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Abstract5

Ecologists often analyze relative abundances, which are compositions (sets of non-negative6

numbers with a fixed sum). However, they have made surprisingly little use of recent advances7

in the field of compositional data analysis. Compositions form a vector space in which addi-8

tion and scalar multiplication are replaced by operations known as perturbation and powering.9

This algebraic structure makes it easy to understand how relative abundances change along en-10

vironmental gradients. We illustrate this with an analysis of changes in hard-substrate marine11

communities along a depth gradient. We show how the algebra of compositions can be used12

to understand patterns in dissimilarity. We use the calculus of simplex-valued functions to es-13

timate rates of change, and to summarize the structure of the community over a vertical slice.14

We discuss the benefits of the compositional approach in the interpretation and visualization15

of relative abundance data.16

1 Introduction17

Ecologists often analyze relative abundance data. These are sets of non-negative numbers with a18

fixed sum (typically 1 or 100), and are therefore examples of compositional data. Compositional19

data present some special challenges, arising from their constrained multivariate nature, including20

the absence of an interpretable covariance structure and the inappropriateness of simple parametric21

models (Aitchison, 1986, chapter 3). Many of these challenges have been addressed in the last few22

decades, leading to a coherent set of principles for the analysis of compositional data (Pawlowsky-23

Glahn and Buccianti, 2011). Although some important work on the principals of compositional24

data analysis was ecological (e.g. Mosimann, 1962; Martin and Mosimann, 1965; Billheimer et al.,25

2001), ecologists have made surprisingly little use of recent advances in the field (exceptions in-26

clude Jackson, 1997; Gross and Edmunds, 2015; Yuan et al., 2016). For example, Legendre and27

Legendre (2012), one of the most important textbooks on analysis of community ecological data,28

does not cite any papers on compositional data analysis.29

The key principle in compositional data analysis is scale invariance (Aitchison, 1992). This30
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means that if x is a set of abundances, then ax is equivalent to x, for any positive real number a.31

To an ecologist, this means treating two communities as equivalent if they have the same relative32

abundances but different total abundances. It is straightforward to show, using the scale invariance33

principle, that any meaningful function of a composition can be expressed in terms of ratios of rel-34

ative abundances (Aitchison, 1992). In addition, in most situations, subcompositional coherence35

is important. Suppose that two scientists are studying the same community, but one measures the36

abundances of all taxa, while the other measures the abundances of only some taxa. Subcomposi-37

tional coherence is the requirement that their results should agree for the subset of taxa measured38

by both (Aitchison, 1992). Ecologists should care about subcompositional coherence because they39

are almost always studying only a subset of the taxa present in a community. These seemingly ob-40

vious principles can lead to a coherent method of manipulating relative abundance data. In order41

to understand why this is important, we need to think a little about abstract algebra.42

Ecologists make frequent use of some aspects of vector algebra in R
n, a mathematical system43

which emerged gradually in the late 19th century, primarily driven by the need to solve three-44

dimensional physical problems in fields such as electricity (Crowe, 1994). In community ecology,45

the main application of vectors is the representation and manipulation of the abundances of more46

than one species simultaneously. For such vectors, the operations of addition and scalar multipli-47

cation have obvious biological meanings. However, ecologists make little explicit use of the more48

abstract concept of a real vector space, defined only by the axioms it satisfies, rather than the types49

of objects involved. This concept, now important in many areas of mathematics, emerged around50

the same time as vector algebra (Dorier, 1995). A real vector space is a set of objects (vectors)51

with a binary operation (‘addition’), and a scalar operation (‘scalar multiplication’) by which real52

numbers act on the objects (Fraleigh and Beauregard, 1995, section 3.1). The addition operation53

satisfies the familiar algebraic axioms of closure, associativity, commutativity, and the existence54

of an identity element and of inverse elements. The scalar multiplication operation satisfies the55

familiar algebraic axioms of closure, distributivity, associativity, and has 1 as the multiplicative56

identity. This more general concept might be useful in ecology because the ordinary definitions57
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of addition and scalar multiplication for Euclidean vectors do not satisfy the vector space axioms58

when applied to relative abundances. For example, let a= (1/3,1/3,1/3)T be a relative abundance59

vector (throughout, we work with column vectors, so T denotes transpose). Then neither a+a nor60

2a is a relative abundance vector, so the axiom of closure is not satisfied.61

There are in fact operations corresponding to addition and scalar multiplication that make sense62

for compositions. For a vector of s positive numbers x, let the closure C (x) of x be defined by63

C (x) =
1

∑
s
i=1 xi

x64

(Aitchison, 1986, p. 31). Now if a,b are s-part compositions, then let the perturbation ⊕ of b by a65

be defined by66

a⊕b = C (a1b1,a2b2, . . . ,asbs)67

(Aitchison, 1986, p. 42). Also, if a > 0, then the powering ⊙ of b by a is defined by68

a⊙b = C (ba
1,b

a
2, . . . ,b

a
s )69

(Aitchison, 1986, p. 120). The set of s-part compositions with the binary operation of perturba-70

tion (corresponding to ‘addition’) and the scalar operation of powering (corresponding to ‘scalar71

multiplication’) satisfies the vector space axioms (Billheimer et al., 2001). Now for any two com-72

positions a and b, we can transform a into b by the closure of the unequal scaling73

b = C

(

b1

a1
a1,

b2

a2
a2, . . . ,

bs

as

as

)

= b⊕ ((−1)⊙a)⊕a.

74

We can thus define the compositional difference b⊖a as75

b⊖a = b⊕ ((−1)⊙a) = C

(

b1

a1
,
b1

a1
, . . . ,

bs

as

)

. (1)76
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This is the only way to define the difference between two compositions, under either one of two77

additional conditions (Aitchison, 1992). The first and most important for ecology is that the answer78

must not depend on changes of units for individual components, or equivalently, must not change if79

detection probabilities differ among taxa. The second is that the ith component of the transforma-80

tion from one composition to another must depend only on the ith component of the compositions.81

This is desirable because we would like to identify components of change in relative abundances82

associated with particular taxa. Adoption of either of these conditions leads immediately to the83

idea that any measure of dissimilarity between two relative abundance vectors must be perturba-84

tion invariant, i.e. it must depend only on the compositional difference between them, defined by85

the ratios of relative abundances of corresponding taxa.86

A common approach to studying variation among communities is to compute some measure87

d of dissimilarity between pairs of communities, and then carry out graphical or numerical anal-88

yses of the resulting distance matrix (Legendre and Legendre, 2012, chapter 7). This has the89

potential to mislead if the measure of dissimilarity is not perturbation invariant. Consider a se-90

ries of J communities along an environmental gradient, with compositions ρ1,ρ2, . . . ,ρJ . Sup-91

pose that the communities are spaced so that the ratios of relative abundances for each species92

in successive communities are constant, in other words ρi, j/ρi, j+1 = ai, where ai is a constant,93

for each species i ∈ {1,2, . . . ,s} and for each community j ∈ {1,2, . . . ,J − 1}. Since relative94

abundances, by definition, are meaningful only in relative terms, there has been the same amount95

of change in the relative abundance of each species between each pair of communities j, j + 1.96

This implies that a meaningful measure of dissimilarity between adjacent pairs of communities97

must be constant. From the definition of compositional difference (Equation 1), ρ j+1 ⊖ρ j = a,98

where a = (a1,a2, . . . ,as) is a constant perturbation. Then we can write ρ j+1 = a ⊕ ρ j, and99

ρ j+2 = a⊕ρ j+1, and we require that d(ρ j,ρ j+1) = d(a⊕ρ j,a⊕ρ j+1). In general, any mean-100

ingful dissimilarity measure d for compositions must satisfy the perturbation invariance property101

d(ρ1,ρ2) = d(a⊕ρ1,a⊕ρ2) for all compositions ρ1,ρ2,a. Most of the popular measures of com-102

munity dissimilarity are not perturbation invariant, and are therefore misleading. For example, let103
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ρ1 = (1
6 ,

1
3 ,

1
2)

T ,ρ2 = (1
2 ,

1
3 ,

1
6)

T ,a = (1
3 ,

1
6 ,

1
2)

T . Then using vegdist(method = ‘‘bray’’) in104

the R package vegan 2.4-3 (Oksanen et al., 2017), the Bray-Curtis distance between ρ1 and ρ2105

is 0.333 to three decimal places, but the Bray-Curtis distance between a⊕ρ1 and a⊕ρ2 is 0.420106

to three decimal places. Other popular measures of community dissimilarity are shown not to be107

perturbation invariant (in the context of temporal change) in Spencer (2015, Appendix B). In con-108

trast, the Aitchison distance (Aitchison, 1992) is a well-established perturbation-invariant measure109

of dissimilarity between composition. Thus, analyses of dissimilarity between relative abundances110

should be based on Aitchison distance, rather than the currently-popular measures of community111

dissimilarity.112

Model-based analysis is an increasingly popular alternative way of analyzing differences be-113

tween communities (Warton et al., 2015). Model-based methods allow appropriate modelling of114

the observation process, which often leads to mean-variance relationships different from those im-115

plicit in widely-used measures of dissimilarity (Warton et al., 2012). Model-based methods are116

generally more flexible, interpretable and efficient than dissimilarity-based methods (Warton et al.,117

2015). For example, once a parametric model has been fitted to a set of communities along an en-118

vironmental gradient, the function that describes expected values can be differentiated to find the119

rate of change of the community along the gradient, and integration can be used to find the mean120

community over the entire gradient. Even when dissimilarities are directly of interest, a parametric121

model is useful in understanding how expected dissimilarity depends on distance along the gradi-122

ent. However, an overlooked distinction between model-based and dissimilarity-based methods is123

that most model-based methods (e.g. Wang et al., 2012) are designed for abundance data, while124

most dissimilarities are designed for relative abundance data. Relative abundances have a different125

ecological meaning from abundances: communities are often treated as equivalent if they have the126

same “shape” (relative abundances) regardless of differences in “size” (total abundance). Also, in127

some cases (e.g. point counts from vegetation and on coral reefs, pollen counts, and environmental128

sequencing data), only relative abundances are available. Thus, there is a need for model-based129

analyses of relative abundance data. It seems likely that compositional data analysis, combined130
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with the calculus of simplex-valued functions (Egozcue et al., 2011), will meet this need.131

Here, we show how the vector space structure of the simplex provides a coherent way to study132

changes in community composition along environmental gradients. We show that a low-order133

polynomial provides a good model for the composition of a community of sessile hard-substrate134

marine organisms over a depth gradient. We illustrate the use of Aitchison distance as a principled135

measure of dissimilarity between communities, and use the algebraic structure of the simplex to136

understand how dissimilarity depends on depth. In particular, we determine the conditions for the137

same community composition to occur at different depths. We use the derivative of community138

composition with respect to depth to determine the depth at which the community is changing139

fastest. We use the integral of community composition over a vertical slice to determine which140

organisms dominate the mean composition over the entire depth range.141

2 Materials and methods142

2.1 Location143

We studied the community of sessile hard-substrate marine organisms on the walls of Salthouse144

Dock (53.4006° N, 2.9898° W), Port of Liverpool, United Kingdom. Salthouse Dock is part of145

the southern dock system on the River Mersey, connected to Wapping Dock to the South, Albert146

Dock to the West and Canning Dock to the North via Albert Dock. The docks fell into disuse in147

the 1970s, but were dredged and reopened for recreational use in 1981 (Fielding, 1997, pp. 10-14).148

Since then, they have been redeveloped as part of a commercial project, and with the completion149

of the Liverpool Canal Link, are now also connected to the Leeds-Liverpool Canal (Coutts et al.,150

2012). The regenerated docks are a shallow, semi-enclosed brackish water habitat, with salinity151

between 22‰ and 33‰ in the South Docks (Fielding, 1997, pp. 17, 70).152
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2.2 Video transects153

An OpenROV v2.8 remotely-operated vehicle (OpenROV, Berkeley, CA) with an IMU/Depth sen-154

sor and the Pro Camera-HD Upgrade (1080p) was used to take 31 approximately vertical transects155

from surface to bottom, haphazardly spaced along the northern and eastern walls of Salthouse156

Dock, on 2 February 2017. The distance from the wall was typically around 0.3 m to 0.4 m, giving157

a field of view with an area of approximately 0.29 m2 to 0.51 m2. The field of view was not known158

exactly because the lasers on the ROV, intended to indicate a known distance on the images, mal-159

functioned. However, the field of view was always large enough to contain many organisms, so160

that the relative abundances are unlikely to depend on the exact area sampled. A GoPro HERO3+161

Black Edition (GoPro, San Mateo, CA) was also attached to the ROV to provide an extra source of162

footage with higher resolution but more distortion. The OpenROV videos and telemetry data were163

recorded in the inbuilt Cockpit software (v30.1.0 with software patch release). The video and data164

files were downloaded and python scripts were written to overlay depth data on the corresponding165

videos.166

2.3 Image analysis167

Four still images were captured per transect at varying depths from 0.11 m to 3.72 m (except one168

transect where five stills were taken), making 125 still images in total. These stills were selected169

by the clarity of the image, which is generally when the ROV camera is at an optimum distance170

away, by advancing the videos one frame at a time. On each image, the taxon present at each of171

100 randomly-selected points was recorded using the JMicroVision v1.2.7 image analysis software172

(Roduit, 2008, Figure 1). Organisms (Table 1) were identified from still images, supplementary173

GoPro footage, and where possible, specimens collected near the surface, using Hayward and Ry-174

land (1995). For the non-native colonial sea squirt Botrylloides violaceus, we used the Marine Life175

Information Network (Snowden, 2008). Where an organism was growing on top of another, the176

organism taking up space on the wall was recorded. If positive identification was not possible, the177

point was skipped and another point drawn. “Bare wall” was recorded if no macroscopic organism178
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was present, or (as often occurred near the bottom) the wall was covered by grey detritus, so that179

any macroscopic organisms which may have been present were not visible. Point counts were ex-180

ported from JMicroVision into ASCII text files, which were combined using an R 3.4.0 script (R181

Core Team, 2017) into a single file with depth data.182

183

2.4 Data analysis184

2.4.1 Data aggregation185

Due to the rarity of barnacles and Stomphia coccinea (one individual of each), these two taxa were186

excluded from the analysis. The remaining taxa were combined into eight categories, consisting of187

organisms that were ecologically similar and/or could not be reliably distinguished: algae (red and188

green), Aurelia aurita polyps, Bugula spp., colonial ascidians (Botryllus schlosseri, Botrylloides189

leachii and Botrylloides violaceus), Diadumene cincta, solitary ascidians (Ciona intestinalis and190

Styela clava), sponges (Halichondria spp. and others), Mytilus edulis. We also included the “bare191

wall” category (for the absence of macroscopic organisms, although usually there was a biofilm of192

microscopic algae and bacteria, or a layer of detritus).193

2.4.2 Statistical model194

Let the counts in the ith observation (still image) be yi = (yi,1,yi,2...,yi,9)
T , where yi, j is the ob-195

served count of the jth taxon in the ith observation. We assume that yi follows a multinomial(ni,ρi)196

distribution, where ni is the number of points counted for the ith observation (always 100 in our197

data) and ρi is a vector of expected relative abundances of each taxon.198

The vector ρi consists of non-negative elements with a fixed sum of 1, and is therefore a compo-199

sition. The sum constraint, and associated constraints on the covariance structure of compositions,200

make it difficult to specify sufficiently flexible parametric models for untransformed compositions201

(Aitchison, 1986, chapter 3). The most popular modern approach to analysis of compositional data202
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is to transform an s-part composition into an unconstrained real space with s−1 dimensions. We203

used an isometric logratio transformation (Egozcue et al., 2003), which is an isomorphism (so that204

perturbation and powering in the simplex correspond to ordinary vector addition and scalar mul-205

tiplication in the real space) and an isometry (so that distances under an appropriate norm in the206

simplex correspond to Euclidean distances in the real space). We used the isometric logratio trans-207

formation with the default basis matrix in the R package compositions, version 1.40-1 (van den208

Boogaart and Tolosana-Delgado, 2008), although our results do not depend on this choice of basis.209

Let the transformed expected relative abundances for the ith observation be xi = ilr(ρi), where210

x is an 8-dimensional real vector, and ilr() represents an isometric logratio transformation. We211

assume that the transformed expected relative abundances can be described by the multivariate212

regression model213

xi = β0 +β1zi +β2z2
i +εi, (2)214

where β0, β1 and β2 are the intercept and linear and quadratic depth coefficients respectively, zi215

is the centred and scaled depth for the ith observation, and the errors ε have an 8-dimensional216

multivariate normal distribution with mean vector 0 and covariance matrix Σ. We fitted this model217

using Bayesian estimation (Supplemental Information).218

Because the isometric logratio transformation is an isomorphism between the simplex with219

Aitchison geometry and the ordinary real space, we can back-transform the deterministic part of220

Equation 2 to obtain an expression in terms of perturbation and powering in the simplex:221

M(ρi) = ilr−1
(

β0 +β1zi +β2z2
i

)

= γ0 ⊕ (zi ⊙γ1)⊕ (z2
i ⊙γ2),

222

where γ j = ilr−1(β j), j = 0,1,2. The composition M(ρi) is the metric centre of the distribution of223

ρi, an appropriate measure of location for compositions (Aitchison, 1989).224

To make the behaviour of the predictions for rare taxa more obvious, we also examined the225

predictions on a centred logratio (clr) scale, in which the value on the y-axis is the log of the ratio226
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of the corresponding component to the geometric mean of all components (Aitchison, 1986, p. 79).227

Thus a constant slope on the clr scale corresponds to constant proportional change in the relative228

abundance of a given taxon.229

2.4.3 Community dissimilarity230

As described above, most of the common measures of dissimilarity between communities are not231

perturbation invariant. In the Aitchison geometry, the obvious perturbation invariant measure of232

difference between two s-part compositions is the Aitchison norm of the compositional difference,233

defined by234

da(ρ1,ρ2) = ‖ρ1 ⊖ρ2‖a

=

[

s

∑
i=1

log
ρ1,i

g(ρ1)
− log

ρ2,i

g(ρ2)

]1/2

,

235

where g(ρ) denotes the geometric mean of the parts of a composition (Aitchison, 1992; Egozcue236

et al., 2003). It is immediately obvious that this is perturbation invariant, because (a⊕ρ1)⊖ (a⊕237

ρ2) = ρ1 ⊖ρ2, by the associative, commutative and identity properties of the vector space. Under238

this approach, the dissimilarity between the expected compositions ρ1,ρ2 is given by239

‖ρ1 ⊖ρ2‖a =
∥

∥

[

γ0 ⊕ (z1 ⊙γ1)⊕
(

z2
1 ⊙γ2

)]

⊖
[

γ0 ⊕ (z2 ⊙γ1)⊕
(

z2
2 ⊙γ2

)]∥

∥

a

= |z1 − z2|‖γ1 ⊕ [(z1 + z2)⊙γ2]‖a,

(3)240

using the identity, commutative, associative and distributive properties of the vector space to sim-241

plify.242

The Aitchison norm has a biological meaning in terms of population growth. In temporal com-243

parisons, the Aitchison norm of the compositional difference between two sets of relative abun-244

dances is proportional to the among-taxon standard deviation of proportional population growth245

rates (Spencer, 2015). In spatial comparisons, we can therefore think of the Aitchison norm as246

measuring the among-taxon variability in proportional population growth rates that is needed to247

transform one set of relative abundances into another, over a given time interval. This property is248
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important because in a closed system, population growth is the only way to transform one set of249

relative abundances into another. No other measure of community dissimilarity has this interpre-250

tation.251

The simplex with Aitchison geometry is a normed vector space (Egozcue et al., 2003) and252

therefore a metric space (Sutherland, 2009, pp. 39-40). Thus ‖ρ1 ⊖ρ2‖a = 0 if and only if ρ1 ⊖253

ρ2 = 0, where 0 is the identity element in the simplex. From Equation 3, assuming that γ1 6= 0254

and γ2 6= 0, this happens when either z1 = z2 (the two compositions are at the same depth) or255

γ2 =
(

− 1
z1+z2

)

⊙γ1 (the coefficient of squared depth is a powering of the coefficient of depth).256

Thus, if we plot dissimilarity on a grid of depths, there will always be zeros on the main diagonal,257

because communities at the same depth have the same expected composition. There may also be258

communities at different depths with the same expected composition, along a counter-diagonal259

where centred and scaled depth has a constant sum, but only in the special case where γ2 is a260

powering of γ1 (or equivalently, where β2 is a scalar multiple of β1 in ilr coordinates).261

We calculated posterior distributions of dissimilarities among 100 equally-spaced expected262

compositions between the minimum and maximum depths, both including and excluding bare wall.263

We plotted the posterior mean dissimilarity matrix, and the widths of the 95% highest posterior264

density intervals. We only report the results including bare wall here, because those excluding265

bare wall were very similar. Note that it is valid to exclude some parts of the composition if266

necessary, because the subcompositional coherence property means that such exclusion will not267

affect relationships among the remaining parts (Aitchison, 1994).268

2.4.4 Rate of change of community composition with depth269

The community is changing rapidly with respect to depth if a small increase in depth leads to a270

large difference in composition. In order to correctly evaluate this change, we need an appropriate271

definition of difference in composition. Given the geometry of the simplex, the difference in272

composition between depths z and z+h is naturally expressed as f(z+h)⊖ f(z). Then letting h go273
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to zero leads to the obvious definition of the derivative D⊕f of a simplex-valued function f,274

D⊕f(z) = lim
h→0

(

1

h
⊙ (f(z+h)⊖ f(z))

)

,275

provided this limit exists (Egozcue et al., 2011, section 12.2.2). Using the rules for differentiation276

of simplex-valued functions (Egozcue et al., 2011, section 12.2.2), in our model, the derivative of277

community composition with respect to depth, at a depth of z, is278

D⊕f(z) = γ1 ⊕ (2z⊙γ2).279

This is itself a composition. If we want a scalar measure of rate of change, the obvious choice280

is the norm of this derivative. It is intuitively obvious that the usual Euclidean norm is not ap-281

propriate, because the zero element for compositions (with all parts equal, corresponding to no282

change in composition with respect to depth) does not have zero Euclidean norm. Instead, we use283

the Aitchison norm ‖D⊕f(z)‖a (Egozcue et al., 2003), which is zero in the situation where there284

is no change in composition with respect to depth, and is used in the definition of a limit in the285

simplex (Egozcue et al., 2011, Definition 12.2.1). The easiest way to think of this norm is that it is286

equal to the Euclidean norm of the derivative in isometric logratio coordinates. It is also important287

to remember that we are measuring proportional change: doubling of relative abundance means288

the same thing whether the initial relative abundance is low or high. This is an essential property,289

because relative abundances have meaning only in relative terms.290

We evaluated the posterior distribution of this scalar measure of rate of change at 100 equally-291

spaced depths over the observed depth range.292

2.4.5 Depth-integrated relative abundances293

Over a vertical slice from surface to bottom, a taxon that has high relative abundance over a small294

range of depths may be unimportant compared to a taxon that has moderate relative abundance at295

all depths. We therefore want some measure of the “mean” relative abundances over a vertical slice.296
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The arithmetic mean is not appropriate for compositional data. For example, with a banana-shaped297

distribution, the arithmetic mean may lie completely outside the cloud of observations. The metric298

centre is a more appropriate measure of the centre of a compositional distribution which avoids299

these problems (Aitchison, 1989). However, taking a sample estimate of the metric centre over all300

depths is problematic, because sample relative abundances of zero often occur. Zeros are difficult301

to deal with in compositional data analysis (Martı́n-Fernandez et al., 2011), and in this context,302

will lead to the estimate of the centre being undefined. In addition, if the depth distribution of303

samples is not uniform, the sample estimate of the centre will be biased. Thus, integrating the304

model-estimated composition over the full range of depths may be a better way to summarize the305

structure of the community.306

The mean of a real function f of one variable over the interval [a,b] is307

1

b−a

∫ b

a
f (x)dx,308

which can be thought of as the value of the constant function whose integral over [a,b] is the309

same as that of f over the same interval (Riley et al., 2002, pp. 73-74). If we treat community310

composition as a simplex-valued function of depth, then the analogous mean of this function over311

the full range of depths gives the composition representing the relative abundance of each part over312

a vertical slice from top to bottom of the dock wall. Let [S,D] be the depth range, from shallow313

to deep. Using the rules for integration of simplex-valued functions (Egozcue et al., 2011, section314

12.3.2), the required mean value is315

1

D−S
⊙

[

(z⊙γ0)⊕

(

z2

2
⊙γ1

)

⊕

(

z3

3
⊙γ2

)]D

S

.316

We evaluated the posterior distribution of this mean value.317
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3 Results318

3.1 Trends in composition with depth319

Images at different depths often showed large differences in relative abundances (Figure 1). For320

example, Figure 1a, at 0.19 m, was dominated by green algae. Figure 1b, at 1.33 m, was dominated321

by bare wall, Halichondria spp. and Ciona intestinalis, and also had some Diadumene cincta and322

Bugula spp. Figure 1c, at 3.02 m, still had fairly high relative abundance of Halichondria spp. and323

Ciona intestinalis, and also a moderate relative abundance of Mytilus edulis. However, large areas324

of the lower part of this image were covered by grey detritus and were therefore assigned to bare325

wall.326

Over all the images, there were obvious changes in the relative abundance of bare wall, Bugula,327

solitary ascidians, algae and sponges with depth (Figure 2a-e, circles), while the relative abun-328

dances for the rare taxa Diadumene cincta, Mytilus edulis, Aurelia aurita and colonial ascidians329

had apparently weaker trends (Figure 2f-i, circles). The fitted model (Figure 2, lines) closely330

tracked the pattern in the observations, indicating that a quadratic model is a plausible descrip-331

tion of changes in relative abundance over the depth gradient. The relative abundance of bare332

wall increased from about 0.1 to 0.4 between 0 m and 1 m, remained fairly constant until 2 m, and333

increased again to about 0.9 in the deepest samples (Figure 2a). This is a more complicated pat-334

tern than could be produced by a quadratic function in an unrestricted space. The cover of algae335

dropped dramatically from around 0.8 at the surface to almost nothing just after 1 m (Figure 2c).336

The remaining three taxa with moderately high relative abundances at some depths (Bugula, soli-337

tary ascidians and sponges: Figure 2b, c, e) showed similar patterns, being absent at the surface338

and rare in the deepest samples, with peaks at intermediate depths (around 1 m for sponges, 2 m339

for Bugula and solitary ascidians).340

For the rare taxa, centred logratio plots showed that although the predicted relative abundances341

were everywhere low, there were large proportional changes in predicted relative abundance (Fig-342

ure 2f to i, insets). All the rare taxa had lower predicted relative abundances near the surface, with343
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Diadumene cincta (Figure 2f) showing little change at mid depths, Mytilus edulis (Figure 2g) and344

colonial ascidians (Figure 2i) decreasing in abundance in the deepest samples, and Aurelia aurita345

(Figure 2h) increasing steadily with depth. The centred logratio trends are in accordance with346

the observations. For example, A. aurita was only observed occasionally. However, when it was347

observed, it was below 3 m and in dense aggregations of small polyps, especially on downward-348

facing parts of the dock wall. The fitted trend ensures that the probability of a non-zero count is349

very low except for images deeper than 3 m.350

3.2 Community dissimilarity351

Dissimilarity between expected composition, measured as the Aitchison norm of the composi-352

tional difference (Equation 3) was small for small differences in depth (Figure 3a, dark colours),353

and increased with increasing difference in depth. The uncertainty in dissimilarity behaved in a354

similar way (Figure 3b). There was no counter-diagonal pattern of similar communities at widely-355

separated depths. This implies that the squared depth coefficient γ2 is not a powering of the depth356

coefficient γ1. Figure 4 confirms this. For the subcomposition consisting of bare wall, algae and357

sponges, the set of powerings of γ1 can be represented as a compositional straight line in the sim-358

plex (Figure 4, lines). The point in the simplex representing γ2 does not lie on this line. Thus γ2 is359

not a powering of γ1, and dissimilarity cannot be zero for communities with a non-zero difference360

in depth. Although expected relative abundance may be the same at widely-separated depths for361

individual taxa (e.g. sponges, Figure 2e), this pattern does not coincide across taxa.362

3.3 Rate of change of community composition with depth363

The posterior mean rate of change of community composition with respect to depth was highest364

at the surface, decreased with increasing depth until just below 2 m, and increased again until the365

bottom was reached (Figure 5, white line). Although the 95% credible band for the rate of change366

(Figure 5, grey band) was wide, the majority of the rates of change for individual Monte Carlo367

iterations (Figure 5, black lines) had the same shape, with a minimum in the middle (between368
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depths 1 m and 3 m). The overall pattern of rate of change makes intuitive sense, given that on369

the centred logratio scale, all taxa had substantial changes in posterior mean predicted relative370

abundance near the surface, all but algae (Figure 2d, inset) and Aurelia aurita (Figure 2h, inset) had371

flatter relationships at mid depths, and all but Diadumene cincta (Figure 2f, inset) had substantial372

changes near the bottom.373

3.4 Mean composition of organisms over the entire depth374

Over the entire depth range, bare wall had the highest relative abundance of around 0.5 (Figure 6).375

This means that over half the area of the dock walls was not covered by any macroscopic organism.376

The macroscopic taxa with the highest relative abundances were sponges and solitary ascidians,377

with relative abundance around 0.2, followed by Bugula, with relative abundance around 0.05.378

These taxa, especially Bugula, did not have very high relative abundance at any depth (Figure379

2b-c, e), but had moderately high relative abundance at all depths, resulting in fairly high mean380

relative abundances. All other taxa had low mean relative abundances, including algae, which was381

very abundant at the surface but decreased quickly with depth (Figure 2d).382

4 Discussion383

We showed that the vector space structure of the simplex leads naturally to tangible, functional and384

intuitive summaries of the changes in community compositions with depth in a subtidal marine385

system. A quadratic model was a plausible description of these changes. This is important because386

needing a complicated model to describe real data is often a sign of some fundamental misspec-387

ification. Although a regression analysis cannot reveal the causes of the pattern we observed, it388

can hint at possible explanations. For example, integrating the composition over depth showed389

that bare wall had much higher relative abundance than any taxon, suggesting that the classical390

picture of intense competition for space determining the structure of subtidal marine communities391

may need revision (Ferguson et al., 2013; Svensson and Marshall, 2015). A major strength of the392
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compositional data approach is the logical connection between statistical modelling and ecology.393

For example, we showed that the community was changing fastest at the surface and near the bot-394

tom, and that we would not find the same community composition at different depths. These results395

were based on a measure of dissimilarity that has both a strong statistical justification, based on the396

requirement for perturbation invariance (Aitchison, 1992) and a natural biological interpretation as397

the amount of among-taxon variability in proportional population growth rates needed to transform398

one community into another. We therefore believe that compositional data analysis deserves to be399

more widely used by ecologists.400

An observational study alone cannot determine the causes of the patterns in relative abundance401

with depth in our data. However, although space is thought to be a limiting resource in many402

hard-substrate subtidal communities (Witman and Dayton, 2001, p. 356), it seems unlikely that403

space is limiting at our study site, because of the high relative abundance of bare wall (Figure 6).404

Our surveys were done in winter, but relative abundance of bare wall remained high in summer405

(Edney, 2017), so it is unlikely that space is even seasonally limiting. Also, competition for space406

alone cannot explain the change in community composition with depth. Three other factors that407

may contribute to the depth effect are recruitment, food and oxygen availability.408

Recruitment may regulate population dynamics of sessile marine organisms (Caley et al.,409

1996). For example, in a simple model for the dynamics of open populations of the bryozoan410

Cellepora pumicosa, equilibrium population size was proportional to recruitment rate (Hughes,411

1990). At our site, settlement panels at 3 m typically had fewer than half as many new organisms412

as those at 1 m after five weeks in summer (Edney, 2017). Thus, changes in recruitment with depth413

are likely to contribute to the depth effect on community composition.414

Competition for food may also be important. Increasing phytoplankton supply increased species415

richness and reduced free space on settlement panels (Svensson and Marshall, 2015). Field mea-416

surements showed reduced phytoplankton density close to the walls of a dock adjacent to our site417

(Fielding, 1997, p. 118). Thus, phytoplankton abundance may be limiting. However, it is not418

clear whether light levels will decrease with depth rapidly enough to generate a strong depth effect419
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on phytoplankton production, and thus for phytoplankton limitation to generate a depth effect on420

community composition. For example, chlorophyll a concentrations in the Liverpool docks were421

little different between surface and bottom water (Fielding, 1997, p. 106).422

Oxygen depletion may occur in the low-flow, topographically complex environment typical of423

fouling communities (Ferguson et al., 2013). Summer oxygen levels in the Liverpool docks may424

be much lower near the bottom than the surface (Fielding, 1997, pp. 74-75). Thus exploitative425

competition for oxygen may become more intense as depth increases, potentially contributing to426

the depth effect on community composition, at least in summer.427

The compositional regression approach taken here is closely related to multinomial logistic428

regression, but offers some advantages in flexibility and interpretability. Multinomial logistic re-429

gression is another approach to the analysis of count data derived from an underlying continuous430

model for relative abundances on a gradient (e.g. Qian et al., 2012). In multinomial logistic regres-431

sion, the linear predictor is expressed in terms of logs of ratios of relative abundances, exactly as in432

a compositional linear model. In its basic form, multinomial logistic regression does not allow for433

overdispersion, which in a compositional linear model such as Equation 2 is captured by the ran-434

dom errors εi (Xia et al., 2013). Overdispersion is important for describing patterns in organisms435

that tend to occur in aggregations, such as the cnidarian A. aurita in our data.436

More importantly, treating the simplex as a vector space with perturbation and powering oper-437

ations makes it easy to do algebra and analysis on compositions. This can simplify interpretation438

compared to the multinomial regression approach, where coefficients are expressed on the log-odds439

scale (Billheimer et al., 2001). For example, we were able to determine why, in algebraic terms,440

we did not see communities with high similarity at widely separated depths, even though such441

an outcome is possible under a quadratic model. Such outcomes are related to the “double-zero442

problem” in the design of measures of ecological dissimilarity (Legendre and Legendre, 2012, p.443

271). A given taxon may have low expected relative abundance at both ends of a gradient because444

of unsuitable conditions. In our data, this pattern occurred for taxa including solitary ascidians and445

sponges (Figure 2c and e). With finite sampling effort, this may lead to zeros at both ends of the446
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gradient. However, unless the quadratic coefficient is an exact powering of the linear coefficient,447

the predicted dissimilarity will not be exactly zero. We therefore do not think that similarity re-448

sulting from similar relative abundance patterns is ecologically misleading, even if it does not arise449

from similar environments.450

The algebra of perturbation and powering is central to visualization and interpretation of ex-451

periments and observational studies on compositional response variables. For example, Billheimer452

et al. (2001) expressed the effects of vegetation removal and addition of specialist predators on453

arthropod community composition, relative to a control treatment, using a perturbation. Similarly,454

Billheimer et al. (1997) used a perturbation to visualize the effect of salinity on relative abundances455

of stress-tolerant taxa, intolerant taxa and palp worms in a benthic habitat. In a regression study,456

Xia et al. (2013) visualized the estimated effects of changes in nine different nutrients on the rel-457

ative abundances of three bacterial genera in the human gut microbiome as compositional straight458

lines, using the perturbation and powering operators. In all these cases, the necessary algebra is459

very straightforward if the simplex is treated as a vector space. Less obviously, knowing that a460

statistic has the perturbation invariance property (Aitchison, 1992) guarantees that differences in461

detection probabilities among taxa will not affect the results. For example, because we used the462

perturbation-invariant Aitchison distance as a measure of dissimilarity, our estimates of rate of463

change will not be biased by large, conspicuous organisms such as the solitary ascidians Ciona464

intestinalis and Styela clava being easier to detect than small, inconspicuous organisms such as the465

cnidarian A. aurita. In contrast, widely-used dissimilarity measures such as the Bray-Curtis index,466

which is not perturbation invariant, would lead to artefacts.467

5 Conclusions468

In conclusion, we believe that ecologists working with relative abundance data would benefit from469

making more use of compositional data analysis. There has been substantial progress in compo-470

sitional data analysis since the 1980s, but as yet, it has had little influence on ecology. In areas471
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such as the analysis of environmental gradients, compositional data analysis provides a simple,472

coherent approach that is in keeping with the current preference for model-based analyses. With473

only a small shift in perspective, techniques such as differentiation and integration can be used to474

answer ecological questions in ways that have meaning for relative abundances.475
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Table 1: List of species identified from stills and samples.
Aurelia aurita

Botryllus schlosseri

Botrylloides leachii

Botrylloides violaceus

Bugula spp.

Ciona intestinalis

Diadumene cincta (some individuals may be Metridium senile (Neal, 2007))

Green algae

Halichondria spp.

Mytilus edulis

Other sponges

Red algae

Stomphia coccinea

Styela clava

Unidentified barnacle
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Figure 1: Still images from (a) 0.19 m, (b) 1.33 m and (c) 3.02 m, with 100 point counts each.

Bright green dots correspond to green algae, pink dots to bare wall, violet to Ciona intestinalis,

yellow to Halichondria spp., purple to Bugula spp., orange to Diadumene cincta, green to Mytilus

edulis, blue to other sponges and off-white to Botrylloides violaceus.
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Figure 2: Estimated relationships between relative abundance and depth for bare wall and eight

taxa. Circles are sample estimates of relative abundance from point counts. Grey bands are 95%

credible bands, and black lines are posterior means. Insets: posterior means and 95% credible

bands on a centred logratio scale, in which the value on the y-axis is the log of the ratio of the

corresponding component to the geometric mean of all components (note the difference in y-axis

scales among insets).
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Figure 3: Dissimilarity matrices based on Aitchison distance between expected composition at

different depths. Posterior mean (a) and width of 95% highest posterior density intervals (b).
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Bare wall Algae

Sponges

Figure 4: The set of powerings of the depth coefficient γ1 (lines, sample of 1000 Monte Carlo

iterations), and the squared depth coefficient γ2 (dots: sample of 1000 Monte Carlo iterations), for

the subcomposition consisting of bare wall, sponges and algae.
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Figure 5: Relationship between rate of change of community composition with respect to depth

(the norm of the derivative with respect to depth) and depth. White line: posterior mean. Grey

band: 95% credible band. Black lines: norms of derivatives for a subsample of 2000 Monte Carlo

iterations.
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Figure 6: Mean relative abundance of the eight taxa and bare wall, obtained by integration over the

entire depth range. Dots: posterior means. Black lines: 95% HPD intervals.
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