
Submitted 2 July 2014
Accepted 20 August 2014
Published 16 September 2014

Corresponding author
Bruno Lomonte,
bruno.lomonte@ucr.ac.cr

Academic editor
Paul Tulkens

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj.569

Copyright
2014 Mora-Obando et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Role of enzymatic activity in muscle
damage and cytotoxicity induced by
Bothrops asper Asp49 phospholipase A2
myotoxins: are there additional effector
mechanisms involved?
Diana Mora-Obando1, Cecilia Dı́az1,2, Yamileth Angulo1,
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ABSTRACT
Viperid venoms often contain mixtures of Asp49 and Lys49 PLA2 myotoxin iso-
forms, relevant to development of myonecrosis. Given their difference in catalytic
activity, mechanistic studies on each type require highly purified samples. Studies on
Asp49 PLA2s have shown that enzyme inactivation using p-bromophenacyl bromide
(p-BPB) drastically affects toxicity. However, based on the variable levels of residual
toxicity observed in some studies, it has been suggested that effector mechanisms
independent of catalysis may additionally be involved in the toxicity of these en-
zymes, possibly resembling those of the enzymatically inactive Lys49 myotoxins. A
possibility that Lys49 isoforms could be present in Asp49 PLA2 preparations exists
and, if undetected in previous studies, could explain the variable residual toxicity.
This question is here addressed by using an enzyme preparation ascertained to be
free of Lys49 myotoxins. In agreement with previous reports, inactivation of the
catalytic activity of an Asp49 myotoxin preparation led to major inhibition of toxic
effects in vitro and in vivo. The very low residual levels of myotoxicity (7%) and
cytotoxicity (4%) observed can be attributed to the low, although detectable, enzyme
remaining active after p-BPB treatment (2.7%), and would be difficult to reconcile
with the proposed existence of additional catalytic-independent toxic mechanisms.
These findings favor the concept that the effector mechanism of toxicity of Asp49
PLA2 myotoxins from viperids fundamentally relies on their ability to hydrolyze
phospholipids, arguing against the proposal that membrane disruption may also be
caused by additional mechanisms that are independent of catalysis.

Subjects Biochemistry, Toxicology, Pharmacology
Keywords Snake venom, Asp49, Myotoxin, Phospholipase A2, Bothrops asper

INTRODUCTION
Phospholipases A2 (PLA2s) are abundant components of snake venoms, where they play

major toxic roles in the immobilization and/or killing of prey. Among their diverse effects,
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these interfacial enzymes exert potent neurotoxicity and/or myotoxicity, and efforts to

reveal their detailed mechanisms of action on neurons and skeletal muscle cells have

long been pursued in toxinology (Kini, 1997; Gutiérrez & Lomonte, 2013). PLA2 enzymes

found in Elapidae and Viperidae snake venoms conserve a common scaffold but present

distinctive structural characteristics which allow their classification within groups I or

II, respectively, of this large protein family (Arni & Ward, 1996; Montecucco, Gutiérrez

& Lomonte, 2008). Since two different, non-toxic ancestral PLA2 genes evolved toward

toxicity in elapids (group I) and viperids (group II) (Fry & Wüster, 2004), the acquisition

of common toxic activities in both lineages represents a convergent evolutionary process

(Lomonte & Gutiérrez, 2011; Lomonte & Rangel, 2012). As a consequence, mechanistic

differences might exist in the mode by which group I and group II PLA2s exert their

shared toxic effects. Furthermore, within the group II enzymes a subtype emerged which

is typified by the substitution of the critical Asp49 residue in the catalytic center, most

often by a Lys residue (Maraganore et al., 1984). Such Lys49 PLA2s are indeed “PLA2

homologues” or “PLA2-like” proteins because they are devoid of phospholipolytic activity,

but are highly active as myotoxins. All Lys49 PLA2 homologues studied to date are basic

proteins that induce skeletal muscle necrosis at the site of injection (Lomonte, Angulo &

Calderón, 2003; Lomonte et al., 2009; Lomonte & Rangel, 2012), whereas not all Asp49

PLA2s from viperids are myotoxic. This effect is present almost exclusively in the basic but

not the acidic enzymes, in spite of their shared catalytic activity (Lomonte & Gutiérrez,

2011).

Myotoxic PLA2s and PLA2 homologues present in viperid venoms have increasingly

been studied due to their relevance in the development of skeletal muscle necrosis after

envenomings, with serious clinical consequences such as tissue loss, dysfunction or

amputation (Harris & Cullen, 1990; Gutiérrez & Ownby, 2003; Soares, Fontes & Giglio,

2004; Lomonte & Rangel, 2012). In order to understand the mechanisms involved in the

pathological effects induced by group II myotoxic PLA2s, thorough protein purification

is essential. The isolation of different variants of myotoxic PLA2s in viperid venoms is

complicated by the fact they often contain a multiplicity of closely related isoforms that

are variably expressed in the species (Faure & Bon, 1988; Lomonte & Kahan, 1988; Valiente

et al., 1992) or in single individuals (Lomonte & Carmona, 1992). As a consequence, these

venoms may contain complex mixtures of both Asp49 and Lys49 myotoxins, and given

the fundamental difference in catalytic activity between them, mechanistic studies on each

type require their efficient separation. Contamination of a Lys49 myotoxin preparation

with Asp49 PLA2s can be straightforwardly detected by means of the catalytic activity

of the latter (Scott et al., 1992; Cintra-Francischinelli et al., 2009). However, the converse

situation poses a more difficult challenge, since there is no specific functional assay to

detect the presence of Lys49 contaminants in preparations of Asp49 myotoxins.

Several Asp49 and Lys49 myotoxins have been isolated from the venom of Bothrops

asper, the snake species causing the majority of envenomings in Central America (Angulo

& Lomonte, 2009). A number of studies have demonstrated that Lys49 PLA2 homologues

induce myonecrosis by a catalytic-independent mechanism, involving amino acids at their
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C-terminal region which affect the integrity of the sarcolemma (Lomonte et al., 1994;

Núñez, Angulo & Lomonte, 2001; Chioato et al., 2002; Chioato & Ward, 2003; Lomonte,

Angulo & Calderón, 2003; dos Santos et al., 2009; Lomonte & Rangel, 2012; Fernandes et al.,

2013; Fernández et al., 2013). On the other hand, Asp49 PLA2s have been shown to depend

on their catalytic activity to disrupt the integrity of this membrane (Lomonte & Gutiérrez,

2011). Nevertheless, some studies have reported that inhibition of PLA2 activity in Asp49

myotoxins may result in variable degrees of residual toxicity, and the possibility has been

suggested that their overall toxic action may involve membrane-perturbing mechanisms

additional to catalysis depending on molecular regions other than the catalytic site, in

similarity with the Lys49 myotoxins (Dı́az et al., 1991; Dı́az-Oreiro & Gutiérrez, 1997;

Andrião-Escarso et al., 2000; Soares et al., 2001a; Soares et al., 2001b; Soares & Giglio, 2003).

An alternative explanation for the residual toxicity observed in some earlier studies after

enzyme inactivation of Asp49 PLA2s, could be the presence of variable levels of undetected

Lys49 isoforms. The present work addresses this possibility by reassessing the role of

catalytic activity in the toxic effects of an Asp49 PLA2 myotoxin preparation from the

venom of B. asper that was ascertained free of Lys49 myotoxin contaminants. After its

inactivation by histidine modification with p-bromophenacyl bromide, its toxic actions in

vivo (myotoxicity) and in vitro (cytotoxicity upon differentiated myotubes) were evaluated

in comparison to the untreated toxin.

METHODS
Isolation of Asp49 phospholipase A2 myotoxins
Venom of Bothrops asper, pooled from specimens collected in the Pacific versant of Costa

Rica and kept at the serpentarium of Instituto Clodomiro Picado, was fractionated

by cation-exchange chromatography on a CM-Sephadex C-25 column (20 × 2 cm)

equilibrated with 0.05 M Tris, 0.1 M KCl, pH 7.0 buffer, at 0.4 mL/min (Lomonte

& Gutiérrez, 1989). Protein elution was performed with a gradient toward 0.75 M

KCl in the same buffer, and monitored at 280 nm with a Bio-Logic chromatograph

(Bio-Rad). Peak 2 was collected, desalted by overnight dialysis, lyophilized, and further

separated by reverse-phase high-performance liquid chromatography (RP-HPLC) on

a C8 semipreparative column (250 × 10 mm) Elution was carried out at 2.5 mL/min

with a gradient from water to acetonitrile, both containing 0.1% trifluoroacetic acid,

in a model 1200 chromatograph (Agilent) monitored at 215 nm. The gradient toward

acetonitrile stepped from 0 to 25% in 5 min, 25 to 50% in 22 min, 50 to 70% in 1 min,

and was sustained at 70% for 2 min, for a total run time of 30 min. Fractions of interest

were collected, dried in a vacuum centrifuge at 45 ◦C, and stored at −20 ◦C. Protein

concentrations were estimated by measuring their absorbance at 280 nm in a Nanodrop

(Thermo) reader.

Homogeneity evaluation
The Asp49 PLA2 preparation was evaluated by three analytical methods. (a) A sample

(40 µg) of the fraction was run by RP-HPLC on a C4 column at analytical scale
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(4.6 × 150 mm), eluted at 1 mL/min with an acetonitrile gradient (0% at 5 min, 0 to 70% in

45 min, and 70% for 10 min, for a total run time of 60 min) and monitored at 215 nm; (b)

the fraction was analyzed by nano-electrospray mass spectrometry (nESI-MS), by directly

infusing the sample (2 µg/10 µL), loaded into a metal-coated capillary tip (Proxeon), in a

Q-Trap 3200 instrument (Applied Biosystems) operated in positive multicharge enhanced

mode using an ionization voltage of 1,200–1,300 V. Spectra were acquired in the 700–1,700

m/z range and deconvoluted with the BioAnalyst v.1.5 software (ABSciex); (c) the fraction

(200 pmoles) was subjected to ten cycles of N-terminal sequencing by automated Edman

degradation in a model PPSQ33A instrument (Shimadzu Biotech). In all three analytical

techniques, a sample of Lys49 myotoxin (B. asper myotoxin II; Lomonte & Gutiérrez, 1989),

was included for comparison.

Asp49 phospholipase A2 inactivation with p-bromophenacyl
bromide
Three mg of the Asp49 myotoxin were dissolved in 1 mL of 0.1 M Tris, 0.7 mM EDTA,

pH 8.0 buffer. Then, 125 µL of p-bromophenacyl bromide (p-BPB; 1.5 mg/mL in

ethanol; Sigma) were added and incubated at room temperature (20–25 ◦C) for 24 h

(Dı́az-Oreiro & Gutiérrez, 1997). Excess reagent and salts were eliminated by RP-HPLC on

a semi-preparative C8 column, as described above. The protein was collected and finally

dried by vacuum centrifugation at 45 ◦C. To serve as a control in all assays, a parallel

sample of the Asp49 PLA2 was subjected to all steps of this procedure, but omitting the

p-BPB reagent during the 24 h incubation.

Phospholipase A2 activity
PLA2 activity was assayed on the synthetic monodisperse substrate 4-nitro-3-

octanoyloxybenzoic acid (NOBA; Holzer & Mackessy, 1996). Various amounts of

p-BPB-treated or control myotoxin, dissolved in 25 µL of 10 mM Tris, 0.1 M NaCl, 10

mM CaCl2, pH 8.0 buffer, were mixed with 200 µL of this buffer and 25 µL of NOBA

(1 mg/mL in acetonitrile), and incubated at 37 ◦C for 60 min (Mora-Obando et al., 2014).

The reaction product was colorimetrically quantified at 405 nm in a microplate reader

(Thermo). Wells containing all reagents, except the enzyme, were used as a blank. All

samples were assayed in triplicate wells.

Cytotoxic activity
Cytotoxic activity was assayed on the murine myogenic cell line C2C12 (ATCC-CRL1772)

(Lomonte et al., 1999). Various amounts of p-BPB-treated or control myotoxin, dissolved

in 150 µL of assay medium (Dulbecco’s modified Eagle’s medium with 1% fetal calf

serum [DMEM, 1% FCS]), were added to wells of a 96-well plate where the myogenic

cells had grown until confluency and then differentiated to myotubes for 4–6 days in

assay medium at 37 ◦C and 7% CO2. The medium was removed and, immediately, the

toxins dissolved in a fresh assay medium were added. After 3 h of incubation at 37 ◦C, an

aliquot of cell supernatants (60 µL) was collected from each well and the released lactate

dehydrogenase (LDH) activity was quantified by a UV kinetic assay (LDH-BR Cromatest;
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Linear Chemicals). Controls for 0 and 100% cytotoxicity consisted of assay medium and

0.1% Triton X-100 diluted in assay medium, respectively. All samples were assayed in

triplicate wells.

Myotoxic activity
Myotoxic activity was assayed in groups of five CD-1 mice of 18–20 g of body weight.

These in vivo assays followed protocols approved by the Institutional Committee for the

Use and Care of Animals (CICUA; 132-13), University of Costa Rica. Mice were housed

in cages in groups of 4–6, and provided food and water ad libitum. A fixed amount of the

toxins (50 µg), dissolved in 50 µL of phosphate-buffered saline (PBS; 0.12 M NaCl, 0.04 M

sodium phosphate buffer, pH 7.2), was injected intramuscularly into the gastrocnemius

(Lomonte & Gutiérrez, 1989). A control group of mice received an identical injection of PBS

only. After 3 h, blood was collected from the tip of the tail into a heparinized capillary and

centrifuged. The plasma creatine kinase (CK) activity, expressed in U/L, was determined

using a UV kinetic assay (CK-Nac; Biocon Diagnostik).

Statistical analysis
Statistical significance of mean values comparisons was determined by the Student’s t-test,

at p < 0.05, using the GraphPad Instat v.3 software.

RESULTS AND DISCUSSION
Fractionation of B. asper (Pacific region of Costa Rica) venom on CM-Sephadex at pH 7.0

separated the basic proteins from the acidic components eluting in the flow-through peak

(Fig. 1A). Peak 1 corresponded to the metalloproteinase BaP1 described by Gutiérrez et

al. (1995), whereas peaks 2–4 contained basic PLA2s or PLA2 homologues, in similarity

with the profile of B. asper venom from specimens of the Caribbean region (Gutiérrez,

Ownby & Odell, 1984; Lomonte & Gutiérrez, 1989). Although the resolution obtained in the

Asp49-rich region of the Pacific venom chromatogram was slightly lower in comparison

to the Caribbean venom, the final yield of Asp49 PLA2 was found to be higher with the

former venom, which was therefore selected for further purification. Peak 2 (Fig. 1A)

presented high PLA2 activity (data not shown) and was subsequently fractionated by

semi-preparative C8 RP-HPLC, resulting in two major peaks (Fig. 1B). The peak eluting

at ∼19 min was devoid of PLA2 activity, corresponding to Lys49 myotoxins, whereas the

larger peak eluting at ∼24 min showed PLA2 activity, corresponding to Asp49 myotoxins.

In order to ascertain that the Asp49 PLA2 preparation was devoid of Lys49 proteins,

several analyses were conducted. First, the sample was subjected to analytical RP-HPLC

using a C4 column with a longer elution gradient. In similarity with the semi-preparative

C8 separation, this technique efficiently separated the Lys49 from the Asp49 proteins with

a difference in retention times between them of nearly 3 min (Figs. 2A and 2B). The higher

resolution of this technique evidenced that the Asp49 PLA2 preparation contained several

peaks with very close retention times, which could not be adequately resolved (Fig. 2B).

In contrast, the Lys49 protein eluted as a sharp single peak (Fig. 2A). nESI-MS analyses

confirmed these observations, revealing the presence of at least two main molecular
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Figure 1 Isolation of myotoxic phospholipases A2 from the venom of Bothrops asper (Pacific ver-
sant of Costa Rica). (A) Venom (200 mg) was applied to a CM-Sephadex C-25 column (20 × 2 cm)
equilibrated with 0.05 M Tris, 0.1 M KCl, pH 7.0 and, after elution of unbound proteins, a linear
gradient (G; dotted line) toward 0.05 M Tris, 0.75 M KCl, pH 7.0 buffer was developed. Proteins from
peak 2 (horizontal green line) were pooled and further separated by (B) reverse-phase HPLC on a C8
semipreparative column (250 × 10 mm). Proteins were eluted at 2.5 mL/min with a gradient from
water to acetonitrile (dotted line) in the presence of 0.1% trifluoroacetic acid. The second major peak
(∼24 min), corresponding to Asp49 phospholipases A2, was collected and subjected to further analyses.

masses of 13,512 ± 2 and 13,942 ± 2 Da in the Asp49 preparation (Fig. 2D), while the

Lys49 myotoxin presented a main mass of 13,770 ± 3 Da (Fig. 2C). The latter mass is

in agreement with that expected for myotoxin II from the Caribbean versant of Costa

Rica (UniProt accession; P24605; Mav =13773), if the Leu/Phe ambiguity reported for its

position 114 (Francis et al., 1991) is considered as Phe (the sequence P24605 in databanks

shows Leu at this position).

Since both the semi-preparative and analytical RP-HPLC procedures were able to

resolve Lys49 from Asp49 proteins of this venom, it was assumed that the heterogeneity

observed in the latter preparation would correspond only to Asp49 isoforms (free of

Lys49 contamination). In order to evaluate this assumption, the Asp49 PLA2 sample

was subjected to ten cycles of automated N-terminal sequencing. The resulting sequence

showed single amino acid signals in all cycles but, most importantly, showed no traces of

Leu in the fifth cycle (Fig. 3). Since this amino acid position is conserved in all known Lys49

myotoxins, this result confirmed that the RP-HPLC yielded an Asp49 PLA2 preparation

that, despite containing isoforms possibly due to microheterogeneity, should be free from

any contaminating Lys49 PLA2 homologues. The short N-terminal sequence obtained

(Fig. 3) matches with 10/10 identity the Asp49 PLA2 myotoxin reported by Kaiser et

al. (1990), which has been variably described in the literature as B. asper myotoxin I or
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Figure 2 Analysis of the Asp49 phospholipase A2 preparation obtained after cation-exchange chro-
matography and semi-preparative RP-HPLC on C8. A Lys49 myotoxin control (A) and the Asp49 peak
shown in Fig. 1 (B) were subjected to analytical RP-HPLC on a C4 column, using a 60 min gradient (see
Materials and Methods). For clarity, the gradient line is omitted and the time scale is magnified in the
region of interest. The same samples were analyzed by nano-electrospray mass spectrometry in (C) and
(D). Insets within dotted lines show the corresponding deconvolutions of the multicharged ion series and
calculation of the isotope-averaged observed molecular masses of these samples.

myotoxin III (UniProt accession P20474). This is the only basic Asp49 PLA2 myotoxin

isolated from B. asper venom that has been sequenced, but it should be noted that it was

reported as containing ambiguous amino acid residues in at least three positions near

its C-terminus (Kaiser et al., 1990), evidencing the difficulties in resolving such closely

related isoforms during isolation. Due to this complex microheterogeneity of isoforms,

we made no attempts to assign the masses of the purified Asp49 protein preparation

(13,512 ± 2 and 13,942 ± 2 Da) to any variable combination of the Asp49 myotoxin

sequence previously reported (Kaiser et al., 1990), but instead refer to these proteins only as

Asp49 PLA2 myotoxins.

The final Asp49 PLA2 preparation was subjected to histidine modification using p-BPB,

aiming to reassess earlier studies on the role of enzyme activity in its toxic activities by

ruling out the possibility of the presence of Lys49 contamination. The difference with

previous studies (Dı́az et al., 1991; Bultrón, Thelestam & Gutiérrez, 1993; Dı́az-Oreiro &

Gutiérrez, 1997) is that Asp49 PLA2 myotoxin isolation was earlier accomplished only

by cation-exchange chromatography without the further use of HPLC and screening by

sensitive analytical techniques such as mass spectrometry. Therefore the possible presence

of undetected levels of Lys49 myotoxins remained open, in contrast to the present work.
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Figure 3 N-terminal amino acid sequencing of the Asp49 phospholipase A2 N-terminal amino acid
sequencing of the Asp49 phospholipase A2 peak shown in Fig. 1 (A; first ten residues), and snapshot
of the fifth cycle chromatogram (B). As expected for this type of enzyme, this cycle yields a strong
signal corresponding to phenylalanine (Phe), while the retention time corresponding to leucine (Leu),
a conserved position in Lys49 myotoxins, shows no traces of this amino acid residue.

As shown in Figs. 4A–4C, the p-BPB-modified Asp49 PLA2 did not alter its retention

time in comparison to the control toxin, and was readily separated from the excess reagent

by the C8 RP-HPLC procedure. The covalent incorporation of a single molecule of p-BPB

was confirmed by nESI-MS (Fig. 4E), where an increase in molecular mass of 195 ± 3

Da (0.02% instrumental error) was observed in comparison to the unmodified protein

(Fig. 2D), in agreement with the theoretically expected mass increase of 198 Da as a result

of this reaction. This covalent modification should correspond to the single His48 residue

of the protein (consensus numbering), which inactivates the catalytic mechanism of PLA2s

(Volwerk, Pieterson & de Haas, 1974). Inactivation of catalysis was confirmed (Fig. 4D),

although the use of a sensitive synthetic substrate allowed the detection of a low level of

residual PLA2 activity at the highest protein concentration tested, corresponding to ∼2.7%

of the unmodified enzyme. The difference between this result and previous studies where

PLA2 activity was reported to be undetectable (0%) after 24 h of reaction with p-BPB, using

similar protocols, may reside in the different sensitivities of the enzymatic assays used.

The p-BPB-modified Asp49 PLA2 was tested for myotoxicity in mice (Fig. 5A) and for

in vitro cytotoxicity upon differentiated C2C12 myotubes (Fig. 5B), in comparison to the

unmodified toxin control. Results showed that inactivation of catalytic activity led to a

major inhibition of both toxic effects, in agreement with the previous observations of

Dı́az-Oreiro & Gutiérrez (1997). The very low residual levels of toxicity observed can be

attributed to the low, but detectable amounts of enzyme that remained catalytically active
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Figure 4 Modification of the Asp49 phospholipase A2 by p-bromophenacyl bromide (p-BPB). (A) un-
modified enzyme control; (B) p-BPB-treated enzyme; and (C) p-BPB reagent control. The three samples
were separated by RP-HPLC in a semi-preparative C8 column as in Fig. 1B. (D) Comparison of the
phospholipase A2 (PLA2) activities of the control Asp49 enzyme and the p-BPB-treated enzyme on the
synthetic monodisperse substrate 4-nitro-3-octanoyloxybenzoic acid. Each point represents mean ± SD
of three replicates. (E) Nano-electrospray mass spectrometry confirmation of the covalent incorporation
of a single molecule of p-BPB in the modified Asp49 myotoxin. The observed isotope-averaged masses of
the modified Asp49 preparation show an increase of 195 ± 3 Da in comparison to the masses of untreated
proteins (Fig. 2D).

after p-BPB treatment. Some studies have reported variable levels of residual toxicity for

Asp49 myotoxins under conditions that abrogated PLA2 activity by using p-BPB (Table 1).

For example, residual toxicities of 30%, 14% and 16%, were observed in studies with B.

asper myotoxin III, crotoxin B, and piratoxin III, respectively after p-BPB modification

(Table 1). These observations have led to the suggestion that viperid Asp49 PLA2

myotoxins might possess mechanisms additional to their catalytic activity, to exert toxicity

(Dı́az et al., 1991; Bultrón, Thelestam & Gutiérrez, 1993; Dı́az-Oreiro & Gutiérrez, 1997;

Andrião-Escarso et al., 2000; Soares et al., 2001a; Soares et al., 2001b). The present results

strengthen the concept that the effector mechanism of toxicity of viperid Asp49 PLA2

myotoxins, i.e., the capacity to disrupt the integrity of plasma membrane, essentially relies

on their ability to hydrolyze phospholipids on the membrane of target cells (Fernández

et al., 2013). On the other hand, p-BPB, besides blocking the catalytic center of Asp49

PLA2s, may induce subtle conformational changes at distant sites. Such changes have been

shown by crystallography in the bovine pancreatic PLA2 (Renetseder et al., 1988) and the

non-myotoxic, acidic PLA2 BthA-I from Bothrops jararacussu venom (Magro et al., 2005),

although not in the case of the acidic APLA2 from Agkistrodon halys venom (Zhao et al.,

1998). Moreover, conformational changes induced by p-BPB have also been demonstrated
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Figure 5 Comparison of the myotoxic (A) and cytotoxic (B) activities of untreated and p-BPB-
treated Asp49 myotoxins. Bars in (A) represent mean ± SD of five mice. Values corresponding to
p-BPB-modified enzyme are very low, although significantly higher (*; p < 0.05) in comparison to the
phosphate-buffered saline (PBS) in (A) or culture medium in (B). Bars represent mean ± SD of five
replicates in (A) or three replicates in (B).

for two Lys49 myotoxins, PrTX-I from B. pirajai (Marchi-Salvador et al., 2009) and

BthTX-I from B. jararacussu (Fernandes et al., 2010). These myotoxins, in spite of being

enzymatically inactive, suffer a reduction in myotoxicity of nearly 50% when modified

by p-BPB, which has been possibly attributed to the conformational changes caused by

the alkylation of their absolutely conserved His48 (Dı́az et al., 1993; Andrião-Escarso

et al., 2000; Soares et al., 2000; Marchi-Salvador et al., 2009). In contrast, as shown by

the present results and some previous studies (Table 1), the Asp49 myotoxins behave

differently since their toxicity is essentially lost after His48 alkylation, concomitantly with

the loss of catalytic activity. Since conformational changes induced by His48 alkylation do

not completely abrogate toxicity in the case of Lys49 myotoxins, but leave a residual effect

as high as 50%, the complete loss of toxicity in p-BPB-treated Asp49 myotoxins would be

hard to reconcile with the proposal that mechanisms independent of catalysis (in a manner

analogous to the catalytic-independent membrane-damaging action of Lys49 myotoxins)

may also be responsible for muscle necrosis. In line with this concept, it has been shown
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Table 1 Summary of studies. The inactivation of group II Asp49 phospholipases A2 (PLA2s) from snake venoms by p-bromophenacyl bromide
(p-BPB) and its consequences for myotoxicity in vivo or cytotoxicity in vitro have been analyzed.

Asp49 PLA2 Residual PLA2
activity (%)

Residual toxicity (%),
assay

Reference

Crotalus d. terrificus crotoxin-B 15 very low myotoxicityb Gopalakrishnakone et al. (1984)

Bothrops asper myotoxin III 3 30, cytotoxicity Bultrón, Thelestam & Gutiérrez (1993)

Bothrops asper myotoxin III 0 4, myotoxicity Dı́az-Oreiro & Gutiérrez (1997)

Lachesis muta LM-PLA2 0a 0, myotoxicity Fuly et al. (2000)

Bothrops jararacussu BthTX-II 0.05 1, cytotoxicity Andrião-Escarso et al. (2000)

0.5, myotoxicity

Crotalus d. terrificus crotoxin-B 0 14.1, myotoxicity Soares et al. (2001a)

5.9a

Bothrops jararacussu BthTX-II 0 5, myotoxicity Soares & Giglio (2003)

1, cytotoxicity

Bothrops pirajai PrTX-III 0 16, myotoxicity Soares et al. (2001b)

5, cytotoxicity

Bothrops asper Asp49 myotoxins 2.7 7, myotoxicity Present study

4, cytotoxicity

Notes.
a Determined by indirect hemolysis.
b Analyzed qualitatively, and described as “minimal myotoxicity”.

that synthetic peptides from the C-terminal region of Asp49 PLA2 myotoxins do not

display toxicity, in contrast to equivalent peptides from Lys49 myotoxins which reproduce

the catalytic-independent toxic effect of their parent molecules (Núñez, Angulo & Lomonte,

2001; Lomonte, Angulo & Santamaŕıa, 2003; Cintra-Francischinelli et al., 2010).

On the other hand, in the case of elapid PLA2s (group I), a recent study on notexin

and site-directed mutants has shown that the catalytically-inactive Asp49/Lys mutant

retains a cytotoxic activity as high as 35–50% of that corresponding to the wild-type

protein (Simonato et al., 2014), indicating that in addition to its catalytic-dependent toxic

mechanism, it also exerts toxicity by a yet uncharacterized catalytic-independent action.

Thus, elapid PLA2s may present important differences with viperid PLA2s regarding

structure–function relationships and toxic mechanisms.

Altogether, current evidence on the mode of action of the two divergent subtypes of

group II PLA2 myotoxins of viperids supports the notion that the basic Asp49 enzymes

acquired this toxic activity by changes that directed their catalytic action towards the mem-

brane phospholipids of muscle, whereas the Lys49 proteins, which lost catalytic activity

along their evolutionary history due to critical substitutions (Petan, Križaj & Pungerčar,

2007), acquired changes that enabled them to directly alter membrane permeability via

their specialized C-terminal region (Lomonte & Gutiérrez, 2011; Fernández et al., 2013).
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