
Automatic identification of species with neural networks

A new automatic identification system using photographic images has been designed to 

recognize fish, plant, and butterfly species from Europe and South America. The automatic 

classification system integrates multiple image processing tools to extract the geometry, 

morphology, and texture of the images. Artificial neural networks (ANNs) were used as the 

pattern recognition method. We tested a data set that included 740 species and 11,198 

individuals. Our results show that the system performed with high accuracy, reaching 91.65% 

of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results 

highlight how the neural networks are complementary to species identification, which is 

useful in today´s taxonomic crisis.
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ABSTRACT

A new automatic identification system using photographic images has been designed to 

recognize fish, plant, and butterfly species from Europe and South America. The automatic 

classification system integrates multiple image processing tools to extract the geometry, 

morphology, and texture of the images. Artificial neural networks (ANNs) were used as the 

pattern recognition method. We tested a data set that included 740 species and 11,198 

individuals. Our results show that the system performed with high accuracy, reaching 91.65% of 

true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results 

highlight how the neural networks are complementary to species identification, which is useful in 

today´s taxonomic crisis.
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Currently, species identification is a taxonomic challenge and an integral process of all biological 

research, which generates important information for biodiversity conservation.  Difficulty 

identifying species and ambiguity in the species concept, are seriously affecting our ability to  

estimate levels of biodiversity (Gaston & O'Neill, 2004). The Global Taxonomy Initiative 

highlights the knowledge gaps in our taxonomic system due to the shortage of trained 

taxonomists and curators; these deficiencies reduce our ability to understand, use, and conserve 

biological diversity. High levels of global biodiversity and a limited number of taxonomists 

represents significant challenges to the future of biological study and conservation.  The main 

problem is that almost all taxonomic information exists in languages and formats not easily 

understood or shared without a high level of specialized knowledge and vocabularies.  Thus, 

taxonomic knowledge is localized within limited geographical areas and among a limited number 

of taxonomists.  This lack of accessibility of taxonomic knowledge to the general public has been 

termed the “taxonomic crisis” (Dayrat, 2005).  

Recently, taxonomists have been searching for more efficient methods to meet species 

identification requirements, such as developing digital image processing and pattern recognition 

techniques.  These methods automatically identify species based on extracting unique image 

shape information that distinguishes them by taxonomic groups.  Researchers currently have 

recognition techniques for  insects, plants, spiders, and plankton (Gaston & O'Neill, 2004). This 

approach can be extended even further to field-based identification of organisms such as fish 

(Strachan, Nesvadba & Allen, 1990; Storbeck & Daan, 2001; White, Svellingen & Strachan, 

2006; Zion, Alchanatis, Ostrovsky, Barki & Karplus, 2007; Hu, Li, Duan, Han, Chen & Si, 

2012), insects (Mayo & Watson, 2007; O'Neill, 2007 ; Kang, Song & Lee, 2012), zooplankton 

(Grosjean, Picheral, Warembourg & Gorsky, 2004) and plants (Novotny & Suk, 2013). These 
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methods are helpful in alleviating the “taxonomy crisis”. In this research, we present a new 

methodology for the identification of different taxonomic groups to the species level for fish, 

plants, and butterflies.  

We designed a simple and effective algorithm (preprocess solution) and defined a range of new 

features that use pattern recognition with artificial neural network designs (ANN).  Our 

experiments are outlined, discussed, and important conclusions on automatic species image 

identification are summarized.

MATERIALS AND METHODS

Images

Image data in this study was taking from two sources: natural history museum records, and 

online databases.  Analyses from each collection were done with respect to country.  Ichthyology 

collections from Colombia were compiled from the Instituto de Investigaciones Marinas y 

Costeras (INVEMAR), the Colección de Referencia Biología Marina Universidad del Valle 

(CRBMUV), and the Coleccion Ictiologica Universidad de Antioquia (CIUA).  Ichthyology 

collections from Brazil were found in the Museu de Zoologia da USP (MZUSP), the Instituto 

Nacional de Pesquisas da Amazônia Manaus (INPA), and the Museu Nacional Rio de Janeiro 

(MNRJ).  Image data from Spain came from the Museo Nacional de Ciencias Naturales Madrid 

(MNCN). We tested a data set that included a total of 740 species and 11,198 individuals of fish, 

plants, and butterflies. Fish specimen images were taken using a Cannon EOS 6dD one-use 

camera with a 1280 x 960 pixel resolution. 697 total fish species, previously identified by 

experts, were photographed (see Fig. 1 for a subset of photographed species). Images of 32 plant 

species were downloaded from the Flavia database (http://flavia.sourceforge.net/) (see Fig.2).  
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Image data for 11 species of butterflies were downloaded from the MorphBank database 

(http://www.morphbank.net/) (see Fig. 3.).

System development

Based on pattern recognition theory  (Marqués de Sá, 2001) and basic computer-processing 

pathways used in typical automated species identification systems (Gaston & O'Neill, 2004), we 

designed a system for automatic individual identification at the species level (Fig. 4). In a novel 

way, our system shares preprocess and extraction components with both the training and 

recognition processes.  Features of training images are used to build a model of the classification 

progress pattern after feature extraction. These features and the trained model are then recorded 

in the database and incorporated in the analysis of subsequent photos. This process uses two 

types of data to model features of recognition files and results in better species identification 

results. The following sections provide implementation details for each step in Fig. 4.  Due to its 

size, a list of features could not be included in this manuscript, but is alternatively available upon 

request. 

Image preprocessing

Image heterogeneity in terms of orientation, size, brightness, and illumination was common (Fig. 

5.1). Image background was removed with Grabcut’s algorithm (Rother, Kolmogorov & Blake, 

2004) (Fig. 5.2) and  converted to grayscale (Fig. 5.3). Different filters were applied to improve 

the image by removing image noise; the filters used were smooth and median (Fig. 5.4 and 5.5), 

and the image was then reduced to one of two possible levels, 0 or 1 (Fig. 5.6).  Next, the 

processed image was brought to a contour (Fig. 5.7) and then a skeleton (Fig. 5.8). All of these 

processes were performed for each taxonomic group using the image processing in MATLAB 

R2009b. 
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Feature extraction

Feature extraction greatly influences species identification from image processing. Features 

should represent taxonomic information and be easily acquired from data images.  A series of 

geometrical, morphological, and texture features, unique to species, are used in our automatic 

identification system; these features can be efficiently extracted with image processing. Fifteen 

intuitive features were used in the system and are described below: 

Geometrical

Geometric features contain information about form, position, size, and orientation of the region. 

The following are some geometric features that are commonly used in pattern recognition.

1- Area is the total number of pixels of the study area, and is defined as:

I (x, y) depends on the limits of the shape (see figure 5.7).

2- Perimeter. The number of pixels that belong to the edge of the region (see figure 5.8). In other 

words, it is the curve that encloses a region S, defined as: 

3- Diameter. Value representing the diameter of a circle with the same area as the region.

4- Compatibility. The efficiency of the contour or perimeter P(s) that encloses an area A(s)
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5- Compactness. The efficiency with which area A(s) encloses an object is determined by P(s)

6- Solidity. The scalar specifying the proportion of the pixels in the convex hull that are also in 

the region. This property is supported only for 2-D input label matrices.

Solidity. The number of pixels, specified in terms of area/scalar.

Texture

Textures are important visual patterns for homogeneous description of regions. Intuitive 

measures provide properties such as smoothing, roughness, and regularity (Glasbey, 1996).  

Textures depend on the resolution of the image and can follow two approaches: statistical and 

frequency. We use the statistical approximation in which statistical values are analyzed first order 

(on the histogram) and second order (on the co-occurrence matrix).

Statistical first order is obtained from the gray level histogram of the image. Each value is 

divided by the total number of pixels (area) and has a new histogram representing the probability 

that a determined gray level is displayed in the region of interest.

Obtained properties:

7- Median

8-Variance
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Statistical second order is the matrix spatial dependence of gray levels or co-occurrence matrices. 

Given a vector of polar coordinates, δ=(r , θ ) ,  one can calculate the conditional probability 

that two properties appear separated by a given distance δ , Pδ using an angle θ  of -45 and 

a distance r equal to one pixel. The features that are extracted from this matrix are:

9- Uniformity

10- Entropy co-occurrence

11- Homogeneity

12- Inertia
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Morphological

The morphological features are those that concentrate on the organization of pixels. They 

perform a comprehensive description of the region of interest. They fall into two categories: two-

dimensional Cartesian moments and normalized central moments.

Two-dimensional Cartesian moments are variable at minor order, and initiate at zero at higher 

orders. The moment of order p and q of a function I (x, y) is defined as:

The parameters p and q denote the order of the moment. When p = 0 and q = 0, which determines 

the center of mass or gravity of the overall function in binary images, the center of mass or 

gravity of the region under study is:

The center of mass or gravity can define the central moments that are invariant to displacement 

or translation of the image’s region of interest defined as:

Where  is the area of a pixel.

Normalized central moments are invariant to scale which is defined as:

127

128

129

130

131

132

133

134

135

136

137

138

139

PeerJ reviewing PDF | (v2014:03:1639:2:1:NEW 21 May 2014) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



Where 

The above equations can be defined by seven moments that are invariant to rotation, translation, 

and scale changes, known as the Hu invariant set of moments (Hu, 1962). In this study, we used 

the first Hu moment defined as:

13-Hu1

Normalized central moments can be generated by related moment invariants "AMI" (Flusser & 

Suk, 1993), based on the theory of algebraic invariants and invariants under general affine 

transformation. We used two of the four invariants associated with discriminant character 

moments defined as:

14-Ami1 

15- Ami2
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These moments enable a high degree of insensitivity to noise that is not altered by rotation, 

translation, or staggering.

The use of the above 15 features (Table 1) has two advantages. First, the features can express the 

structure of the individual’s body, which is important for the identification at species level. 

Second, our features were elaborately chosen to avoid using feature optimization methods like 

adapted fuzzy reasoning (Lancieri & Boubchir, 2007). We designed and realized automatic 

extraction algorithms to compute the values of these features so that all variables and features 

could be calculated automatically.

Neural Network 

A neural network is defined as a parallel computer model composed of a large number of 

adaptive processing (neural) units which communicate via interconnections with variables. A 

multiple layer network has one or more layers (neurons)  that enable the learning of complex 

tasks by progressively extracting more meaningful features from the input image patterns (Wu, 

1997). Compared to other machine learning methods, neural networks learn slower but predict 

faster and have very good models presenting nonlinear data. The simple perceptron is assigned 

multiple inputs but generates a single output, similar to different linear combinations that depend 

on input weights and generate a linear activation function (Rosenblatt, 1958 ). Mathematically, 

the neural network can be described with the following equation:

Wi : weight vector, Xi : input vector, b : bias activation function.
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A multilayer perceptron consists of a set of source nodes containing one or more input layer and 

a set of hidden-node outputs. The input signal propagates through the network layer by layer 

(Zhang, Patuwo & Hu, 1998). Fig. 6 presents a diagram of the multilayer neural network.

The neural network structure is composed of N inputs N = [ N1 , N2 , ..., Nn], a hidden layer h and 

an output vector S = [ S 1 , S 2 , ..., S m ].  Each Si is assessed by a single step that transforms the 

vector S binary signal [0,1]. A supervised training phase, or sigmoid activation,  is based on the 

back propagation algorithm in which the weights and biases are updated in the direction of the 

negative gradient of the performance and then updated in the opposite direction( Werbos, 1974; 

Rumelhart, Hinton & Williams, 1986; Parker, 1987; Smith & Brier, 1996;). The sigmoid 

activation function for the hidden layer and output layer is determined by the following equation: 

In this study, the number of input neurons is determined by the number of descriptors that are 

available in each pattern, which in this case is N=15 (see variables section). The number of 

neurons in the hidden layer, h, has been experimentally determined from the error set data 

searching for the general training date of the ANN. The number of output neurons is determined 

by the number of species classified in each database.

RESULTS AND DISCUSSION 

All features were extracted from images and defined according to the above mentioned methods. 

We tested different species from various taxonomic groups, using the developed neural network 

systems. The results of the main tests with different test species are listed below.
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Experiments were divided into two groups: 1) images from the training group were used for 

building the classifications of the model; 2) images from the test group were used for the 

reorganization and testing of the developed model. 

To determine the optimal number of neurons given a data image, the relationship between the 

identification success rate and the number of neurons was explored. Fig. 7 shows this 

relationship for the different configurations considered. We display values for neuron number for 

each species in the database in Table 2. 

Table 3 shows the performance average of the artificial neural networks using image data and the 

15 analyzing features. The data set was randomly divided into 60-70-80-90% training images, 

resulting in 40-30-20-10% test images. The results with the highest average accuracy for species 

identification were networks using 80-90% training and 20-10% test images. For these tests, the 

declared success rate was related to the number of species. Recognition became more difficult 

with increased species number, as observed in the fish result collections from MZUSP, INPA, 

INVEMAR, CRBMUV, and MNCN which averaged below 90% recognition.

Similar to previous findings (Strachan et al., 1990; Storbeck & Daan, 2001; White et al., 2006; 

Zion et al., 2007; Novotny & Suk, 2013), the neural network used classified species from image 

data.  However, most other studies only employ databases with low levels of species richness 

usually spanning many different orders and families and are easily classified due to distinct 

differences in morphological characteristics. Our neural network builds on the work of these 

networks, and requires low operator expertise, costs, and response time, but also offers high 

reproducibility, species identification accuracy, and usability. The ANN algorithm is optimized 

for testing datasets with high levels of species richness, in this case 740 species (11,198 

individuals) of fishes, plants and butterflies.
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The predictive ability of the ANNs was affected by the high phenotypic similarity between 

species in the analysis, for example small fish species such as those from the family Characidos 

(Annex 1, Fig. 8). The magnitude of this error comes from low phenotypic differences of some 

species that vary only in minor details, like teeth or fin radii, which hinders classification.  

However, the error obtained on the neural network model has been low in other taxonomic 

families (Table 3).  Overall performance of the system achieved high accuracy and precision, 

with 91.65% true positive fish identifications, 92.87% plant identifications, and 93.25% butterfly 

identifications. The evaluation of results appears simple at first glance: the comparison of success 

rates appears sufficient, however upon closer examination, the success rates in tests on closed 

data sets strongly depend on the number of species and the ratio of test to training image 

samples. The data sets with a lower species number have higher success rates, possibly explained 

by species with very distinct morphological characteristics.

The strength of this research is in its applicability to combat the “taxonomic crisis”. In the past 

three decades, many promising techniques for fish identification have emerged. Many of them 

are based on genetics, interactive computer software, image recognition, hydro-acoustics, and 

morphometrics (Fischer, 2013). In our study, neural networks were tested as a possible method 

for species identification. However, taking advantage of the fast performance of the ANNs and 

the speed of modern PCs, further research should explore the applications of the ANN 

methodology to automate biomass estimation and real-time species classifications.  This could 

produce useful tools for both scientific and commercial use.  Fischer (2013) concludes that the 

image recognition methods are useful but their transferability and resolution are poor because 

species differ between geographic regions.  This is a clear obstacle to future ANN development 

and network identification success. Our advances in this field in relation to species identification 

should be developed for specific geographic regions and translated into user-friendly 
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applications.  We support the development of species identification methods that are globally 

interchangeable but also tailored to regional biodiversity composition. 
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Features extracted

PeerJ reviewing PDF | (v2014:03:1639:2:1:NEW 21 May 2014) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



Table 1. Features extracted

Type Variable Description
Geometrical A Area

P Perimeter
D Diameter
C Compatibility
Co Compactness
S Solidity

Texture Median

Variance
Uniformity
Entropy co-occurrence
Homogeneity
Inertia

Morphologica
l

Hu1
 Ami1-Ami2

u
2δ

θ,rE

θ,rH
θ,rHG

θ,rI
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Table 2(on next page)

table 2

FC (Fish collection); parameters used in neural network systems.
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Table 2. FC (Fish collection); parameters used in neural network systems.

Data set Learning 

rate

Number of 

generations

Number of 

Hidden 

layers

Number of 

input layers

Number of 

output layers (# 

species)

FC-MZUSP 0.2 95000 200 15 100

FC-INPA 0.15 100000 180 15 91

FC-MNRJ 0.25 78000 60 15 14

FC-INVEMAR 0.3 84000 250 15 189

FC-CIUA 0.12 90000 60 15 33

FC-CRBMUV 0.35 140000 300 15 172

FC-MNCN 0.2 110000 250 15 98

FLAVIA 0.1 50000 60 15 32

BUTTERFLIES 0. 5 50000 35 15 11
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Table 3

FC (Fish collection); results of ANN tests with species for 15 features
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Table 3. FC (Fish collection); results of ANN tests with species tests for 15 features

Average Percentage of images (Training / test)

Data set Species Images 60/40 70/30 80/20 90/10

FC-MZUSP 100 1718 76.67 81.34 83.34 88.31

FC-INPA 91 1640 76.29 78.94 84.44 89.93

FC-MNRJ 14 422 82.62 87.18 90.56 91.65

FC-INVEMAR 189 1703 76.72 84.03 86.45 88.08

FC-CIUA 33 472 83.08 86.99 90.19 91.77

FC-CRBMUV 172 2392 77.36 85.21 87.29 88.85

FC-MNCN 98 959 72.34 86.21 88.15 89.11

FLAVIA 32 1800 68.79 88.48 91.61 92.87

BUTTERFLIES 11 92 73.62 80.43 88.83 93.25
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Figure 1

Figure 1

Samples of some species data set : 1)Curimata mivartii 2)Leporinus striatus3)Ctecolucius 

hujeta4)Cinopotamus magdalenae5)Astyanax magdalenae6)Roeboides 

occidentalis7)Genycharax tarpon8)Cyphocharax magdalenae9)Hemibrycon decurrens 

10)Brycon medemi11)Lebiasina multimaculata12)Hemibrycon dentatus13)Triporheus 

magdalenae14)Characidium phoxocephalum15)Leporinus muyscorum16)Hemibrycon 

boquiae17)Brycon hennir18Characidium caucanum19)Roeboides dayi20)Astyanax 

fasciatus21)Argopleura magdalenensis22)Apteronotus eschemeyeri23)Eigenmannia 

virescens.
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Figure 2

Figure 2

Samples of our data set: 1)Phyllostachys edulis2)Aesculus chinensis3)Berberis 

anhweiensis4)Cercis chinensis5)Indigofera tinctoria6)Acer Dalmatum7)Phoebe 

zhennan8)Kalopanax septemlobus9)Cinnamomum japonicum10)Koelreuteria 

paniculata11)Ilex macrocarpa12)Pittosporum tobira13)Chimonanthus 

praecox14)Cinnamomum camphora15)Viburnum awabuki16)Osmanthus fragrans17)Cedrus 

deodara18)Ginkgo biloba19)Lagerstroemia indica20)Nerium oleander21)Podocarpus 

macrophyllus22)Prunus yedoensis23)Ligustrum lucidum24)Tonna sinensis25)Prunus 

persica26)Manglietia fordiana27)Acer buergerianum28)Mahonia bealei29)Magnolia 

grandi orafl 30)Populus Canadensis31)Liriodendron chinense32)Citrus reticulate.
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Figure 3

Figure 3

Samples of our data set: 1) Agraulis vanillae 2) Anthocharis midea 3) Ascia monuste 4) 

Danaus gilippus 5) Danaus plexippus 6) Dryas iulia 7) Enodia portlandia 8) Glutophrissa 

Drusilla 9) Heliconius charithonia 10) Pieres rapae 11) Pontia protodice.
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Figure 4

Figure 4

System architecture
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Figure 5

Figure 5

Image processing 1) jpg image, 2) Image background is removed, 3) grayscale image, 4) 

smoothing filter, 5) median filter, 6) binarized image, 7) contour image 8) skeletonized image.
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Figure 6

Figure 6

General architecture of a multilayer perceptron.
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Figure 7

Figure 7

Relationship between the success rate and the number of neurons for each neural network.
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Figure 8

Figure 8

An example of species confusion in the genus Astyanax 1)Astyanax magdalenae, 

2)Astyanax caucanus, 3)Astyanax fasciatus, and4) Astyanax microlepis.
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