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Abstract 26 

Background. Amazonia is a biologically megadiverse region, but our knowledge on its 27 

biodiversity and environmental determinants stems almost exclusively from aboveground 28 

organisms, notably plants. In contrast, the environmental factors that drive diversity patterns 29 

for microorganisms remain elusive, despite the fact that they constitute the overwhelming 30 

majority of organisms in any given location, both in terms of diversity and abundance. 31 

Methods. We used recently generated operational taxonomic units (OTU) inferred from high-32 

throughput metabarcoding of 16S (prokaryotes) and 18S (eukaryotes) markers to estimate 33 

richness and community composition of prokaryotes and eukaryotes in soil and litter (i.e., 34 

leaves and above-ground debris) across Brazilian Amazonia. Together with novel data on soil 35 

chemical and physical properties, we identify abiotic correlations of soil microorganism 36 

richness and community structure using regression, ordination, and variance partitioning 37 

analysis. 38 

Results. Soil organic carbon content was the strongest factor explaining OTU richness 39 

(negative correlation) and community composition across all datasets. We found important 40 

effects also for other soil variables, including pH. There was no significant correlation 41 

between OTU richness of litter and soil for eukaryotes, and only a weak correlation between 42 

OTU richness of soil and litter for prokaryotes. 43 

Discussion. Our results provide a large-scale mapping of the physical and chemical 44 

correlations of soil and litter biodiversity in a longitudinal transect across the world’s largest 45 

rainforest. Our methods help to understand links between soil compounds, OTU richness 46 

patterns, and community composition. The lack of strong correlation between litter and soil 47 

richness suggests the complementarity of these substrates, and highlights the importance to 48 
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include both in biodiversity assessments. Massive sequencing of soil and litter samples holds 49 

the potential to greatly complement traditional biological inventories in advancing our 50 

understanding of the factors affecting tropical diversity. 51 

 52 

Key-words: Brazil; Eukaryotes; Operational Taxonomic Units (OTUs); Prokaryotes; 53 

Rainforest; Soil microorganisms 54 
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Introduction 56 

Tropical rainforests are mega-diverse and environmentally heterogeneous biomes, and their 57 

biodiversity has been shown to vary considerably over space. In Amazonia, the world’s 58 

largest rainforest that covers most of northern South America, geology and soil 59 

physicochemical compounds are often considered crucial to regulate the biotic dynamics, 60 

vegetation, and diversity patterns at local to regional scales (Vogel et al., 2009; Laurence et 61 

al., 2010; Higgins et al., 2011: Tuomisto et al., 2016). 62 

 63 

For plants, diversity patterns and community composition are associated with the availability 64 

of soil nutrients (Laurence et al., 2010). Soil cation concentration has been identified as the 65 

potentially most important factor determining plant species composition and turnover in 66 

Amazonia (e.g. Baldeck et al., 2016; Tuomisto et al., 2016; Cámara-Leret et al., 2017) and 67 

also shows a less prominent effect on species richness (Tuomisto et al., 2014). Soil chemistry, 68 

in particular phosphorus, is also known to affect the taxonomic composition of microbial 69 

communities (Buckley and Schmidt, 2001; Faoro et al., 2010; Navarrete et al., 2013). In 70 

addition, pH is known to shape microbial diversity (e.g. Osborne et al., 2011; Kuramae et al., 71 

2012; Barnes et al., 2016). Finally, geology and soil physicochemical compounds affect all 72 

ecosystems directly and indirectly, via biotic interactions among animals, plants, and fungi 73 

(e.g. Tedersoo et al., 2016). 74 

 75 

Soils are complex systems, and different soil layers may show different patterns of 76 

biodiversity (Hinsinger et al., 2009). For instance, Porazinska et al. (2012) found that 77 
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taxonomic composition varies between mineral soil and organic matter (litter) across biomes. 78 

High-throughput amplicon-based analyses such as metabarcoding (Taberlet et al., 2012) allow 79 

detailed examination of soil diversity patterns (Bardgett and van der Putten, 2014). However, 80 

these studies are usually focused on one or a few taxonomic groups, which make it difficult to 81 

draw general conclusions on the effects of soil properties on the overall determinants of 82 

biodiversity (e.g. Faoro et al., 2010; Laurence et al., 2010; Navarrete et al., 2013; Barnes et 83 

al., 2016). 84 

 85 

Although several studies have reported on the importance of soil compounds for biodiversity 86 

patterns and community structure, no unified pattern has emerged. With the exception of a 87 

few studies reporting results on arthropods and microorganisms (Basset et al., 2012; Ramirez 88 

et al., 2014; Prober et al., 2015; Tedersoo et al., 2016), the diversity of most inconspicuous, 89 

less studied groups of organisms remains poorly understood. To understand the evolution, 90 

maintenance, ecosystem function, and distribution of organisms, a greater focus on the 91 

world’s poorly known taxa such as fungi, insects, nematodes, and bacteria is warranted. After 92 

all, these organisms play key roles in mediating a wide range of biotic and abiotic processes 93 

(Falkowski et al., 2008; Stajich et al., 2009; Friesen et al., 2011). Understanding the role of 94 

soil physicochemical compounds in shaping organism richness and community composition 95 

in any location, but in particular in mega-diverse regions such as Amazonia, is therefore 96 

crucial. 97 

 98 

In this study, we investigate the physio-chemical correlation of soil and litter richness and 99 

community composition on a west-to-east transect across Brazilian Amazonia, along the 100 
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Amazon River. We analyse richness estimates based on environmental DNA of the ribosomal 101 

16S (prokaryote) and nuclear ribosomal 18S (eukaryote) genes. Specifically, we seek to 102 

answer two questions on the correlations of OTU richness and community structure for both 103 

organism groups: (1) Does the genetic diversity (measured as OTU richness) of the litter layer 104 

correlate with the OTU diversity of the underlying soil; and (2) Are eukaryote (18S) and 105 

prokaryote (16S) OTU richness and community composition correlated with physical and 106 

chemical soil properties? If so, what are the most important correlates of OTU diversity? 107 

 108 

2. Materials and Methods 109 

2.1. SAMPLING DESIGN AND LOCALITIES 110 

We sampled four main localities along a longitudinal transect across the Amazon River (Fig. 111 

1) following the sampling design of Tedersoo et al. (2014). Detailed locality descriptions are 112 

available in Ritter et al. (in review). Briefly, we sampled a total of 39 plots in different habitat 113 

types, which can be summarized as terra-firme forests, várzeas, igapós, and naturally open 114 

areas (e.g. campinas). These environments support distinct biota and are often associated with 115 

different kinds of soil. Terra-firme forests are unflooded and generally characterized by poor 116 

nutrient latosols (Falesi, 1984). In contrast, várzeas and igapós are seasonally flooded forests 117 

that remain submerged during parts of the year and they are differentiated by the type of the 118 

flooding water. Várzeas are flooded by white-water rivers and are nutrient rich areas (Junk et 119 

al., 2011). Igapós are flooded by black-water rivers and are characterized by large areas of 120 

white sands (podzols). Finally, the open areas of Amazonia are related to nutrient-121 

impoverished sandy soils (Prance, 1996; Fine et al., 2005). 122 



 8 

 123 

Our sampling was placed in areas that cover the different habitat types localized in: Benjamin 124 

Constant (9 plots), our westernmost locality, approximately 1,100 km west of Manaus in the 125 

upper Amazonas River (4.383° S, 70.017° W; Fig 1A); Jaú national park (6 plots; 1.850° S, 126 

61.616°W; Fig 1B) and Novo Airão (3 plots; 2.620° S, 60.944°W; Fig 1C), on the west side of 127 

the Negro River; Reserva do Cuieras (6 plots; 2.609o S, 60.217o W; Fig 1D) and Reserva da 128 

Campina (3 plots; 2.592o S, 60.030o W; Fig 1E), on the east side of the Negro River; and 129 

Caxiaunã (12 plots), a national forest located 350 km west of Belém (1.7352° S, 51,463°W; 130 

Fig 1F), which constitutes our easternmost locality. All samples collection were authorized by 131 

Brazilian authorities: ICMBio (registration number 48185-2) and IBAMA (registration 132 

number 127341). 133 

 134 

2.2. PHYSICOCHEMICAL SOIL ANALYSES  135 

We determined the physicochemical and nutrient profiles of the first five centimetres of three 136 

soil samples from each plot, totalling 117 samples. The samples were analysed for several 137 

chemical and textural variables. pH was measured in water (ratio 1:2.5). The exchangeable 138 

concentrations were measured for sodium (Na), potassium (K), and phosphorus (P) using 139 

Mehlich-1 extraction (unit mg/dm3) and for calcium and magnesium (Ca, Mg) using KCl (1 140 

mol/L) extraction (unit cmolc/dm3). The sum of all exchangeable bases (SB; which comprises 141 

K+, Ca²+, Mg²+, and Na+; unit cmolc/dm3) was then calculated. We also estimated 142 

exchangeable aluminium (Al and H+Al; unit cmolc/dm3) extracted with calcium acetate (0.5 143 

mol/L at pH 7.0), aluminium saturation index (m; unit %), and Base Saturation Index (V; unit 144 

%). The effective cation exchange capacity (t) as well as the cation exchange capacity (T) 145 

Comentado [h5]: was 
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were measured at pH 7.0 (unit cmolc/dm3). The C (organic carbon), and organic matter (M.O) 146 

= C (organic carbon) x 1,724 - Walkley-Black was quantified (unit g/kg). Soil texture was 147 

characterized by the percentage of fine (0.05 – 0.2 mm), thick (0.2 – 2 mm), and total sand 148 

(0.05 – 2 mm) as well as the silt (0.002 – 0.05 mm) and clay (< 0.002 mm) fraction of the soil 149 

weight. All analyses were commissioned from EMBRAPA Ocidental (Brazil), following the 150 

protocol described in Donagema et al. (2011). Afterwards, we used the mean of the three soil 151 

samples from the same plot to obtain a unique value for the measurement of each variable for 152 

each plot. 153 

 154 

2.3. DNA EXTRACTION, AMPLIFICATION, AND SEQUENCING 155 

The details of laboratory procedures are described in Ritter et al. (in review). We extracted 156 

soil and litter using the PowerMax® Soil DNA Isolation Kit (MO BIO Laboratories, USA), 157 

following the manufacturer’s instructions. The amplification of 16S was performed by 158 

Macrogen (Republic of Korea) following standard protocols, and sequencing was performed 159 

using the Illumina MiSeq 2x300 platform. For metabarcoding of the 18S gene, sequencing 160 

preparation was performed at the laboratory of the University of Gothenburg as described in 161 

Ritter et al. (in review) and the amplicons were sequenced at SciLifeLab (Stockholm, 162 

Sweden) using an Illumina MiSeq 2x250 machine. 163 

 164 

2.4. SEQUENCE ANALYSES 165 

We used the USEARCH/UPARSE v9.0.2132 Illumina paired reads pipeline (Edgar, 2013) to 166 

filter out poor-quality sequences, de-replicate and sort reads by abundance, infer operational 167 

taxonomic units (OTUs; Blaxter et al. 2005), and remove singletons. We inferred OTUs at the 168 
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97% sequence similarity level. We used the SINA v1.2.10 for ARB SVN (revision 21008; 169 

Pruesse, Peplies, and Glöckner, 2012) reference dataset for both markers and used SILVAngs 170 

1.3 for taxonomic assignments (Quast et al., 2013). 171 

 172 

2.5. STATISTICAL ANALYSES 173 

We rarefied all samples to the lowest number of reads (number of sequences in each OTU, 174 

which is analogous to abundance of each “species”) obtained from a single plot (22,209 for 175 

16S and 1,359 for 18S; Fig S2) to standardize the sampling effort per plot. An average value 176 

was computed to calculate local diversity using the function “rarefy” in the package vegan v. 177 

2.4-3 (Oksanen et al., 2007) in R v3.3.2 (R Development Core Team, 2017). We subsequently 178 

transformed the OTU tables to presence/absence for both prokaryote (16S) and eukaryote 179 

(18S) data. 180 

 181 

For soil compounds, we first normalized all soil variables to zero mean and unit variance 182 

using the “scale” function of vegan. Afterwards, we performed two principal component 183 

analyses (PCAs). In the first analysis we used the chemical variables phosphorus (P), 184 

exchangeable bases (Na, K, Ca, and Mg), the sum of all exchangeable bases (SB), 185 

exchangeable aluminium (Al and the cation H+Al), Saturation Index by Aluminium (m), Base 186 

Saturation Index (V), effective cation exchange capacity (t), and cation exchange capacity (T). 187 

In the second analysis we used silt, clay, and three sand fractions (fine, thick, and total). Since 188 

the first PCA axis explained 66% of both chemical and physical variables, we used the first 189 

PCA axis of each analysis in the subsequent analyses. Given their importance in regulating 190 

the soil biota, we also used soil organic carbon content (Nielson et al., 2011) and pH (Lauber 191 

et al., 2009) as independent variables. 192 
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 193 

To address our first research question (Does genetic diversity (measured as OTU richness) of 194 

the litter layer predict the OTU diversity of the underlying soil, for eukaryotes (18S) and 195 

prokaryotes (16S)?), we analysed the relationship between litter and soil OTU richness for 196 

prokaryote (16S) and eukaryote (18S) data using a linear regression model (the lm function in 197 

R). We analysed community dissimilarity between the different substrates performing two 198 

two-dimensional non-metric multidimensional scaling (NMDS) ordinations of the 199 

presence/absence matrices. The first ordination was of litter and soil for prokaryotes (16S), 200 

and the second for eukaryotes (18S). Both ordinations used the quantitative version of the 201 

Jaccard dissimilarity index as implemented in the metaMDS function in the package vegan. 202 

Additionally, we used the “envfit” method implemented in vegan to fit substrate type (litter or 203 

soil) onto the NMDS ordination as a measure of the correlation of these factors with the 204 

NMDS axes. To visualize the OTU community similarity among plots, we constructed a 205 

similarity network with the qgraph v. 1.4.4 (Epskamp et al., 2012) package in R using a 206 

similarity index (1/Jaccard dissimilarity). 207 

 208 

To address our second research question (Are eukaryote (18S) and prokaryote (16S) OTU 209 

richness and community composition correlated with physical and chemical soil properties? If 210 

so, what are the most important soil compounds correlates with biodiversity?), we performed 211 

four Bayesian general linear models (GLM) as implemented in the R-INLA v. 17.6.20 R 212 

package (Rue et al., 2009) with the OTU richness of litter and soil from the prokaryote (16S) 213 

and eukaryote (18S) data as response variables, and soil properties as explanatory variables. 214 

We first tested the effect of spatial auto-correlations by comparing analyses of standard 215 

GLMs, with GLM analysis using stochastic partial differential equations (SPDE) that 216 
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explicitly consider spatial correlation. Three plots were missing sand, silt, and clay 217 

information, and the corresponding values were therefore inferred through calculation of the 218 

regression weights from the observed data using the mice v. 2.30 R package (Buuren and 219 

Groothuis-Oudshoorn, 2011). 220 

 221 

To investigate the effects of soil compounds on community composition, we performed four 222 

partial Mantel tests using the distance matrices of geographical distance, environmental (soil 223 

properties) distance, and community distance (using the quantitative Jaccard dissimilarity). 224 

We then performed variation partitioning using the quantitative Jaccard dissimilarity distance-225 

based redundancy analysis on the litter and soil data for the prokaryote (16S) and eukaryote 226 

(18S) communities. Variation partitioning gives an indication of the unique and shared 227 

contribution of each explanatory variable to the total community variation (Legendre and 228 

Legendre, 1998). We used the “varpart” function of the vegan package and assessed the 229 

significance for each section of the variation partitioning approach using redundancy analysis. 230 

 231 

Additional R packages we used for data curation and visualization were tidyverse v. 1.1.1 232 

(Wickham, 2017), Hmisc v. 4.0-3 (Harrell Jr., 2016), ggfortify v. 0.1.0 (Tang et al., 2016), 233 

gridExtra v. 2.2.1 (Auguie, Antonov and Auguie 2016), ggplot2 (Wickham, 2016), and viridis 234 

v. 0.4.0 (Garnier, 2016). Scripts for all analyses are provided in the supplementary material. 235 

 236 

3. Results 237 

3.1. CORRELATION BETWEEN LITTER AND SOIL OTU RICHNESS (RESEARCH QUESTION 1) 238 
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The mean of the rarefied numbers and standard deviations of OTUs for each plot for litter and 239 

soil separately are provided in Table S1, and the rarefaction curves are showed in Figure S1. 240 

We found a weak positive correlation between litter and soil OTU richness for prokaryotes 241 

(adj. R2 0.25, p < 0.001; Fig. 2A). For eukaryotes, the correlation was not significant (Fig. 242 

2B). However, we registered an outlier for the plot “CXNCAMP3” with very low soil OTU 243 

richness. Excluding this data point strengthened the correlation for prokaryotes (adj. R2 0.46, 244 

p < 0.001; Fig. S2A), but not for eukaryotes (Fig. S2B). 245 

 246 

The community composition of litter and soil had a weak separation on the two axes of the 247 

NMDS, even by habitat type (Fig. 3). The envfit test indicated weak but significant effects of 248 

substrate type on both the prokaryote (R2 of 0.1, p < 0.001) and eukaryote (R2 of 0.11, p < 249 

0.001) community compositions and a strong effect on the habitat type on both the prokaryote 250 

(R2 of 0.40, p < 0.001) and eukaryote (R2 of 0.17, p < 0.001) community composition. The 251 

similarity network shows a weak separation between litter and soil for both the prokaryote and 252 

the eukaryote communities (Fig. S4). There is no clear taxonomic variation among groups in 253 

litter or soil, neither in the prokaryote nor in the eukaryote data (Fig. 4). 254 

 255 

3.2. CORRELATIONS BETWEEN SOIL PROPERTIES AND OTU COMPOSITION (RESEARCH QUESTION 256 

2) 257 

The first PCA axis represents a substantial proportion of the variation of the physical (66%) 258 

and chemical (66%) data. In the physical data PCA, large values are associated with coarse 259 

texture and small values with fine texture. The increasing values of PCA 1 are associated with 260 

silt (-0.45), clay (-0.38), fine sand fraction (0.28), coarse sand fraction (0.52), and total sand 261 
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fraction (0.55; Table S2). The first axis of PC1 is separated by habitat type with some overlap 262 

of campinas (Fig. 5A). For the chemical data, large values are associated with poor soils. The 263 

largest negative association was -0.35, namely the sum of all exchangeable bases (SB). The 264 

largest positive association was 0.29, viz. the aluminium saturation index (Table S3). The 265 

habitat types are not well separated along the first axis of the chemical PCA, with highly 266 

scattered igapós and várzeas values. Campinas and terra firme, on the other hand, are 267 

associated with positive values (poor soils) (Fig. 5B). For all datasets, the best GLM models – 268 

considering the deviance information criterion (DIC) and Watanabe-Akaike information 269 

criterion (WAIC) – were those that included spatial correlation (Table S4). For prokaryotes, 270 

we identified organic carbon as an important predictor of OTU richness for both soil and 271 

litter. In addition, chemical PC1 was a significant predictor for soil OTU richness and 272 

physical PC1 for litter OTU richness. For eukaryote OTU richness, the most important 273 

predictors were pH and organic carbon, for both litter and soil (Table 1). Overall, soil organic 274 

carbon had the strongest effect on OTU richness for prokaryotes and eukaryotes in litter and 275 

soil, showing a negative correlation. 276 

 277 

The Mantel test showed a significant association between environmental distance (soil 278 

properties) and community similarity (Jaccard dissimilarity index) for all datasets (prokaryote 279 

– soil [R = 0.52, p = 0.001], litter [R = 0.57, p = 0.001]; eukaryote – soil[R = 0.38, p = 0.001], 280 

litter [R = 0.54, p = 0.001]). Accounting for geographic distances using partial Mantel tests 281 

caused only a small decrease in the correlation coefficients, and all the correlations remained 282 

highly significant (prokaryote – soil [R = 0.48, p = 0.001], litter [R = 0.53, p = 0.001]; 283 

eukaryote – soil [R = 0.35, p = 0.001], litter [R = 0.51, p = 0.001]). 284 
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 285 

The variation partitioning revealed that a moderate total percentage of the community 286 

variation was explained by soil physic-chemical data in the soil prokaryote model (33%) and 287 

in the litter prokaryote model (37%; Fig. 6). Soil physic-chemical data had a higher 288 

explanatory power for prokaryotes than for eukaryotes, with a total of 12% of community 289 

variation explained for soil and 18% for the litter communities for eukaryotes. Inside each 290 

dataset (prokaryote and eukaryote), the litter communities are more structured by soil 291 

characteristics than are the soil communities. All variables explained small but significant 292 

proportions of the variance in all communities, and showed some weak but significant 293 

interactions (Fig. 6). 294 

 295 

4. Discussion 296 

4.1. CONTRASTING LITTER AND SOIL DIVERSITY 297 

A regression between soil and litter richness of prokaryotes and a non-significant regression 298 

between soil and litter OTU richness of eukaryotes was observed. Contrary to our expectation 299 

of litter being more dominated by plants and nematodes and soil by microorganisms, we could 300 

not observe a difference in proportion of taxonomic groups between the soil and litter (Fig. 4). 301 

This means that on the Amazon basin scale, the taxonomic composition at higher levels 302 

(phylum and order) is consistent between litter and soil. Interestingly, the dominance order of 303 

the phyla in our samples was only partly congruent with the one recently reported in a large 304 

global dataset (Delgado-Baquerizo et al., 2018). While we, too, found Proteobacteria to be the 305 

most dominant phylum, the second most abundant phylum was Chloroflexi in our samples 306 
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while this phylum was only the 5th most abundant in the global dataset. Moreover, the rank-307 

abundance distribution of the most dominant phyla was remarkably more even in our tropical 308 

sample than in the global sample, with Proteobacteria accounting for just over 20% of all 309 

reads (versus almost 40% in the global dataset) and 8 phyla accounting for > 5% of relative 310 

frequency each versus only 4 in Delgado-Baquerizo et al., (2018). For eukaryotes, too, we 311 

found contrasting results. For instance, unlike Porazinska et al. (2012) who found a 312 

dominance of nematodes in the litter of tropical forest, we found very similar proportions of 313 

nematode OTUs in soil and litter, with the highest diversity in the soil (Fig. 4). These 314 

differences could be related to sampling or primer biases but also may be related to 315 

differences in the forest structure between studies. Taken together these differences highlight 316 

the need of more studies across Amazon basin. 317 

 318 

The OTU community composition was weakly correlated among samples at the OTU level, 319 

but we could not observe it on the phylum or order levels (Fig. 4). This is expected since for 320 

instance fungi can be anticipated to be a dominant group in any soil environment, including 321 

tropical forests (Tedersoo et al. 2017), but the dominant fungal taxa (OTU) may vary 322 

considerably even on local and sub-local scales in these forests (Urbanová et al. 2015). 323 

Urbanová et al. (2015) found similar results for bacteria and fungi; the phylum level indicated 324 

the same magnitude of diversity in soils and litter, but there were striking differences on the 325 

OTU level. The habitat types explain a higher proportion of community variation than does 326 

the substrate type, which is expected since both substrates would share a large number of 327 

organisms. 328 

 329 
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4.2. SOIL PREDICTORS OF OTU COMPOSITION 330 

 Soil proprieties are thought to be useful predictors of diversity and composition of 331 

microorganism communities, as inferred from several vegetation types globally (e.g. Lauber 332 

et al., 2009; Fierer et al., 2012; Navarrete et al., 2013; Barnes et al., 2016). In this study, we 333 

found that in Amazonia the soil properties we quantified have variable effects on OTU 334 

richness and community composition for litter and soil, and that they furthermore vary 335 

between prokaryotes and eukaryotes. 336 

 337 

Considering the results from the linear models, pH was the second strongest factor in 338 

explaining both litter and soil eukaryote richness, although it had only a weak effect on 339 

prokaryote richness. Lauber et al. (2009) found pH to be the main factor in explaining 340 

bacterial phylogenetic diversity and phylogenetic composition, where soils with pH between 341 

4.5 and 8 had the lowest micro-organismal diversity, even in tropical forests with high macro-342 

organism diversity. In our samples, the variation in pH was moderate, from 3.65 to 5.14. The 343 

variation observed for the effect of pH (and other soil variables) in different sets of organisms 344 

(e.g. Acidobacteria and Actinobacteria) could help us understand the low percentage of 345 

explained variation for prokaryotes. 346 

 347 

Biotic and abiotic conditions jointly determine soil proprieties, which in turn interact with 348 

biotic and abiotic factors in a feedback loop. It is therefore important to consider 349 

environmental and biological interactions between variables. Indeed, our variance analysis 350 

reveals several interactions between soil compounds, although these interactions are weak. 351 

Comentado [h30]: properties 

Comentado [h31]: eukaryotic 

Comentado [h32]: prokaryotic 

Comentado [h33]: Where are the results to support this 

assumption? 



 18 

This analysis is important for providing a better understanding of the study system, but it is 352 

limited to the variables we are able to sample. The first axis of physical PCA was well 353 

separated by the habitat types, however the first axis of chemical PCA was less well separated 354 

for flooded areas (igapós and várzeas). The campinas, which are associated with soil of the 355 

white sand type, are grouped in the extreme of positive values followed by terra-firme. In our 356 

results the large values of first axis of chemical PCA are associated with poor soils (Table 357 

S3). These results agree with previous studies, which report both habitats as being related with 358 

poor soils (Falesi, 1984; Prance, 1996; Fine et al., 2005). 359 

 360 

We found a negative correlation of soil organic carbon with OTU richness for all groups. This 361 

is a puzzling result, since soil organic carbon is often used as an indicator of soil biomass 362 

(Fierer et al., 2009), and soil biodiversity has previously been found to be correlated with 363 

carbon sequestration (Wagg et al., 2013). However, the relationship between soil biodiversity 364 

and carbon has varied across studies (Nielson et al., 2011). Furthermore, Fierer et al. (2012) 365 

and de Lima Brossi et al. (2014) found that soil organic matter was related to microbial 366 

community composition in several different vegetation types. The negative correlation 367 

between soil organic carbon content and OTU richness reported here might be related to high 368 

decomposition rates, keeping the carbon stock locked in aboveground biomass and low in the 369 

soil. Our results support the findings of Wall et al. (2008), who found a positive influence of 370 

richness of soil biota on decomposition rates in wet tropical environments. Along the same 371 

line, Wagg et al. (2013) found that soil diversity and soil community composition are related 372 

through nutrient cycling. Decreases in soil diversity and changes in soil communities alter the 373 

ability of soil organisms to break down organic matter and recycle nutrients, rendering the 374 
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return of nutrients to the above-ground community difficult (Wardle et al., 2004). These 375 

findings stress the complex nature of carbon-diversity dynamics and the plant–soil feedback 376 

mediated by soil biota (Mangan et al. 2010). 377 

 378 

5. Conclusions 379 

In this study we found significant correlations between physio-chemical soil properties and 380 

genetic diversity in Amazonia. Across the study area, we found that OTU richness and 381 

community composition are in part explained by different soil compounds. These compounds 382 

interact in a complex way, which stresses the importance of considering multiple factors and 383 

their interactions in the characterization of biodiversity patterns. Our most striking result was 384 

the negative correlation between organic carbon and OTU richness, and the effect of organic 385 

carbon on community composition. Soils are crucial for carbon cycling in terrestrial 386 

ecosystems, and our results suggest that a better understanding of the relationship between 387 

diversity (above and belowground) and carbon cycles might be essential for modelling carbon 388 

deposition and diversity patterns in the world’s largest and most biodiverse rainforest. 389 
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