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ABSTRACT
Objective. The benefits of IL-35 treatment have been verified inmultiple animalmodels
of diseases, while its influence on T cells immunity under normal condition still needs
to be elucidated. The present study was designed to investigate the effects modulating
IL-35 levels in vivo and in vitro on T cells, response and also the effects on T cells subsets
in normal mice.
Methods. A plasmid pMSCV-IL-35-GFP carrying mouse linear IL-35 fragment with
two subunits joint together was constructed and the heterodimer expression was
confirmed. Normal mice were randomly divided into three groups and received
an intravenous injection of PBS, pMSCV-GFP and pMSCV-IL-35-GFP respectively.
After 72 h, spleen tissues and peripheral blood were harvested for following analysis.
Meanwhile, splenic T cells were isolated and incubated with 10, 30, or 50 ng/mL
recombinant IL-35 factor for 24 h with the addition of anti-CD3/CD28 in vitro. T-
cell subsets were assessed by Fluorescence activated cell sorting (FACS) and related
cytokines together with effector molecules were determined by real time PCR.
Results. Western blotting confirmed a 52 kDa band in the cell lysate of HEK 293T
transducted with pMSCV-IL-35-GFP plasmid, indicating a successful expression of IL-
35. Ebi3 and IL-12A, two subunits of IL-35, could be identified 72 h post DNA injection.
IL-35 upregulation in vivo effectively inhibit CD4+ and CD8+ T cell proliferation and
Th1 cytokine secretion. Effector molecules of CD8+ T cells were also remarkably
suppressed. On the contrary, high level of IL-35 significantly induced CD4+ CD25+

Tregs and Th2 enhancement. The in vitro study provided similar results.
Conclusion. The results indicated Th1 and CD8+ T cell inhibition and Th2 and Tregs
bias in the presence of IL-35 under a normal state which partly contributed to its
therapeutic potential.

Subjects Immunology, Translational Medicine
Keywords T-cell subsets, Interleukin 35, Helper T cells, Cytokines, Regulatory T cells

INTRODUCTION
Interleukin 35 (IL-35), a heterodimer composed of Epstein-Barr-virus-induced gene 3
(Ebi3) and interleukin-12 alpha (IL-12A), secreted by natural regulatory T cells (Tregs),
is a novel cytokine of the IL-12 family (Collison et al., 2007; Sawant, Hamilton & Vignali,
2015). Unlike the pro-inflammatory properties of other IL-12 family members, IL-35
plays potent immunosuppressive roles partly by means of Tregs expansion, which is
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essential for the maintenance of immune tolerance (Collison et al., 2010). Recent studies
have demonstrated the efficacy of IL-35 in inflammatory bowel disease (Wang et al., 2018),
autoimmune encephalomyelitis (Choi et al., 2017; Guan et al., 2017), collagen-induced
arthritis (Li et al., 2016) and acute graft-versus-host disease (Zhang et al., 2015). Our team
also proved the therapeutic application of IL-35 in dextran sulfate sodium (DSS)-induced
colitis (Zhang et al., 2018). Thus, the anti-inflammatory ability makes IL-35 a promising
intervention agent in inflammation, infection and other immune-related disorders.

T cells especially CD4+ T helper (Th) cells and CD4+ CD25+ Tregs are critical for
immune-regulation in cellular immunity and immunity homeostasis (Xiao et al., 2012;
McQuillan, Lynch & Mills, 2010). Cytokine profiles released by these cells also take part in
and accelerate their action (Choi et al., 2015; Egwuagu et al., 2015). Th1 cells together with
secreted IL-2 and interferon-γ (IFN-γ ) have been well-known to mediate inflammation
and related diseases, which got significantly inhibited by IL-35 in animal disease models
(Ma et al., 2014; Guo et al., 2017). Th2 and Tregs, in favor of anti-inflammation partly
depending on the production of IL-10 and IL-35, respectively, received effective increase
post IL-35 administration (Guo et al., 2017; Zhao et al., 2017; Bettini & Vignali, 2009).
Another CD8+ T cells, whose function relies on cytotoxin release including Granzyme B
(Gzmb) and perforin 1 (Prf1) upon antigen stimulation, also received effective suppression
following IL-35 use (Wong & Pamer, 2003; Milstein et al., 2011). However, most of these
findings about the immune-regulation capacity of IL-35 were discovered based on disease
modeling animals, the in vivo effects on normal animals have not been well described. In
the present study, a plasmid carrying recombinantmouse IL-35 sequence was intravenously
injected into normal mice and the short-term effect of general overexpression of IL-35
heterodimer on immunological status, particularly the differentiation of T-cell subsets, was
evaluated. The results could facilitate illuminating the underlying therapeutic mechanisms
of IL-35.

MATERIALS AND METHODS
Reagents
RPMI 1640 and fetal bovine serum (FBS) were purchased from Biological Industries
(Cromwell, CT, USA). Phosphate buffered saline (PBS) and erythrocyte lysis buffer were
bought from Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China). FuGENE
transfection reagent was acquired from Promega Biosciences (Sunnyvale, CA, USA). IL-12
p35 antibody came from Abcam (UK). TRIzol was from Thermo Fisher Scientific Inc.
(Waltham, MA, USA). Phanta Super-Fidelity DNA Polymerase, HiScript II Q Select RT
SuperMix for qPCR (+gDNA wiper) and AceQ qPCR SYBR Green Master Mix were
purchased from Vazyme Biotech Co., Ltd. (Nanjing City, China). Anti-CD3 and CD28
for T cell stimulation were bought from Affinity Biosciences (Cincinnati, OH, USA).
Anti-mouse FITC-CD4, PE-CD8 and PE-CD25 for flow cytometry were acquired from
Thermo Fisher Scientific Inc. (USA). The plasmids pMSCV-GFP and pcDNA3.1-IL-35
were cryopreserved in our laboratory. Recombinant human IL-35 (rIL-35) was from
PeproTech (Rocky Hill, NJ, USA).
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Animals
Wide type male C57BL/6J mice (8- to 12-weeks old, Certificate SCK 2014-0013) were
purchased from the Academy ofMilitaryMedical Sciences (Beijing, China). Mice were kept
under specific pathogen free conditions according to institutional guidelines. Experimental
protocols and animal care methods were subjected to approval by Animal Care and Use
Committee of Tianjin Medical University (TMUaMEC 2017012).

Cell cultures and treatment in vitro
Lymphocytes were collected from the spleen tissues of wild type C57BL/6 mice. In brief,
naive T cells were cultured in RPMI 1640 without FBS, supplemented with 100 mg/mL
streptomycin, 100 U/mL penicillin and two mM L-glutamine in a 37 ◦C incubator with
5% CO2 post erythrocyte lysis buffer treatment. To investigate the effect of IL-35 on
T-cell subsets differentiation in vitro, recombinant human IL-35 (10, 30 or 50 ng/mL) was
added to the cell culture medium appended with anti-CD3 (3 µg/mL)/CD28 (2 µg/mL).
Untreated cells served as a control. After 48 h, cells were harvested for real time PCR
detection.

Construction of the plasmid carrying IL-35 gene
The mouse IL-35 sequence (1.4 kb) covering Ebi3 linked with Il12a was a kind gift from
Prof. Jiyu Ju (Weifang Medical University, Shandong). The full IL-35 coding gene was
amplified by PCR and subcloned into a vector (pMSCV-IRES-GFP) by EcoRI/XhoI double
digestion to construct IL-35 expression plasmid pMSCV-IL-35-GFP. The fragment was
confirmed by DNA sequencing. SDS-PAGE and western blot for IL-12 p35 detection
in HEK293T cells were used to confirm the recombinant IL-35 expression 48 h post
transfected with the plasmid.

Administration of pMSCV-IL-35-GFP
Mice were randomly divided into three groups with similar mean body weight: PBS
group, pMSCV group and pMSCV-IL-35 group (five mice per group). Briefly, mice
received an intravenous injection of 300 µL PBS containing 50 µg pMSCV-GFP, 50 µg
pMSCV-IL-35-GFP or nothing. After 72 h, the spleen tissues were harvested and the tissue
homogenates were lysed by erythrocyte lysis buffer to remove the red blood cells. The
splenic T-cell products served for real time PCR and flow cytometry assay.

Real time PCR
Total RNA of the spleen tissues and splenic T cells was extracted using Trizol reagent and
two µg RNA was reverse-transcribed using HiScript II Q Select RT SuperMix for qPCR
(Vazyme Biotech, China) according to the manufacturers’ instructions. To evaluate the
expression of involved genes, quantitative real time PCR detection was undertaken with
AceQ qPCR SYBR Green Master Mix. All the specific primers were synthesized from
Sangon Biotech Co., Ltd. (Shanghai, China), and the sequences of each primer were listed
in Table 1. Each sample was executed and analyzed in triplicate. GAPDH was used as the
endogenous control.
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Table 1 Primer sequences for real time PCR detection.

Genes Sense primers (5′→3′) Antisense primers (5′→3′) Product
length
(bp)

Ebi3 GTT CTC CAC GGT GCC CTA C CGG CTT GAT GAT TCG CTC 100
Il12a CCA CCC TTG CCC TCC TAA A GCC GTC TTC ACC ATG TCA TCT 121
Il2 CGG CAT GTT CTG GAT TTG AC TCA TCA TCG AAT TGG CAC TC 134
Ifng CTG ATC CTT TGG ACC CTC TG ACA GCC ATG AGG AAG AGC TG 121
Il10 GCC TTA TCG GAA ATG ATC CA TGA GGG TCT TCA GCT TCT CAC 115
Gzmb GAC CCA GCA AGT CAT CCC TA CCA GCC ACA TAG CAC ACA TC 186
Prf1 CGG TGT CGT GTG GAA CAA TA TCA TCA TCC CAG CCG TAG TC 126
Foxp3 CTG CCT TGG TAC ATT CGT GA CCA GAT GTT GTG GGT GAG TG 101

Notes.
Ifng, interferon γ ; Gzmb, granzyme b; Prf1, perforin; Foxp3, forkhead box P3.

Fluorescence activated cell sorting (FACS) analysis
FACS examination, proceeded as described previously (Sun et al., 2015; Chen et al., 2016),
was used to determine the subpopulations of CD4+, CD8+ T cells and CD4+CD25+ Treg
cells in cultured T cells and splenic T cells post IL-35 treatment. In simple terms, cell
suspensions under analysis were incubated with anti-mouse fluorescein isothiocyanate
(FITC)-CD4, -fluorescein phycoerythrin (PE)-CD8 and -CD25 antibodies respectively at
4 ◦C for 30 min. The stained-positive cells were assayed using flow cytometer (BD FACS
Calibur; San Jose, CA, USA). FlowJo 7.6.1 software was utilized for followed data analysis.

Statistical analysis
Data was presented as the mean ± standard error of the mean (Mean ± SEM). And
statistical analysis was proceeded using SPSS 17.0 software (SPSS Inc., Chicago, IL, USA).
One-way ANOVA was used in comparison among groups and a post-hoc contrasts
by Student–Newman–Keuls test was applied to confirm the significance. Two-tailed P
values < 0.05 were considered statistically significant.

RESULTS
The constructed plasmid gained successful gene expression of IL-35
As shown in Fig. 1A, a recombinant plasmid carrying IL-35 gene composted of Ebi3
and IL12a fragments was constructed. The expression of IL-35 was further confirmed by
HEK293T transient transfection assay. SDS-PAGE and western blot for IL-12 p35 were
conducted and the results both showed strong bands at about 52 KDa in DNA transfected
cell lysates (Fig. 1B), indicating the successful expression of IL-35.

IL-35 inhibited CD4+ T cells and promoted CD4+ CD25+ Tregs
generation in vitro
It has been reported that IL-35 could act on phenotype differentiation of CD4+ T cells
(Guan et al., 2017; Huang et al., 2017). In the present study, splenic T cells were isolated
and directly treated with 10, 30, or 50 ng/mL recombinant IL-35 factor for 24 h in the
presence of anti-CD3/CD28 ex vivo. The cells were then collected to assess the proportion
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Figure 1 Characterization of mouse IL-35 expression. (A) Construction schematic of pMSCV-IL-35-
GFP (7,949 bp) encoding the recombinant IL-35. (B) IL-35 expression (52 kDa) was confirmed by SDS-
PAGE and western blotting 48 h post transfection into HEK 293T cells.

Full-size DOI: 10.7717/peerj.5638/fig-1

of T-cell subsets by FACS. The results showed that CD4+ T cell population substantially
raised upon activation, which got effectively reduced post rIL-35 supplement (Fig. 2A).
Also, the CD4+CD25+ Tregs proportion decreased when exposed to anti-CD3/CD28, but
increased after recombinant IL-35 treatment (Fig. 2B). In addition, the rIL-35 affect showed
some dose-dependence, indicating that IL-35 could inhibit CD4+ T cells proliferation and
generate CD4+CD25+ Tregs.

IL-35 facilitated Th2 and Tregs function in vitro
Cytokines produced by Th and Treg cells also take part in and play important roles in
immune-regulation (Ma et al., 2014). The total RNA of cultured T cells mentioned above
were extracted and the cytokine expression involved Th1 (Il2), Th2 (Il10) and Tregs (Foxp3)
were examined by real time PCR. Data indicated that rIL-35 administration significantly
reduced Il2 level and sharply boosted Il10 and Foxp3 expression in a dose-dependent
manner (Fig. 3), which suggested that IL-35 treatment facilitated Th2 and Tregs function.

IL-35 overexpression inhibited CD4+ and CD8+ T cells but enhanced
CD4+CD25+ Tregs in vivo
To further investigate the effect of IL-35 on the T cells differentiation in vivo, wild type
C57BL/6J mice received an intravenous injection of the plasmid pMSCV-IL-35-GFP. After
72 h, peripheral blood was sampled to test the expression of Ebi3 and Il12a fragments
by real time PCR. Spleen tissues were used to estimate the proportion of T-cell subsets
by FACS. The results demonstrated both significant increases in Ebi3 and Il12a levels in
mice received pMSCV-IL-35-GFP injection, suggesting the expression of exogenous gene
sequence and upregulation of IL-35 (Fig. 4). The same as Fig. 2 described, FACS analysis
showed obviously lowered percentage of total CD4+ and CD8+ T cells (Figs. 5A–5D)
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Figure 2 The phenotype of total CD4+ T cells and CD4+ CD25+ Tregs detected by FACS. (A) CD4+ T cells proliferation got effective inhibi-
tion with rIL-35 addition. (B) IL-35 promoted the amplification of CD4+ CD25+ Tregs. Both the effect on proliferation of CD4+ T cells and CD4+

CD25+ Tregs appeared in some dose-dependent manner.
Full-size DOI: 10.7717/peerj.5638/fig-2

Figure 3 The expression of Il2, Il10, and Foxp3 in splenic T cells following rIL-35 addition for 24 h in
vitro. Remarkably lower Il2 level (A) but multiplied Il10 (B) and Foxp3 (C) could be observed with rIL-35
treatment, signifying restrained Th1 but promotion of Th2 and Tregs. ∗P < 0.05, ∗∗P < 0.01 , ∗∗∗P < 0.001
vs. control: anti-CD3/CD28 (+) rIL-35 (−).

Full-size DOI: 10.7717/peerj.5638/fig-3
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Figure 4 The transcriptional levels of Ebi3 and Il12a 72 h post plasmid pMSCV-IL-35-GFP injection.
Both Ebi3 and Il12a, the subunits of IL-35, got nearly doubled in mice exposed to IL-35-carrying plasmid,
indicating a successful expression of exogenous IL-35. ∗∗P < 0.01 , ∗∗∗P < 0.001 vs. PBS group, ###P <
0.001 vs. pMSCV group.

Full-size DOI: 10.7717/peerj.5638/fig-4

but considerably amplified CD4+CD25+ Tregs (Figs. 5E, 5F) compared to PBS group.
Consistent with previous reports, Treg cells proliferated in response to IL-35 upregulation
(Castellani et al., 2010).

Upregulation of IL-35 increased Th2 cytokine production in vivo
In this study, we also measured the mRNA levels of cytokines and genes related to Th1,
Th2, CD8+ and Tregs using real time PCR. The results showed that Th1 cytokines IL-2 and
IFN-γ (Figs. 6A, 6B) as well as Gzmb and Prf1 in CD8+ T cells (Figs. 6D, 6E) obviously
increased in mice received pMSCV plasmid. While, the generous expression of IL-35
effectively inhibited the aforementioned effector molecules. Besides, the splenic levels of
Il10 (Fig. 6C) and Foxp3 (Fig. 6F) of pMSCV-IL-35 group both got remarkably elevated.
Therefore, IL-35 could effectively suppress Th1 and CD8+ T cell function, but strengthen
Th2 and Tregs.
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Figure 5 The CD4+, CD8+ T cells and CD4+ CD25+ Tregs subsets. (A), (C) and (E) exhibited FACS
detection and (B), (D) and (F) showed the statistical data. IL-35 overexpression in vivo clearly inhibited
both CD4+ and CD8+ T proliferating but significantly enhanced CD4+ CD25+ Tregs. ∗P < 0.05, ∗∗P vs.
PBS< 0.01, ∗∗∗P < 0.001 vs. PBS group, #P < 0.05, ###P < 0.001 vs. pMSCV group.

Full-size DOI: 10.7717/peerj.5638/fig-5

DISCUSSION
In the present investigation, a plasmid loading IL-35 linear gene containing Ebi3 joint
with Il12a was intravenously injected into normal mice to determine the effect of IL-
35 heterodimer overexpression on T cell immunity and T cell differentiation under
normal condition. Ebi3 and IL-12A, two subunits of IL-35, could be identified 72 h
post DNA injection. IL-35 upregulation in vivo effectively inhibited CD4+ and CD8+ T
cells proliferation and Th1 cytokine secretion. On the contrary, elevated level of IL-35
significantly induced CD4+ CD25+ Tregs and Th2 enhancement. The in vitro study
provided similar results, suggesting the immunosuppressive action of IL-35 on T-cell
subsets evolution. All of the data indicated the Th1 and CD8+ T cells suppression but Th2
and Tregs bias in the presence of IL-35.

Zhang et al. (2018), PeerJ, DOI 10.7717/peerj.5638 8/14

https://peerj.com
https://doi.org/10.7717/peerj.5638/fig-5
http://dx.doi.org/10.7717/peerj.5638


Figure 6 The mRNA level of Il2, Ifng, Il10,Gzmb, Prf1, and Foxp3 in vivo. Th1 cytokines including (A)
Il2 and (B) Ifng together with (D) Gzmb and (E) Prf1 in CD8+ T cells all got remarkably inhibited, while
Il10 (C) produced by Th2 cells and Foxp3 (F) in CD4+ CD25+ Tregs received cleared upregulation. ∗P <
0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 vs. PBS group, ##P < 0.01, ###P < 0.001 vs. pMSCV group.

Full-size DOI: 10.7717/peerj.5638/fig-6

As we all know, T cells, roughly divided into CD4+ Th cells, CD8+ cytotoxic T cells
(CTLs) andTregs according to the functional distinction, play a central role in cell-mediated
immunity (Milstein et al., 2011; Overgaard et al., 2015). Cytokine profiles secreted by these
cells further augment their immunoregulatory capacity and act on other subsets (Biron &
Tarrio, 2015). In brief, IL-2 and IFN- γ produced by Th1 cells can enhance the cytotoxic
effect of CD8+ T cells, which can be well inhibited by IL-10 released from Th2 cells and/or
IL-35 synthesized by Tregs (Guo et al., 2017; Biron & Tarrio, 2015). The ability of Th1 and
Th2 cytokines has been clearly stated, and recent studies focused on the newly discovered
immunosuppressive factor IL-35.

IL-35, a member of the IL-12 family, is a heterodimeric cytokine composed of the Ebi3
and IL-12A assembled in innate Tregs (Collison et al., 2007; Niedbala et al., 2007). The
anti-inflammatory capacity of IL-35 has been investigated in several inflammatory disorder
models, such as infection diseases, organ transplantation rejection and autoimmunity
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diseases (Guan et al., 2017; Sun et al., 2015; Liu et al., 2015; Li et al., 2012). Evidence from
these animal models showed that IL-35 administration suppressed inflammation related T
cell differentiation. However, the existing results are mainly obtained from disease models,
it still remains to be determined whether IL-35 could affect the T subsets evolution without
antigen stimulation. The present study primarily aimed at expounding the impact of IL-35
on T cell differentiation and function in normal healthy mice.

Some works proposed that the Tregs and Th2 augment partly at least contributed to
the therapeutic potential of IL-35 (Zhao et al., 2017). To confirm this finding, activated
T cells were treated with recombinant IL-35 factor for 24 h ex vivo. The data indicated
that IL-35 remarkably suppressed CD4+ T cell proliferation (Fig. 2A) and IL-2 release
(Fig. 3A). Instead, CD4+CD25+ Tregs (Fig. 2B) and IL-10 secretion (Fig. 3B) by Th2 cells
got effective increase. Foxp3 also showed a distinct growth under treatment with 50ng/mL
IL-35 factor (Fig. 3C). The in vivo effect of IL-35 on T-cell subsets development was then
investigated after a plasmid carrying IL-35 fragment (Fig. 1) administration in normal
mice. The much higher expression of Ebi3 and IL-12p35 in mice received pMSCV-IL-35
plasmid could be observed three days later (Fig. 4). Similarly, both splenic CD4+ and
CD8+ T cells performed significantly restrained ( Figs. 5A–5D), but CD4+CD25+ Tregs
got well amplification (Figs. 5E, 5F). Related cytokine and effector molecule analysis further
confirmed lower IL-2 and IFN-γ level (Figs. 6A, 6B) together with largely reduced Gzmb
and Prf1 production (Figs. 6D, 6E) upon IL-35 expression. In contrast, both IL-10 (Fig. 6C)
and Foxp3 (Fig. 6F) increased significantly. Thus, IL-35 overexpression indeed affect T cell
differentiation and induced an obvious Th2 and Tregs bias.

The suppressive capacity of IL-35 has been tested in many disease models, still the
influence of general IL-35 administration on normal body needs to be clarified. Data listed
here based on normal healthy mice could partly help to understand how IL-35 work and
the potential therapeutic mechanisms in disease cases. And it is important to note that
the present study was conducted in normal animals and the outcome might have some
difference from those in pathologic condition. The cure mechanisms of IL-35 treatment in
various disease models still need further researches.

CONCLUSIONS
The present study explored the effect of recombinant heterodimer IL-35 on T-cell subset
developing in normal mice for the first time. The results indicated that IL-35 upregulation
could effectively induce Th2 and Tregs bias and inhibit Th1 and CD8+ T cell function
in healthy animals. Meanwhile, further studies concerning long-term effect and related
mechanisms are still required to elucidate in IL-35 application.
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