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ABSTRACT
Our study evaluates the distribution, habitat associations, and current conservation
status of the Snake River pilose crayfish Pacifastacus connectens (Faxon, 1914) and
pilose crayfishPacifastacus gambelii (Girard, 1852), two little-studied and data-deficient
species endemic to the western United States. We first developed a species distribution
model (SDM) for the pilose crayfishes based on their historical occurrence records using
boosted regression trees and freshwater GIS data layers. We then sampled 163 sites in
the summers of 2016 and 2017 within the distribution of these crayfishes, including
50 where these species were observed historically. We next compared our field results
to modeled predictions of suitable habitat from the SDM. Our SDM predicted 73 sites
(45%) we sampled as suitable for the pilose crayfishes, with a moderate AUC value
of 0.824. The pilose crayfishes were generally predicted to occur in larger streams and
rivers with less extreme upstream temperature and precipitation seasonality. We found
the pilose crayfishes at only 20 (12%) of the 163 total sites we sampled, 14 (20%) of
the 73 sites predicted as suitable for them by our SDM, and 12 (24%) of 50 historical
sites that we sampled. We found the invasive virile crayfish Faxonius virilis (Hagen,
1870) at 22 sites total and 12 (24%) historical sites for the pilose crayfishes, and we
found the ‘‘native invader’’ signal crayfish Pacifastacus leniusculus (Dana, 1852) at
29 sites total and 6 (12%) historical sites for the pilose crayfishes. We subsequently
used a single classification tree to identify factors associated with our high rate of
false positives for contemporary pilose crayfish distributions relative to our SDM.
This classification tree identified the presence of invasive crayfishes, impairment of the
benthic community, and sampling method as some of the factors differentiating false
positives relative to true positives for the pilose crayfishes. Our study identified the
historical distribution and habitat associations for P. connectens and P. gambelii using
an SDM and contrasted this prediction to results of contemporary field sampling. We
found that the pilose crayfishes have seemingly experienced substantial range declines,
attributable to apparent displacement by invasive crayfishes and impairment or change
to stream communities and habitat. We recommend increased conservation and
management attention to P. connectens and P. gambelii in response to these findings.
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BACKGROUND
North America is home to the majority of the world’s crayfish diversity, with 414 described
species (Richman et al., 2015; Crandall & De Grave, 2017). However, many of these North
American crayfishes are highly imperiled and at risk of extinction. Taylor et al. (2007)
estimated that 48% of North American crayfishes were at some level of extinction risk,
whereas a more recent International Union for the Conservation of Nature (IUCN)
assessment placed 32% of North American crayfishes at risk of extinction (Richman et al.,
2015). ThewesternUnited States (US) ismore species poor for freshwater crayfishes than the
southeastern US, but its endemic genus Pacifastacus is representative of the conservation
and management challenge for crayfishes globally. Of the Pacifastacus crayfishes, one
is a globally cosmopolitan invasive species (the signal crayfish Pacifastacus leniusculus;
Dana, 1852), one species is believed extinct (the sooty crayfish Pacifastacus nigrescens;
Stimpson, 1857), another is listed as Endangered under the US Endangered Species Act
(the Shasta crayfish Pacifastacus fortis; Faxon, 1914), and two other species, the Snake River
pilose crayfish Pacifastacus connectens (Faxon, 1914) and the pilose crayfish Pacifastacus
gambelii (Girard, 1852), are effectively unstudied (Larson & Williams, 2015). Currently,
P. connectens is listed in the IUCN Red List database as Data Deficient and P. gambelii is
listed as Least Concern (Richman et al., 2015), but no distributional or conservation status
studies have been conducted for either species (Larson & Olden, 2011; Larson & Williams,
2015). Given that two species of their genus have gone extinct or been listed as Endangered,
we sought to evaluate the distribution, habitat associations, and conservation status of the
pilose crayfishes P. connectens and P. gambelii.

Pacifastacus connectens and P. gambelii belong to the subgenus Hobbsastacus, which
includes the extinct P. nigrescens and P. fortis, relative to the subgenus Pacifastacus,
which includes only P. leniusculus and its three recognized subspecies (Larson & Williams,
2015). P. connectens was split from P. gambelii, first as a subspecies by Faxon (1914) and
subsequently as its own species by Hobbs (1972). Both crayfishes are morphologically
unique relative to other members of their genus owing to the presence of patches of
setae or hairs on their chelae, whereas P. connectens is differentiated from P. gambelii by
characteristics including an acute (narrow) rather than obtuse (broad) rostrum (Fig. 1).
Recent phylogenetic species delimitation analysis has identified some ambiguity within
the Hobbsastacus subgenus (Larson et al., 2016); as work on their taxonomic relationship
continues, we largely consider both species here combined as the ‘‘pilose crayfishes’’ given
their shared taxonomic history and morphological similarity. To date, no studies have
investigated the life history or ecology of either pilose crayfish species, although Koslucher
& Minshall (1973) included P. gambelii in a study on stream food webs from southern
Idaho. Further, historical records for the pilose crayfishes appear to indicate a habitat
preference for groundwater-dominated springs with small upstream catchments (Miller,
1960; Hubert, 2010).
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Figure 1 Images of Pacifastacus connectens (A) and Pacifastacus gambelii (B). These images demon-
strate the acute rostrum of P. connectens relative to the broad rostrum of P. gambelii. Photos courtesy of
Eric R. Larson.

Full-size DOI: 10.7717/peerj.5668/fig-1
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Figure 2 Historical P. connectens and P. gambelii occurrence records (N = 63). These historical occur-
rence records were used in species distribution modeling to identify suitable crayfish habitat (Table S1).

Full-size DOI: 10.7717/peerj.5668/fig-2

Data regarding the distributions of P. connectens and P. gambelii are also limited. Larson
& Olden (2011) proposed the pilose crayfishes as endemic to the middle and upper Snake
River drainage and adjacent closed or endorheic desert basins (e.g., the Bonneville Basin)
of Idaho, Nevada, Oregon, Utah, and Wyoming (Fig. 2). Past guides or keys to North
American crayfishes (e.g., Hobbs, 1972) likely over-stated the distribution of these two
crayfishes, particularly P. gambelii, per the review of Larson & Williams (2015), although
more widespread distributional surveys for these crayfishes throughout western North
America would be useful. Within the range proposed by Larson & Olden (2011) and Larson
& Williams (2015) for each crayfish, P. connectens generally occurs below Shoshone Falls,
a major biogeographic break in the Snake River drainage, and in the neighboring Harney
Basin of eastern Oregon. Alternatively, P. gambelii occurs above Shoshone Falls in the
Snake River and its tributaries, and in the northern Bonneville Basin, although exceptions
in this distributional pattern between the two species have been reported from historical
records (Fig. 2). These erratic distributional records for each species may reflect either
misidentifications in historical records or a more complex distributional pattern for each
species than proposed by past work like Larson & Williams (2015), and further supports
our decision to consider the two species combined here rather than separately.

Egly and Larson (2018), PeerJ, DOI 10.7717/peerj.5668 4/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.5668#supp-1
https://doi.org/10.7717/peerj.5668/fig-2
http://dx.doi.org/10.7717/peerj.5668


Like many freshwater crayfishes, P. connectens and P. gambelii could be impacted by
a number of threats and stressors within their native range (Richman et al., 2015; Bland,
2017). These include risk of displacement by invasive crayfishes, including the virile crayfish
Faxonius virilis (Hagen, 1870) and the red swamp crayfish Procambarus clarkii (Girard,
1852), which have been reported as introduced in the native range of the pilose crayfishes
(Johnson, 1986; Hubert, 1988; Clark & Lester, 2005); reviewed in Larson & Olden (2011).
Further, the congeneric crayfish P. leniusculus was not known from the native range of
P. connectens or P. gambelii during the earliest historical records for these species (e.g.,
Miller, 1960), but could represent a ‘‘native invader’’ (e.g., Carey et al., 2012) as it has
seemingly spread inland into this region over recent decades from its more coastal native
range (Larson et al., 2012). Competitive displacement by P. leniusculus was implicated in
both the extinction of P. nigrescens and US Endangered Species Act listing of P. fortis, and
P. leniusculus could pose a similar threat to the Hobbsastacus pilose crayfishes (Bouchard,
1977; Light et al., 1995). Invasive populations of P. leniusculus have also been attributed
as a cause of declines of native European crayfish of the family Astacidae (Chucholl &
Schrimpf, 2016; Maguire et al., 2018). Additionally, freshwaters of the native range of the
pilose crayfishes have experienced impacts due to livestock overgrazing, flow regime
modification by dams and irrigation development, and water quality impairments from
agricultural and urban runoff (Belsky, Matzke & Uselman, 1999;Anderson & Woosley, 2005;
Caldwell et al., 2012). In particular, the Snake River Plain has been identified as a region of
hydrologic impairment and poor water quality resulting from agricultural land use (Hill et
al., 2016; Thornbrugh et al., 2017). Such land use changes and their effects on water quality
and freshwater habitats have similarly been attributed as contributing to native crayfish
declines elsewhere (Chucholl & Schrimpf, 2016; Chucholl, 2017).

We sought to model the historical distribution and habitat associations of P. connectens
and P. gambelii combined in the western US and compare these predictions to their current
distribution from field sampling. We first developed a species distribution model (SDM)
using historical occurrence data for P. connectens and P. gambelii to predict the distributions
and habitat associations for these crayfishes using GIS environmental data layers (Domisch,
Amatulli & Jetz, 2015). We then conducted field sampling in the presumed native range
of these crayfishes to characterize their current distributions in comparison to both their
historical occurrence records and predictions of suitable habitat by our SDM. Finally,
where our SDM model predictions diverged from results of our field sampling, we used a
single classification tree on factors like the presence of invasive crayfishes and GIS layers
on possible stream habitat impairment to explore and explain these misclassifications.
Cumulatively, our work should help to better define the historical distribution and habitat
associations for the pilose crayfishes P. connectens and P. gambelii, as well as their current
conservation status.

METHODS
We evaluated the historical and current distributions and habitat associations of the pilose
crayfishes P. connectens and P. gambelii using an SDM on GIS environmental data layers,
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Figure 3 Conceptual figure representing our process. This process includes species distribution model-
ing (SDM), comparison to field sampling results, and explanation of classifications between the SDM and
field sampling using a single classification tree differentiating true and false positives.

Full-size DOI: 10.7717/peerj.5668/fig-3

along with contemporary field sampling (Fig. 3).We first used historical occurrence records
for the pilose crayfishes to generate an SDM describing their past distribution and habitat
associations. Upon developing this SDM, we sampled study sites predicted by our model
to be suitable and unsuitable for the pilose crayfishes throughout their native range to
characterize their current distribution. In relating contemporary presences or absences of
P. connectens and P. gambelii to modeled predictions of habitat suitability, we anticipated
that the SDM would misclassify some sampled sites. For example, false positives are places
where the SDM predicted pilose crayfish to occur but we failed to find them in our field
sampling. We then sought to explain such true and false positives using a subsequent,
single classification tree using information like presence of invasive crayfishes at sampled
sites and habitat conditions or impairment (Fig. 3).

Species distribution modeling
We characterized the historical distribution and habitat associations for the pilose crayfishes
P. connectens and P. gambelii using an SDM.We chose to combine the two pilose crayfishes
in our SDM as opposed to modeling them individually due to some ambiguity in the
taxonomy and geographic distributions of these two crayfishes, as well as to increase the
number of historical occurrence records included in our SDM from only those for these
crayfishes individually (25 for P. connectens; 38 for P. gambelii) to a greater number for
both pilose crayfishes combined (63 total). Further, given the morphological and presumed
ecological similarity between the two pilose crayfishes, we anticipated that a single SDM
combining both species might work well, but tested performance of combined vs. separate
SDMs in a series of alternative models reported in Fig. S1.
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For our SDMs, we used a total of 63 historical occurrence records for P. connectens
and P. gambelii identified from museum collections, government agency reports, personal
communications with agency biologists, and published scientific literature, providing the
best available characterization of the native ranges for these species (Fig. 2; Table S1).
We also generated background (or pseudo-absence) points for the study region, which
can be used to model species distributions under a number of current machine-learning
methodologies when lacking true absence records (e.g., Engler, Guisan & Rechsteiner, 2004;
Welk, 2004; Elith & Leathwick, 2009; Stryszowska et al., 2016). For themodel reported in the
main text, we used 1,000 background points generated at randomwithin the environmental
GIS layers we used constrained to the native range of these two species (see below). SDMs
can be sensitive to the number and geographic distribution of background points (Engler,
Guisan & Rechsteiner, 2004; Barbet-Massin et al., 2012; Mainali et al., 2015), but we found
good predictive performance with this number of random background points after testing
sensitivity of model results to this important decision (Fig. S1). In addition, SDMs using
different combinations of background points and the two pilose crayfish species modeled
separately, rather than combined, generally did not perform as well as our primary model,
with significantly fewer true negatives and more false positives occurring for these models
(Fig. S2).

We modeled suitable habitat for the pilose crayfishes using environmental data from the
EarthEnv GIS data layers, which provide near-global freshwater-specific environmental
variables in a relatively fine 1-km2 resolution (Domisch, Amatulli & Jetz, 2015). From
these data layers, we chose environmental variables anticipated to be appropriate for
historical occurrence data for P. connectens and P. gambelii (1914–2014). We chose not
to include contemporary land cover data for our SDM because this variable has likely
changed over recent decades, and consequently may not be appropriate for modeling
distributions of historical occurrence records which date back to the early 20th century.
We used as temperature variables annual mean upstream temperature (◦C), upstream
temperature seasonality (standard deviation of monthly average temperature in ◦C),
maximum upstream temperature of warmest month (◦C), and minimum upstream
temperature of coldest month (◦C). We used as precipitation variables annual upstream
precipitation (mm) and upstream precipitation seasonality (coefficient of variation of
monthly average precipitation in mm). We chose to include average slope (◦ * 100), which
is averaged for each 1 km grid cell. We also included flow accumulation (count), which is
the watershed area, calculated as the sum of upstream grid cells for the entire catchment
delineated for each grid cell, and flow length (count), which is the length of the stream
network, calculated as the sum of upstream grid cells for only the stream network within
the catchment. For soil variables, we chose soil pH (pH * 10), amount of coarse fragments
(% of soil above a 2 mm threshold), cation exchange capacity (cmol/kg), and depth to
bedrock (cm). We anticipated that like many other crayfish species, the pilose crayfishes
might have substrate preferences, particularly for coarser rock or substrate (Capelli &
Magnuson, 1983; Garvey et al., 2003), and also anticipated that these crayfishes might be
sensitive to the acidity or pH of water (DiStefano et al., 1991; Edwards, Jackson & Somers,
2014).
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Wemodeled suitable habitat for the pilose crayfishes P. connectens and P. gambelii using
their historical occurrence records and background points with the above environmental
predictors using boosted regression trees (Elith & Leathwick, 2017). Boosted regression
trees relate response variables to predictor variables using binary recursive splits and offer
improved predictive ability through boosting, which creates and averages many different
models (Elith, Leathwick & Hastie, 2008). Boosted regression trees characterize habitat
associations and distributions for species, often from presence-only records such as those
available for P. connectens and P. gambelii, and generally perform comparably to other
machine-learning approaches to SDMs like MaxEnt or artificial neural networks (Elith et
al., 2006).

We fit boosted regression tree models using the packages ‘‘dismo’’ and ‘‘gbm’’ in R
version 3.3.2 (Ridgeway, 2015;Hijmans et al., 2017). We regularized our boosted regression
tree models following the suggestions of Elith, Leathwick & Hastie (2008) in choosing
learning rate, tree complexity, and bag fraction settings. Learning rate determines the
contribution of each regression tree as it is added to the model, where a lower learning
rate increases the number of total trees in an ensemble model; tree complexity is the
number of nodes or splits in individual trees and controls the complexity of the model;
and bag fraction specifies the proportion of training data to be selected at random,
without replacement, for each step. For our model regularization we started with the range
of values suggested by Elith, Leathwick & Hastie (2008) and narrowed down iteratively
to determine the model regularization that provided the highest area under the curve
(AUC) statistic for model performance by classification. AUC is the area under the curve
of the receiver-operator characteristic plot, which is a measure of model classification
performance for presence/absence data (Guisan & Zimmermann, 2000; Wenger & Olden,
2012; Jiménez-Valverde, 2012). AUC generally ranges from a random value of 0.5, which
indicates random discrimination between presence and absence in classifying categorical
variables, to a value of 1.0 which indicates all presences and absences are correctly classified
at all model thresholds.

For our SDM presented in the main text (1,000 background points, with the two species
combined), we ran our boosted regression tree model with a learning rate of 0.001, tree
complexity of 3, and a bag fraction of 0.5. This model had a higher AUC than models for
each crayfish individually, or for different numbers of background points (Fig. S1). We
then projected model predictions of our best model to the full range extent of the pilose
crayfishes to characterize their distributions based on historical occurrence records. We
determined a threshold for habitat suitable vs. unsuitable for these crayfishes by using
an optimal balance between sensitivity (true positive rate) and specificity (true negative
rate) based on training data in model regularization (Elith & Leathwick, 2017). We also
generated partial dependence plots for the environmental variables most important in
determining crayfish occurrence from our model to characterize habitat associations for P.
connectens and P. gambelii.
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Field sampling
We sampled a total of 163 sites in Idaho, Nevada, Oregon, Utah, andWyoming anticipated
to be within the native range of P. connectens and P. gambelii, with 78 sites sampled between
July 16th and August 10th 2016, and 85 sites sampled between July 2nd and August 3rd
2017. We sampled 50 of the 63 historical occurrence records for the pilose crayfishes (Table
S1) used in our SDM; we could not access all historical occurrences due to land ownership
permissions and time constraints in some cases. Due to logistical constraints of the field
sampling protocol, we opted not to randomize sampling locations, but we deliberately
sought to sample a range of habitat types from small streams to large rivers and natural
lakes to reservoirs.

Sites were sampled by one of two methods: either hour long timed searches by two
observers (106 sites), or overnight baited trapping (57 sites). In most cases, choice of timed
search or baited trapping was ad hoc in response to our schedule that day, although baited
trapping was sometimes required at sites where timed searches were not feasible (below).
Timed searches used hand nets, D-frame nets, or seines depending on habitat size or other
attributes. We used hand nets in the smallest streams where larger nets were difficult to use,
and to search the wadeable littoral zones of reservoirs and lakes by overturning potential
crayfish shelter like cobble and large woody debris. We used D-frame nets and seines in
larger wadeable streams and rivers, following an approach approximating quantitative
kick seining for crayfishes (Engelbert, Taylor & DiStefano, 2016). Timed searches generally
covered approximately 100–200m of linear habitat in either lotic or lentic environments. At
some sites—including those too deep, too steep, or with too limited public access to sample
by our timed search methods—we set crayfish traps (0.42 m long by 0.21 m diameter with
two 60-mm openings) overnight that were baited with dry dog food (Larson & Olden,
2016). When trapping, we set four to six traps per site for approximately 16 h at depths
ranging from a half meter to several meters deep. Field sampling was conducted under
Wyoming Game and Fish scientific collecting permit 33-1070, Idaho Department of Fish
and Game permits F-16-32-16 and F-16-32-17, Utah Division of Wildlife Resources permit
2COLL9870, Nevada Department of Wildlife permit 428773, and Oregon Department of
Fish and Wildlife permit 21325.

Explaining misclassifications
We anticipated that our SDM identifying suitable habitat for the pilose crayfishes might
misclassify some presences and absences from our field sampling in 2016 and 2017. These
misclassifications could include false negatives and false positives. In our study, false
negatives are sites where the model predicted the pilose crayfishes to be absent but where
we found them during field sampling, whereas false positives are sampled sites where the
model predicted the pilose crayfishes to be present but we did not detect them during field
sampling. False positives in particular might occur if the pilose crayfishes have experienced
range and population declines in response to habitat degradation and loss or displacement
by invasive crayfishes. We sought in particular to explore factors differentiating true
positives, where our SDM and field sampling agreed on the presence of pilose crayfishes,
from false positives using a single classification tree with predictors that could explain
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population or range declines for our native crayfishes, as well as potential differences in
detection probability between our two sampling methods. We did not model true and false
negatives, because true negatives—where habitat was not predicted to be suitable for our
focal crayfishes—were not of interest for range declines, and false negatives were relatively
rare and accordingly difficult to model due to low sample sizes (see ‘Results’).

We chose as predictors for this classification tree the presence of invasive crayfish
(including the presumed native invader P. leniusculus), whether the site was a reservoir
or not (measured according to waterbody classification in the National Hydrography
Dataset; United States Geological Survey, 2013), sampling method, a modeled measure of
stream benthic community condition (Hill et al., 2016), an estimate of stream hydrologic
regulation by dams and water diversions (Hill et al., 2016), and percent of upstream urban
and agricultural land cover from Domisch, Amatulli & Jetz (2015). We anticipated that
presence of invasive crayfish could result in a greater number of false positives relative to
SDM predictions for native pilose crayfish occurrence, since invasive crayfish commonly
displace native crayfishes through mechanisms such as competition (Chucholl & Schrimpf,
2016;Maguire et al., 2018). We also expected that the pilose crayfishes might be more likely
to be absent in reservoirs due to the substantial abiotic and biotic changes associated with
stream and river impoundment, which may explain greater numbers of false positives
in these environments (Gido, Matthews & Wolfinbarger, 2000; Johnson, Olden & Vander
Zanden, 2008). We included our sampling methods as a categorical predictor for false and
true positives, because we suspected that our baited trapping may have had lower detection
probabilities for crayfishes in this study system than timed searches (Fig. S3), and as such
choice of sampling method might explain false positives at some sites.

Stream benthic community condition is predicted by a model based on results from
US Environmental Protection Agency’s (EPA) 2008/2009 National Rivers and Streams
Assessment. This index ismeasured between 0 and 1 (where 0 ismost degraded and 1 ismost
intact), and is predicted for each stream segment by metrics including macroinvertebrate
and fish indexes, water quality, and physical habitat (Hill et al., 2016). Similarly, hydrologic
regulation is an index between 0 and 1 (where 0 is highly regulated and 1 is unregulated)
and is evaluated for each catchment by metrics such as upstream dam density, water use,
and length and density of canals (Hill et al., 2016). We expected that poorer stream benthic
community condition would result in a greater number of false positives relative to SDM
predictions of pilose crayfish occurrence since it may reflect poor water quality, habitat
degradation, or fewer food sources for crayfish (Momot, 1984; Bilotta & Brazier, 2008).
Likewise, we expected that increased hydrological regulation would increase false positives
due to possible crayfish intolerance to systems with greater alteration of the flow regime
(Poff et al., 2007). We similarly expected that the pilose crayfishes might have negative
relationships, and accordingly false positives relative to their historical distribution, to
upstream urban and agricultural land cover, as has been observed for some other freshwater
species (Allan, 2004), including crayfish (Chucholl & Schrimpf, 2016; Chucholl, 2017). We
modeled our classification tree in the R package ‘‘rpart’’ (Therneau, Atkinson & Ripley,
2018) using a minimum split parameter of 10 and a complexity parameter of 0.01. By
using this classification tree to differentiate true positives from false positives, we hoped
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Figure 4 Suitable habitat for Pacifastacus connectens and Pacifastacus gambelii (combined) in the
western US. Habitat was predicted from a boosted regression tree model using historical crayfish occur-
rence records (Fig. 2) and the EarthEnv habitat layers (Domisch, Amatulli & Jetz, 2015). The 0.107 thresh-
old for suitable crayfish habitat is based on a balance between the true positive and true negative rate for
crayfish occurrences and background points.

Full-size DOI: 10.7717/peerj.5668/fig-4

to identify potential reasons for misclassification between our SDM based on historical
occurrence data and our field sampling results.

RESULTS
Our boosted regression tree model classified combined P. connectens and P. gambelii
historical occurrences relative to background points with a moderate AUC of 0.824
based on testing data withheld in ten-fold cross-validation (Fig. 4). Our most important
environmental variables from our primary model included upstream temperature
seasonality (relative importance of 13%), flow accumulation (12%), annual upstream
precipitation (11.6%), upstream precipitation seasonality (11%), flow length (10%),
and average slope (8%). Based on our SDM, the pilose crayfishes had a mostly negative
relationship with the smallest streams in our study region, as measured by environmental
variables including annual upstream precipitation, average slope, and flow length (Fig. 5).
However, flow accumulation showed a positive association with some very small streams,
with lower values of flow accumulation predicting a high likelihood of pilose crayfish
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Figure 5 Partial dependence plots showing the relationship between the top six predictors for
Pacifastacus connectens and Pacifatacus gambelii presence (combined) in the western US.
(A) Upstream temperature seasonality is the standard deviation of monthly average temperature in
◦C. (B) Flow accumulation (count) is the watershed area, calculated as the sum of upstream grid cells for
the entire catchment delineated for each grid cell. (C) Annual upstream precipitation is measured in mm.
(D) Upstream precipitation seasonality is a coefficient of variation of monthly average precipitation in
mm. (E) Flow length (count) is the length of the stream network, calculated as the sum of upstream grid
cells for only the stream network within the catchment. (F) Average slope, averaged for each 1 km grid
cell, is measured in degrees * 100.

Full-size DOI: 10.7717/peerj.5668/fig-5

occurrence. The pilose crayfishes also had a negative relationshipwith high annual upstream
temperature and precipitation seasonalities.

We found the pilose crayfishes at 20 (12%) of the total 163 sites we sampled, with
P. connectens and P. gambelii each at 10 (Fig. 6; Table S2). We found the native invader
P. leniusculus at 29 sites (18%) and the invasive virile crayfish F. virilis at 22 sites (13%),
with only one site where any two crayfish species occurred sympatrically (F. virilis and P.
gambelii; Fig. 6). Of the 50 historical sites we sampled, we found the pilose crayfishes at only
12 (24%), but we found F. virilis at 12 (24%) and P. leniusculus at 6 (12%). Our boosted
regression tree model predicted presences and absences of pilose crayfishes from field
sampling with relatively low success, based on a Cohen’s Kappa (K) of 0.14. Of the 163 sites
we sampled, 73 (45%) were classified as suitable pilose crayfish habitat from our boosted
regression tree model. Overall, our model correctly predicted 14 out of 20 (70%) presences
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Figure 6 Results of field sampling for crayfish in the western US in the summers of 2016 and 2017.
Crayfish species found include Pacifastacus connectens (N = 10), Pacifastacus gambelii (N = 10), Faxonius
virilis (N = 22), and Pacifastacus leniusculus (N = 29; Table S2).

Full-size DOI: 10.7717/peerj.5668/fig-6

for these native crayfishes (true positives), but misclassified 6 (30%) presences as unsuitable
habitat for these crayfishes (false negatives). Similarly, our model correctly predicted 84
out of 143 (59%) absences (true negatives), but misclassified 59 (41%) absences as suitable
habitat for P. connectens and P. gambelii (false positives).

Our single classification tree differentiated false positives from true positives relatively
well with a Cohen’s K of 0.64 (Fig. 7). False positives were more likely to occur at sites
where invasive crayfish were present; at sites with either very poor or very good stream
benthic community conditions; at sites where we used baited trapping rather than timed
searches; and at sites with both greater hydrologic regulation as well as lower upstream
agricultural land cover (Fig. 7).

DISCUSSION
We modeled suitable habitats for the pilose crayfishes P. connectens and P. gambelii based
on their historical occurrence records using boosted regression trees and a series of
environmental variables. We found that these crayfishes occurred historically in larger
streams and rivers with lower upstream precipitation seasonality, low to intermediate
upstream temperature seasonality, and higher annual upstream precipitation. We interpret
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Figure 7 Classification tree of pilose crayfish true and false positives. This classification tree sought to
differentiate false positives from true positives in comparing predictions from an SDM (Fig. 4) to contem-
porary field sampling (Fig. 6) for the crayfishes P. connectens and P. gambelii. Each node displays the clas-
sification (FALSE/TRUE) based on majority rule, the decision (yes/no; where yes is sorted to the left and
no is sorted to the right, as demonstrated in the first node), the proportion of observations that are true
positives, and the percentage of total observations (N = 73) present at that node. Predictor variables used
at each split in the tree are given (see main text for details).

Full-size DOI: 10.7717/peerj.5668/fig-7

these results as suggesting that the pilose crayfishes did not generally occur in high elevation,
montane streams with extreme seasonality like the Uinta and Teton mountains. When
related to contemporary, conventional field sampling, we found that the pilose crayfishes
had seemingly experienced large population and range declines. For example, we found
the pilose crayfishes at only 24% of the 50 historical occurrence records we sampled, and at
only 19% of sites that our SDM predicted as suitable for them. In many cases, these declines
appear attributable to displacement by the invasive crayfishes F. virilis and P. leniusculus
and degraded stream benthic community condition, but choice of sampling method may
also have affected the frequency of false positives we observed for the pilose crayfishes
relative to modeled habitat suitability. Regardless, the pilose crayfishes seemingly require
increased management and conservation attention, because they may be at risk of the types
of population declines or even extinction that have been observed for similar crayfishes of
the subgenus Hobbsastacus (Bouchard, 1977; Light et al., 1995).
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We found fromour SDM that the pilose crayfishes P. connectens and P. gambelii occurred
historically in larger streams and rivers in less extreme environments, featuring moderate
to low temperature seasonality, low precipitation seasonality, and moderate slopes. Based
on this model, the pilose crayfishes did not generally occur in the absolute smallest streams
in our study region, as measured by predictors like flow accumulation, annual upstream
precipitation, and flow length. Previous studies have found other crayfish species to either
favor or disfavor smaller and potentially intermittent streams due to different tolerances to
abiotic factors like stream drying and biotic factors like longitudinally structured predator
communities (Flinders & Magoulick, 2005; Creed, 2006). However, as an exception to our
finding that pilose crayfishes did not historically occur in the smallest streams, we did find
some positive association between these crayfishes and the absolute smallest streams in our
region as measured by flow accumulation. This likely reflects the known tendency for these
crayfishes to occur in some small, groundwater-dominated springs with minimal upstream
surface watersheds (Miller, 1960;Hubert, 2010). Our contemporary field sampling similarly
supported an association of the pilose crayfishes with some groundwater-dominated spring
habitats (Fig. 8), which parallels habitat use of the similar and endangered P. fortis in
northern California (Light et al., 1995). These isolated spring systems should perhaps be
priorities for pilose crayfish conservation, as they have represented strongholds against
displacement by invasive crayfishes for P. fortis (Cowart et al., 2018).

The pilose crayfishes also showed a negative relationship to streams with high upstream
temperature and precipitation seasonalities, which reflect those streams and rivers draining
high elevation mountain ranges in our study region, where winters are extremely wet and
cold relative to warm and dry summers. Such locations likely have high spring and summer
stream discharge owing to snowmelt-dominated flow regimes, as well as lower stream
temperatures relative to valley bottom streams (Reidy Liermann et al., 2012). Invasive P.
leniusculus experienced declines in abundance following high flow years in the similar Sierra
Nevada mountains of California (Light, 2003), and the congeneric pilose crayfishes may
be similarly intolerant of higher stream flows or discharge associated with ultra-snowmelt
systems. Despite this, we did find a positive association between the pilose crayfishes and
moderate upstream slope, and these crayfishes may do better in slightly higher gradient
streams that maintain the type of cobble rock substrate that many crayfish species prefer as
habitat (Garvey et al., 2003;Nyström et al., 2006). Our SDM revealed a number of potential
habitat associations for the pilose crayfishes based on historical occurrence records at a
relatively coarse 1 km2 spatial grain, but much more work needs to be done in order to
understand the habitat preferences of these crayfishes from micro-habitat (e.g., 1 m2) to
reach scales (e.g., 100 m; Flinders & Magoulick, 2007; Wooster, Snyder & Madsen, 2012).
Such finer-grain habitat work may, in part, clarify the frequency of false positives we
observed for these crayfishes when comparing SDM predictions to contemporary field
sampling.

Overall, our SDM on historical occurrence records for P. connectens and P. gambelii
predicted contemporary distributions for these crayfishes with relatively low success in
comparison to our field sampling, with many false positives but comparatively few false
negatives. Because false positives may represent range declines for the pilose crayfishes,
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Figure 8 Representative habitats for P. connectens and P. gambelii. Although we found P. connectens
and P. gambelii in other lentic and lotic habitat types, these crayfishes often occur in groundwater-
dominated spring systems with small upstream surface watersheds, which are relatively common in the
Snake River Plain. Use of these habitats explains the relationship between presence of the pilose crayfishes
and streams with extremely low upstream flow accumulation (Fig. 5), as well as some false positives in
comparison of our SDM (Fig. 4) to field sampling results (Fig. 6), due to the likely inaccuracy of GIS data
in representing conditions for these groundwater springs. Examples include Box Canyon Spring, Idaho
(A, B), Niagara Spring, Idaho (C), and springs in the vicinity of the Malheur National Wildlife Refuge,
Oregon (D). Many P. connectens individuals are visible foraging on a boulder mid-day in (B). Photos
courtesy of Eric R. Larson.

Full-size DOI: 10.7717/peerj.5668/fig-8

whereas false negatives were seemingly locations where GIS data simply did not reflect
in-stream conditions well (e.g., groundwater springs; Fig. 8), we sought to explain false
positives relative to true positives. We did this by using a single classification tree on a
series of predictors either related to factors potentially causing range declines for the pilose
crayfishes based on past studies in other crayfish species (Twardochleb, Olden & Larson,
2013; Richman et al., 2015), or predictors related to possible differences in detection
probabilities between our field sampling methods (Larson & Olden, 2016). We found that
the best explanation for false positives for the pilose crayfish was presence of an invasive
crayfish species at the site. This is consistent with many past studies which have found
displacement by invasive crayfishes to be a leading driver of native crayfish population
declines (Lodge et al., 2000; Pintor, Sih & Bauer, 2008), and is consistent with causes of
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imperilment or extinction for other Pacifastacus crayfishes (Bouchard, 1977; Light et al.,
1995), as well as native crayfishes of the family Astacidae in Europe (Chucholl & Schrimpf,
2016; Maguire et al., 2018). The second best explanation for false positives for the pilose
crayfishes was highly degraded stream benthic community condition; these crayfishes
have seemingly experienced range declines at locations where stream communities are the
most impaired, including many lower elevation valley bottoms which have experienced
high agricultural and urban development in this region (Hill et al., 2016). Water quality
impairment from agricultural and urban land use has similarly been attributed as a cause
for native crayfish declines in regions like Europe (Chucholl & Schrimpf, 2016; Chucholl,
2017).We also found that false positives for the pilose crayfishes weremore likely to occur at
locations where we sampled by baited trapping, rather than locations where we conducted
timed searches. Different sampling methods can have different detection probabilities for
crayfishes across habitat types (Larson & Olden, 2016), and in this case, we routinely only
collected one to two crayfish with four to six baited traps effort overnight, whereas timed
searches routinely collected higher numbers of crayfish over an hour of effort (Fig. S3). As
such, we recommend that future studies focused on the pilose crayfishes use timed searches
where possible, and if requiring the use of baited trapping, increase trap effort (number
of traps) to improve detection probabilities with this method. Finally, false positives
were associated with some habitat variables that we cannot necessarily explain as being
associatedwith likely range or population declines for the pilose crayfishes. Specifically, false
positives were associated with some sites of very high stream benthic community condition
(unimpaired) and were also associated with sites with low agricultural land cover. Again,
we propose that better understanding of micro- to reach-scale habitat associations for the
pilose crayfishes might improve our understanding of some of these false positives where
we failed to find these species at places predicted suitable for them (Flinders & Magoulick,
2007;Wooster, Snyder & Madsen, 2012).

Importantly, our finding of potentially large range declines for P. connectens and
P. gambelii is dependent not only on comparison to modeled suitable habitat from an
SDM, but also direct comparison to historical occurrence sites that we resampled. Our
SDMestimated an 80% range decline for the pilose crayfishes, whereas comparison to the 50
historical sites we re-sampled found a similar 76% range decline (63% for P. connectens and
85% for P. gambelii). We found the pilose crayfishes at only 24% of the historical sites we
resampled, and in another parallel to our SDM and single classification tree results, invasive
crayfishes again appeared to be a major driver of this range decline. Thirty-six percent of
the 50 historical sites that we resampled were instead occupied by invasive crayfishes, with
only one site where a native crayfish species (P. gambelii) occurred in sympatry with an
invasive crayfish species (F. virilis). Per IUCN extinction risk assessments, range declines
of ≥70% over 10 years or three generations qualify for Endangered status, whereas range
declines of ≥50% over the same time periods qualify for Vulnerable status (IUCN Species
Survival Commission, 2012). We do not necessarily know the rate at which pilose crayfishes
have experienced population declines or range retractions, but propose that neither of
the pilose crayfishes are necessarily secure from some extinction risk due to impacts
of invasive crayfishes or other stressors associated with habitat loss or degradation. We
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recommend that state, federal, and international agencies consider elevated conservation
status categories for both pilose crayfishes.

Our finding of large apparent declines in the distribution of the pilose crayfishes suggests
urgent need for management, conservation, and research of these crayfishes. The presence
of invasive crayfishes in particular seems strongly related to declines or local extirpations of
P. connectens and P. gambelii. Accordingly, efforts to prevent the further introduction and
spread of invasive crayfishes like F. virilis, or the ‘‘native invader’’ P. leniusculus, should be
immediately implemented, andmay include educational outreach or regulatory change and
enforcement to prohibit these organisms from the live animal trade (Larson & Olden, 2011;
Lodge et al., 2016). In areas where F. virilis orP. leniusculus are already present,management
and maintenance of existing dispersal barriers such as dams and waterfalls may keep these
invaders from spreading further and help to conserve existing pilose crayfish populations
(Kerby et al., 2005; Fausch et al., 2009). In addition, where local conditions allow (e.g., small
groundwater springs; Fig. 8), construction andmaintenance of new dispersal barriers might
be considered to protect extant P. connectens and P. gambelii populations (Cowart et al.,
2018). Range declines of the pilose crayfishes were also seemingly associated with degraded
stream benthic community condition (Hill et al., 2016). Management and regulation of
point andnonpoint sources ofwater pollution or sedimentationmay help to prevent current
pilose crayfish habitat from also becoming highly degraded (Allan, 2004;Novotny & Smith,
2004; Strayer, 2006). Our SDM suggests that the pilose crayfishes most typically occur in
the types of larger, low elevation, valley bottom streams that are at most risk of degradation
from land use in our study region (Larson & Olden, 2011; Larson & Williams, 2015), and as
such, persistence of these crayfishes is likely dependent on good management practices for
water quality and in-stream habitat (Bilotta & Brazier, 2008; Strayer & Dudgeon, 2010).

We conclude by emphasizing that our study is the first dedicated to the ecology
and distribution of the pilose crayfishes, but further basic distributional and ecological
information is urgently needed to support the conservation of these species. We are
relatively confident that we have sampled within the true historical range for both
crayfishes, but aberrant occurrence records for each species across the larger western
US merits investigation (Larson & Williams, 2015). Pacifastacus connectens and P. gambelii
would certainly benefit from additional biological and ecological information, including life
history studies (Moore, DiStefano & Larson, 2013), investigations of ecological interactions
with other organisms, particularly invasive crayfishes (Usio, Konishi & Nakano, 2001;
Pintor, Sih & Bauer, 2008), and habitat selection and use at finer grains than we could
consider here (Flinders & Magoulick, 2007). We hope that our study will provide a baseline
and motivation for future inquiry and conservation intervention for these interesting but
minimally studied crayfishes.
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