stage 1 MHs (according to the 

83 classification by Gass) and those with retinal detachment were excluded. 

84 The procedures used conformed to the tenets of the Declaration of Helsinki, and an informed 

PeerJ reviewing PDF | (2018:03:26404:1:2:CHECK 10 Jul 2018)

Manuscript to be reviewed



85 consent was obtained from either the subjects or their legal guardians after explanation of the 

86 nature and possible consequences of the study. An approval was obtained from the Institutional 

87 Review Board of Tsukazaki Hospital (No 171001) and Tokushima University Hospital (No 

88 3079) to perform this study.

89

90 Deep learning model 

91 We implemented a deep learning model using a CNN (Figure 1). We arranged three 

92 convolutional layers. The rectified linear unit (ReLU) activation function and batch 

93 normalization were placed after each convolutional layer. A max pooling layer (MP 1, 2) was 

94 placed after convolutional layers 1 and 3. In addition, a dropout layer (drop rate 0.25) was placed 

95 after each max pooling layer (MP 1, 2). Finally, the two fully connection layers (FC 1, 2) were 

96 arranged and classified into two classes using the Softmax function.

97

98 Training the deep convolutional neural network
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99 All obtained image data were converted to 256 × 192 pixels. Learning was carried out with 

100 mini-batch processing of 10 images and an epoch number of 100. The initial value of the 

101 network weight was randomly provided as the zero average of Gaussian distribution, with a 

102 standard deviation of 0.05. Dropout processing was performed to mask the first total tie layer 

103 (FC1), with 50% probability. The network weights were optimized using stochastic gradient 

104 descent (SGD) with momentum [learning coefficient, 0.01; inertia term, 0.9]. Of 100 deep 

105 learning models obtained in 100 learning cycles, the model with the highest accuracy rate for the 

106 test data was selected as the deep learning model.

107

108 Outcome

109 The area under the curve (AUC) and sensitivity/specificity were determined for the ability of the 

110 selected CNN model to discriminate between normal eyes and MH.

111

112 Statistical analysis
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113 The receiver operating characteristic curve (ROC curve) and the 95% confidence interval (CI) of 

114 the AUC were obtained. The ROC curve was created by considering that the value judged to 

115 involve MHs exceeded the threshold (cutoff value) as positive. The model was fitted to only 90% 

116 of the test data. We created 100 ROC curves by making 100 patterns, and 10% were thinned out. 

117 One hundred AUCs were calculated from the ROC curves. With regard to the AUCs, 95% CI 

118 were obtained by assuming normal distribution and using standard deviation. With regard to 

119 sensitivity and specificity, the first of the 100 ROC curves were used, and the sensitivity and 

120 specificity at the optimum cutoff value calculated using Youden Index 23 as the representative 

121 value of the deep learning model were used. The correct answer rate, specificity, sensitivity, and 

122 response times by CNN and six ophthalmologists were calculated.

123

124 Creation of an ophthalmologist application

125 Of the 273 test images, 50 normal images and 50 MH images were extracted using the random 

126 number generation method (equal representation for normal data and the disease data). We 
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127 calculated the correct answer rate, specificity, sensitivity, and response times by CNN based on 

128 the averaged results of six ophthalmologists.

129

130 Determination and measurement methods for calculating the required time

131 Six ophthalmologists determined the presence or absence of MHs in 50 images presented on a 

132 computer monitor. The answer inputs of either 0 or 1 on the response form were populated in an 

133 Excel table.

134 The time taken by the ophthalmologists to enter data in the computer was also included. In deep 

135 neural network, a series of tasks was performed for all presented numbers as follows: confirming 

136 the number of the problem in the answer column → reading the image → judging → filling in 

137 the answer column. The total time was counted as the operation time. This series of work was 

138 performed 15 times by a computer, and the working time was considered as the median value. 

139 The time required by the ophthalmologists was set as the time taken to complete all answers in 

140 the Excel file. The time required for the deep neural network was measured by the internal clock 
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141 of the computer. The specifications of the computer were as follows: operating system, Windows 

142 10 Home; CPU, Intel Core i7 - 3630 QM; memory, 8.00 GB; GPU, NA.

143

144 Heat map

145 Using the gradient weighted class activation mapping (Grad-CAM) (Selvaraju et al., 2017) 

146 method, we obtained a heat map of the coordinate axes in the image focused on by the CNN. The 

147 layer that used the gradient was specified as convolution layer 2. Additionally, we specified 

148 ReLU as the backprop modifier.

149

150 Results

151 Background data

152 Table 1 shows the total number of normal and MH images, patient age, patient sex, and left/right 

153 of the imaged eyes. There were no statistically significant differences between the normal and 

154 MH images with regard to age, sex ratio, and left eye ratio (Student’s t-test and Fisher’s exact 
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155 test).

156

157 Evaluation of the performance model

158 The mean value of 100 AUCs prepared by the CNN model was 0.9993 (95%–CI: 0.9993–

159 0.9994).

160 The first curve among the 100 calculated ROC curves is shown in Figure 2. 

161 The mean sensitivity obtained from the 100 ROC curves was 100% (95%–CI; 93.5–100%), and 

162 the mean specificity was 99.5% (95%–CI; 97.1–99.99%).

163 Ophthalmologists carried out the test, and the mean (standard deviation) required time was 

164 838.00 s (±199.16), the mean (standard deviation) accuracy rate was 80.6% (5.9%), sensitivity 

165 was 65.9% (15.7%), and specificity was 95.2% (4.3%). The same test was carried out with the 

166 CNN model, and the mean (standard deviation) required time was 32.8 s (±7.36) and accuracy 

167 rate, sensitivity, and specificity were all 100% (Table 2).

168
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169 Heat map

170 An image with the corresponding heat map superimposed was created by the CNN, and the 

171 focused coordinate axes in the image were indicated. A representative image is presented in 

172 Figure 3. Focal points accumulated on the heat map at the fovea of the fundus macula. It is 

173 suggested that the CNN may distinguish s diseased eye from a normal eye by focusing on the 

174 MH lesion site.

175 Blue color was used to indicate the strength of CNN attention. The color became stronger on one 

176 side of the arcade, with centering at the macular fovea, and accumulation was noted at the focus 

177 points. 

178

179 Discussion

180 OCT is considered indispensable for the diagnosis of MHs. However, in the present study, MHs 

181 were diagnosed using images from a wide angle camera and deep learning. Optos adopts the 

182 method of combining a red (633 nm) laser image and a green (532 nm) laser image to give a 
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183 false color. Details of color information are inferior to those of a conventional fundus camera. 

184 Therefore, the quality of the diagnosis made by an ophthalmologist might reduce. With the deep 

185 learning model, the approach is different from the approach of an ophthalmologist, with a focus 

186 only on the difference from a normal eye, and there is a possibility that some additional general 

187 and flexible features of learning can be considered. The heat map spreads over a relatively wide 

188 area around the macula fovea, and this approach appears to have a classification that is superior 

189 to the judgment ability of an ophthalmologist.

190 　The present study has several limitations. When light transmission in the eye is absent because 

191 of intense cataract or dark vitreous hemorrhage, it is difficult to obtain images with Optos, and 

192 such cases were not included in the present study. In addition, this study only compared normal 

193 eyes and MH eyes, and it did not assess eyes affected by other fundus diseases. This warrants the 

194 preparation of a large scale data set for applying deep learning. Although the diagnostic ability of 

195 using a wide angle ocular fundus camera and deep learning for diabetic retinopathy and retinal 

196 detachment has been reported, the findings of this study indicate the high diagnostic ability of 
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197 this approach for MHs, which are considered a macular disease. In the future, studies should 

198 assess the possibility of performing automatic diagnoses with a wide angle camera for other 

199 macular diseases, such as macular epiretinal membrane and age-related macular degeneration. 

200 If Optos is used in a medically depopulated area, wide-area ocular fundus photography can easily 

201 be performed under a non-mydriasis condition, without medical complications. Moreover, even 

202 if no ophthalmologist is available to assess the image, the deep-learning algorithm can be used 

203 for MH diagnosis, as it has a high accuracy rate for MH diagnosis. Many regions of the world 

204 have an inadequate number of ophthalmologists (Resnikoff et al., 2012) and thus, the automatic 

205 diagnosis of MH using Optos fundus images has great potential. If surgical treatment is 

206 performed at an appropriate time in MH patients, a good prognosis can be obtained. The results 

207 of this study strongly support the use of an Optos based telemedicine system. Such systems 

208 might aid in the early detection of patients with MHs in areas where ophthalmologists are absent. 

209

210 Conclusions

PeerJ reviewing PDF | (2018:03:26404:1:2:CHECK 10 Jul 2018)

Manuscript to be reviewed



211 Using ultra-wide-field fundus images, deep learning, could successfully diagnose MHs. We 

212 believe that this approach will be very useful in the practical clinical diagnosis of MHs. Further 

213 research with increasing number of sheets, deepening the layer structure, and using metastasis 

214 learning are necessary to confirm our results.

215
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Figure 1

Overall architecture of the deep learning model.

First, each dataset's image was reduced to 256 × 192 and was input into the model. Next, it

was passed through all convolution layers and the entire binding layer, and it was classified

into 2 classes.
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Figure 2

Receiver operating characteristics curve.

This is the first one out of 100 ROC curves. The average AUC of 100 ROC curves was almost

1, and all ROC curves were similar.
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Figure 3

Heatmap superimposed on the photo.

The dark blue color shows the point where the deep neural network is paying attention on

the macula and from the same point of view of an ophthalmologist.
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Table 1(on next page)

Demographic data.

No statistically significant differences were observed between the groups. Data are

presented as numbers (%) unless otherwise indicated.
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　 Macular hole images Normal images p-value 　

n 195 715

Age 66.9 ± 7.6 (20~85) 67.3 ± 12.2 (11～94) 0.5726 Student’s t-test

Sex (female) 117 (60%) 390 (54.6%) 0.1933 Fisher’s exact test

Eye (left) 102 (52.3%) 361 (50.5%) 0.6865 Fisher’s exact test

1

2
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Table 2(on next page)

The results of CNN model and overall ophthalmologist.

The convolutional neural network model, discrimination test of the macular holes data and

the normal data, ophthalmologist, accuracy, sensitivity, specificity, and measurement time.

PeerJ reviewing PDF | (2018:03:26404:1:2:CHECK 10 Jul 2018)

Manuscript to be reviewed



1

　 CNN model Overall Ophthalmologist

Accuracy 100% 80.6±5.9%

Specificity 100% 95.2±4.3%

sensitivity 100% 69.5±15.7%

measurement 

time (sec)

32.80±7.36 838.00±199.16

2
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