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ABSTRACT
Background. Variability in the ecological impacts of invasive species across their geo-
graphical rangesmay decrease the accuracy of risk assessments. Comparative functional
response analysis can be used to estimate invasive consumer-resource dynamics, explain
impact variability, and thus potentially inform impact predictions. The European
green crab (Carcinus maenas) has been introduced on multiple continents beyond its
native range, although its ecological impacts appear to vary among populations and
regions. Our aim was to test whether consumer-resource dynamics under standardized
conditions are similarly variable across the current geographic distribution of green
crab, and to identify correlated morphological features.
Methods. Crabswere collected frommultiple populationswithin both native (Northern
Ireland) and invasive regions (South Africa and Canada). Their functional responses to
localmussels (Mytilus spp.) were tested. Attack rates and handling times were compared
among green crab populations within each region, and among regions (Pacific Canada,
Atlantic Canada, South Africa, and Northern Ireland). The effect of predator and prey
morphology on prey consumption was investigated.
Results. Across regions, green crabs consumed prey according to a Type II (hyperbolic)
functional response curve. Attack rates (i.e., the rate at which a predator finds and
attacks prey), handling times andmaximum feeding rates differed among regions. There
was a trend toward higher attack rates in invasive than in native populations. Green
crabs from Canada had lower handling times and thus higher maximum feeding rates
than those from South Africa and Northern Ireland. Canadian and Northern Ireland
crabs had significantly larger claws than South African crabs. Claw size was a more
important predictor of the proportion of mussels killed than prey shell strength.
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Discussion. The differences in functional response between regions reflect observed
impacts of green crabs in the wild. This suggests that an understanding of consumer–
resource dynamics (e.g., the per capita measure of predation), derived from simple,
standardized experiments, might yield useful predictions of invader impacts across
geographical ranges.

Subjects Animal Behavior, Biogeography, Ecology, Marine Biology
Keywords Biological invasion, Carcinus maenas, Morphology, European green crab, Prediction,
Prey handling, Risk assessment

INTRODUCTION
The ever-increasing rate of introductions of species beyond their native ranges and the
potential negative impacts on native biodiversity of species that become invasive continue
to generate worldwide concern (Seebens et al., 2017). However, the effects of invaders
are notoriously difficult to predict, especially across geographical ranges (Simberloff et al.,
2013;Doherty et al., 2016). Many predatory invaders are responsible for large declines in the
abundance and richness of native species (e.g.,Wiles et al., 1995;Medina et al., 2011). These
impacts are often attributed to advantages of invasive predators in novel environments,
including the lack of prey resistance, release from natural enemies/pathogens, or
behavioural, morphological, and physiological pre-adaptations (Alpert, 2006; Sih et al.,
2010; Weis, 2010; Roy et al., 2011). However, not all introduced predators cause notable
declines in native populations (Gurevitch & Padilla, 2004; Zenni & Nuñez, 2013); some
have minimal detectable impacts on recipient ecosystems (Simberloff & Gibbons, 2004;
Hampton & Griffiths, 2007; Howard, Therriault & Côté, 2017). These variable outcomes
may arise because the impacts of an invasive predator are influenced by context-specific
biotic and abiotic conditions (Lipcius & Hines, 1986; Alcaraz, Bisazza & García-Berthou,
2008; Robinson, Smee & Trussell, 2011; Barrios-O’Neill et al., 2014; Paterson et al., 2015).
This variability can make it difficult to accurately predict the impacts of invasive species
(Dick et al., 2017), especially when the same invasive species occurs at multiple locations
(Melbourne et al., 2007; Kumschick et al., 2015).

Comparative functional response analysis (CFRA) has become a useful tool for
elucidating relative variability in consumer–resource interactions among invasive species
and under different contexts (Barrios-O’Neill et al., 2014; Alexander et al., 2015; Paterson et
al., 2015; Dick et al., 2017). The functional response is the relationship between consumer
(e.g., predator) consumption rate and resource (e.g., prey) density (Holling, 1959; Holling,
1965). This relationship provides information on the ability of a predator to find and
consume prey and, by extension, its potential ecological impacts (Dick et al., 2013; Dick
et al., 2014). Unlike predation studies, which seek to directly measure the impact of an
invasive species in a particular location or on a particular species, the CFRA approach uses
simplified experimental conditions to generate relative (not absolute) parameters that are
comparable across contexts. Functional responses can be linear (Type I), hyperbolic (Type
II), or sigmoidal (Type III) (Holling, 1965). The magnitude and type of functional response
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can determine predator–prey coexistence (Holling, 1959; Oaten & Murdoch, 1975; Hassell,
1978). Type II responses in particular may potentially destabilize prey populations and lead
to localized prey extinction (e.g., Lipcius & Hines, 1986; Rindone & Eggleston, 2011; Spencer,
Van Dyke & Thompson, 2016). Studies using CFRA have consistently demonstrated that
invasive species, ranging from plants (Funk & Vitousek, 2007) to invertebrates (Dick et
al., 2013) and vertebrates (Alexander et al., 2014), consume available resources at a higher
rate than analogous native species. While these results support the general concept that
successful invasive species do well, in part, because they are more efficient at using
resources, context-dependent biotic interactions or abiotic conditions can cause variation
in invasive species functional responses (Barrios-O’Neill et al., 2014; Barrios-O’Neill et al.,
2016; Paterson et al., 2015). It is thus unclear whether we should expect the functional
responses of an invasive species to be conserved across geographical ranges or whether
context differences between populations will result in variable functional responses.
Intraspecific geographic comparisons of functional responses should make it possible
to estimate the relative importance of local behavioural and morphological adaptations
in determining invader responses to resource availability and their potential ecological
impacts.

The European green crab (Carcinus maenas) is a well-known invasive species that
occurs in intertidal and shallow subtidal habitats around the world (Behrens Yamada,
2001) (Fig. 1). Green crabs are viewed as highly effective generalist predators (Gillespie et
al., 2007), with detrimental effects for native biodiversity in some regions (Welch, 1968;
Walton et al., 2002;Matheson et al., 2016). However, there is large variation in the reported
impacts among green crab populations, which does not simply relate to time since invasion.
For example, on the east coast of North America, where green crab have been established
since the 1800s (Say, 1817), significant declines in commercially important shellfish
stocks have been attributed to green crab predation (Glude, 1955; Welch, 1968). There are
also notable ecological impacts on shellfish species on the west coast of North America,
where green crab have been established since the 1990s (Grosholz et al., 2000; Grosholz et
al., 2011). In contrast, there are limited observed impacts by green crab populations in
both Australia (introduced 1880s) and South Africa (introduced 1980s) (Fulton & Grant,
1902; Le Roux, Branch & Joska, 1990; Carlton & Cohen, 2003; Hampton & Griffiths, 2007);
Mabin et al., 2017).

In this study, we investigate variability in consumer-resource dynamics of green crabs
from regions within both their invasive and native ranges using CFRA. If green crab
functional responses are variable among regions, we expect these differences to reflect local
ecological impacts, as demonstrated in interspecific CFRA studies (e.g., Dick et al., 2013;
Alexander et al., 2014; Paterson et al., 2015). Thus, crabs from populations within regions
should have similar functional responses, but crabs from North American regions (in this
study, Atlantic and Pacific Canada) might be expected to have higher functional responses
than those from regions within the native range (in this study, Northern Ireland) and parts
of the invaded range where their impacts appear limited (in this study, South Africa). We
also investigated morphological differences among both crab and prey populations that
might potentially cause inter-regional differences in functional responses.
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Figure 1 Global distribution of European green crab (Carcinus maenas) and sampling locations for
green crab populations used in this study. Native (black) and invaded (dark grey) ranges of European
green crab (Carcinus maenas). Locations where green crabs occur in isolated populations are indicated
by black dots. Open circles indicate locations where green crabs have been collected but established
populations are not yet known to exist (see Carlton & Cohen, 2003 for additional details). Insets show the
sampling locations (black dots) for populations of green crabs used in this study: BC (British Columbia,
Canada), NS (Nova Scotia, Canada), SA (South Africa), and NI (Northern Ireland, UK). White diamonds
indicate locations of major cities near sampling locations.

Full-size DOI: 10.7717/peerj.5634/fig-1

MATERIALS AND METHODS
Site selection and animal collection
Green crabs were collected from nine populations from four regions where green crab have
been introduced: British Columbia, Pacific Canada (BC, n= 2 populations), Nova Scotia,
Atlantic Canada (NS, n= 2), and South Africa (SA, n= 2), and from the region where they
are native: Northern Ireland, UK (NI, n= 3) (Fig. 1). Aminimum of 18 crabs were collected
from each site between July and September 2014 (Table S1). All crabs collected were males,
with carapace widths between 55.0 and 65.0 mm, intact claws, and a firm shell (as springy
or soft shells indicate recent moulting). Although the invasive congener C. aestuarii was
previously recorded as co-occurring in very low densities alongside C. maenas in South
Africa in the mid 1990s, they were no longer present a decade later (Robinson et al., 2005;
Robinson et al., 2016). As such, all South African crabs were correctly identified as European
green crab. Intertidal mussels of the genus Mytilus (BC: M. trossulus; NS: M. edulis; NI:
M. edulis; SA: M. galloprovincialis) were used as prey because they are widely available in
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all four regions (Gosling, 1992), are readily consumed by green crabs (Elner, 1981; Morton
& Harper, 2008; Behrens Yamada, Davidson & Fisher, 2010), and are ecologically similar to
one another (Seed & Suchanek, 1992). Mussels of 25 mm (±3 mm) length were collected by
hand from a single site in each region, which standardized prey across populations within
region. A similar standardization (i.e., using the same prey species) was not possible across
regions, owing to ethical concerns about non-native species introductions.

Animals were housed in local research laboratories (BC: Bamfield Marine Sciences
Centre; NS: Bedford Institute of Oceanography; NI: Queen’s University Belfast; SA:
Stellenbosch University). All crabs were housed in indoor tanks, with artificial lighting on
day/night cycles similar to local summer conditions. In BC andNS, tanks were suppliedwith
flow-through seawater from adjacent inlets. Tanks in SA and NI used artificial seawater
systems. Across all trials, water temperatures varied across a narrow range (9–15 ◦C)
suitable for green crab feeding (7–26 ◦C, Behrens Yamada, 2001). Salinity range (30–36h)
was also well within green crab tolerances (4–54h; Behrens Yamada, 2001). Prior to and
after being used in experiments, crabs in all locations were fed raw bait fish (e.g., herring)
every two to three days. Prey animals were held separately from green crabs but under
similar conditions.

Experimental set-up and methods
At all locations, we used plastic bins (61 cm long × 40.6 cm wide), filled with seawater to
a depth of 23 cm, as experimental chambers for all trials. The lids had a mesh screen to
prevent escape while allowing light to diffuse inside the bins.

Prior to trials, green crabs were isolated and starved for 48 h to standardize hunger
levels. Each crab was used only once. Intact mussels were cleaned of encrusting biota and
checked for pre-existing damage. The evening prior to a trial, each bin received a randomly
assigned prey density of two, four, eight, 16, 32, or 64 mussels, which were scattered across
the bottom. The following morning, a single crab was placed into each bin and allowed
to forage for eight daylight hours. Each prey density was replicated three times for each
of the nine green crab populations tested. We retained, fed, and monitored all crabs for
one week after testing to ensure that feeding behaviour had not been affected by imminent
moulting. Because no moulting was observed, crabs that had eaten no prey (BC = 1/36
trials, NS = 2/35 trials, SA = 6/36 trials, NI = 15/54 trials) were retained in the analysis
to reflect individual variation and because reduced consumption at low prey densities can
be indicative of a Type III functional response. One Nova Scotia trial (at prey density = 2)
was omitted owing to crab mortality. One predator-free control bin was run for every prey
density and region to measure mussel mortality unrelated to predation.

Morphological measurements
We evaluated morphological characteristics of both predator and prey that could cause
differences in functional responses among populations. Claw size in green crabs is
known to vary among populations (Smith, 2004; Schaefer & Zimmer, 2013), and claw
strength is directly proportional to claw size, which has implications for handling times
of crabs consuming shelled prey (Behrens Yamada, Davidson & Fisher, 2010). We therefore
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measured crusher claw propal height as an index of claw size for each crab (Behrens Yamada
& Boulding, 1998). Similarly, mussel shell thickness could influence consumption by green
crab. We did not measure shell thickness of mussels in each trial, as mussels that were
not consumed may have been rejected due to their thickness. Instead, in each region we
collected an additional 19 to 30 randomly selected mussels of the same size as used in
the trials, euthanized them and removed the tissue, keeping the valves intact. Shells were
air-dried, measured and weighed to the nearest 0.01 g. Following Freeman, Meszaros &
Byers (2009), we calculated the shell thickness index (STI ) as:

STI = Shell weight/[L∗ (H 2
+W 2)0.5 ∗π/2]

where L,H, andW correspond to linear measurements (in mm) of shell length (maximum
anterior-posterior axis), height (maximum dorsal-ventral axis), and width (maximum
lateral axis), respectively (Lowen, Innes & Thompson, 2013).

Analysis
All analyses were done using R version 3.3.2 (R Development Core Team, 2008). Data
were tested for homogeneity of variances and normality prior to statistical analyses to
determine possible regional differences. The carapace width data were non-normal so
a Kruskal–Wallis test was used, and the claw size data were heteroskedastic and thus a
Welch’s F test was used. We examined the relationship between the number of prey killed
and average temperature (i.e., start temperature+ end temperature/2) across all 64-mussel
trials, using a linear mixed-effect model with region as a random effect. Temperature did
not explain a significant amount of variation in number of mussels killed (Likelihood ratio
test: X 2

= 0.618, df = 1, P = 0.43; Fig. S1). We therefore did not consider temperature in
further analyses.

To determine functional responses as Type II or Type III, we first fit the proportion
of prey consumed to prey density for each population using a logistic regression with
the package ‘frair’ (frair::frair_test). Because the logistic regressions generated negative
first-order terms in all cases, indicative of Type II functional responses (Juliano, 2001), we
then fit the data using the appropriate random predator equation (see ‘Results’), without
prey replacement (Rogers, 1972):

Ne =N0(1−exp(a(Neh−T )))

where Ne is the number of prey eaten, N 0 is the starting prey density, a is the attack rate,
h is the handling time, and T is the experimental duration. Values of Ne and N 0 were
generated experimentally, while a and h were estimated by fitting the model. Models were
fit for each population using maximum likelihood estimation with the package function
frair::frair_fit and bootstrapped (n = 2,000) to generate 95% confidence intervals.

Because functional responses were similar within regions (see ‘Results’, Figs. S2 and S3),
we pooled populations within regions to test whether inter-regional differences were driven
by differences in attack rate (a) or handling time (h). We re-fitted Rogers’ Type II curves
to regional data and bootstrapped the fits (n = 2,000) to generate parameter estimates for
a, h and maximum feeding rates (1/hT ). The 95% confidence intervals for these parameter
estimates were first compared visually and then more formally where necessary (Table S2).
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Finally, to identify factors underpinning regional differences in prey consumption, we
used generalized linear mixed-effects models (GLMMs) with a binomial error distribution
to predict the proportion of prey consumed by green crabs as a function of claw size,
prey STI, and region using a suite of additive candidate models. Mean prey STI for each
region was included as a continuous, fixed effect. Because attack rates and handling times
by green crabs from both Canadian regions (see ‘Results’) were similar, we combined BC
and NS into a single region (North America, NA) for comparison with SA and NI. Finally,
we included initial prey density as a fixed effect—not as an explanatory variable per se but
because it is important in functional responses—and population as a random effect in all
candidate models. The best-supported model was identified using Akaike’s Information
Criterion corrected for small sample sizes (AICc), where the topmodel had the lowest AICc
value (Burnham & Anderson, 2002). We also determined the relative variable importance
(RVI) of each fixed effect, based on the sum of the AICc weights for models that included
the focal variable (Burnham & Anderson, 2002), and themarginal and conditional R2 values
for the top model (Nakagawa & Schielzeth, 2013). To display the individual effect of each
variable included in the top model on the predicted proportion of mussels killed, we used
the ‘effects’ package to calculate effect sizes for each variable, relative to the mean values
(continuous data) or proportional distribution (categorical data) of the other factors in
the model (Fox, 2003; Fox & Hong, 2009).

RESULTS
Regional patterns of functional responses
In trials without crabs, 100% of mussels survived. All logistic regressions indicated the
predation data were best fit using Type II functional response models. Within regions, the
confidence intervals around the number of prey killed overlapped between populations
at most prey densities, indicating that differences in predatory behaviour within regions
were minimal (Figs. S2 and S3). Inter-regionally, we found the highest functional response
curves for North American green crab (BC and NS) (Fig. 2). Attack rates (a) were highest
in BC, NS, and SA and the lowest in NI, but there was overlap in confidence intervals
between all regions except BC and NI and NS and NI (Fig. 3A, Table S2). Handling times
(h) were lower in BC and NS than in SA and NI, with no overlap of confidence intervals
between these two groups (Fig. 3B, Table S2). By extension, the maximum feeding rates
of North American green crabs were considerably higher than those of crabs in SA or NI
(Fig. 3C).

Potential drivers of regional variation in prey consumption
Although there was no significant difference in crab carapace width among regions
(Kruskal–Wallis test, P = 0.68), claw size did differ significantly among regions (Welch’s
F3,84.55 = 40.28, P <0.01), with crabs from NI, BC and NS having the largest claws and
those from SA, the smallest (Fig. 4A). Mussel shell thickness index (STI) also differed
significantly among regions (Kruskal–Wallis test, P <0.01), resulting in a clear regional
ranking (SA>NI>BC>NS) of decreasing mussel shell thickness (Fig. 4B).
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Figure 2 Functional response curves for European green crab preying onmussels (Mytilus spp.) in
four regions. Functional response curves, modeled from the raw data (open symbols) with a Type II
Rogers random predator equation without prey replacement, for European green crab preying on mussels
(Mytilus spp.) in four regions: BC (British Columbia, Pacific Canada; solid line; open square), NS (Nova
Scotia, Atlantic Canada; dashed line; open circle), SA (South Africa; dotted line; open triangle), and NI
(Northern Ireland, UK; dot-dashed line; open diamond). The mean number of prey consumed by green
crab in each region has been averaged across the multiple populations shown in Fig. S3. Shaded areas rep-
resent the 95% bootstrapped confidence intervals.

Full-size DOI: 10.7717/peerj.5634/fig-2

Prey density was the most important variable (RVI= 1.0) and was included in all models
of proportion of prey consumed by green crabs. Region (RVI = 0.98), claw size (RVI =
0.85) were the next most important variables across all models. Prey STI (RVI= 0.48) was
relatively less important.

There was substantial support for two of the candidate models (Table 1). Both included
claw size and region as important predictors of the proportion of mussels killed. The
second-ranked model also included prey STI, but this variable had poor explanatory
power: it did not substantially improve the model fit (as indicated by the log-likelihood)
or the marginal R2 (Table 1).

The variables in the top model were prey density, claw size, and region (Table 1).
Increasing prey density resulted in proportionally fewer mussels being killed, as expected
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Figure 3 Parameter estimates of attack rate a, handling time h, andmaximum feeding rate 1/h T
for European green crabs feeding onmussels. Parameter estimates (±95% CI) of (A) attack rate a,
(B) handling time h, and (C) maximum feeding rate 1/h T, from bootstrapped Type II functional response
curves of green crabs preying on varying densities of mussels. Green crabs were collected from BC (British
Columbia, Pacific Canada), NS (Nova Scotia, Atlantic Canada), SA (South Africa), and NI (Northern
Ireland, UK).

Full-size DOI: 10.7717/peerj.5634/fig-3
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Figure 4 Regional variation in European green crab claw size andMytilusmussel shell thickness for
four regions. Regional variation in potential determinants of proportion of mussels killed by European
green crabs in four regions: BC (British Columbia, Pacific Canada), NS (Nova Scotia, Atlantic Canada),
SA (South Africa), and NI (Northern Ireland, UK). (A) Claw size (i.e., propal height, in mm) of crabs, and
(B) mussel shell thickness index. Raw data indicated by open circles.

Full-size DOI: 10.7717/peerj.5634/fig-4
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Table 1 Results of model selection on all candidate binomial generalized linear mixed-effects models of variation in the proportion of
mussels killed by European green crabs in functional response trials. Results of model selection using Akaike’s Information Criterion AICc,
showing all candidate binomial generalized linear mixed-effects models of variation in the proportion of mussels killed by European green crabs in
functional response trials. Fixed effects included crab claw size, region (North America, South Africa, or Northern Ireland), and the shell thickness
index (STI) of mussels from each region. Prey density per trial (density) was included as a fixed effect, and crab population as a random effect in all
models. k is the number of parameters in each model;1AICc is the difference in AICc value between the focal model and the model with the lowest
AICc ; Akaike weight wi is interpreted as the probability that a given model is the best model of the candidate set given the data at hand. Marginal R2

values are also given as an index of model fit.

Model k LL AICc 1AICc wi Cumulativewi Marginal R2

Density+ claw+ region 6 −474.5 961.58 0 0.44 0.44 0.29
Density+ claw+ STI+ region 7 −473.5 961.79 0.21 0.40 0.84 0.29
Density+ STI+ region 6 −476.3 965.17 3.59 0.07 0.91 0.29
Density+ region 5 −477.4 965.17 3.59 0.07 0.98 0.28
Density+ claw+ STI 5 −479.5 969.47 7.89 0.01 0.99 0.23
Density+ claw 4 −481.3 970.83 9.26 0 1.00 0.18
Density+ STI 4 −482.2 972.58 11.00 0 1.00 0.22
Density-only 3 −484.2 974.55 12.97 0 1.00 0.17
Intercept-only 2 −733.88 1,471.84 510.26 0 1.00 0

fromType II functional responses that reach saturation (Fig. 5A). The proportion ofmussels
killed increased with claw size, as expected, regardless of region and prey density (Fig. 5B).
At mean prey density and claw size, mussels had a 33% chance of being killed by green
crabs in NI and SA (Fig. 5C). In contrast, and as predicted, green crabs in North America
imposed the highest prey mortality. The probability of a mussel being killed in North
America was 67% (Fig. 5C). Together, these three fixed effects in the top model explained
29% of variation in the proportion of prey killed (marginal R2). The combination of the
fixed effects and random effect (population) explained 31% of this variation (conditional
R2). To validate our approach of combining the North American populations we also
re-ran the analysis on a modified version of our top model that included all four regions,
rather than three, to see if there were any differences in the results. All the trends were
consistent with our top model (Fig. S4), and there were no differences in the marginal and
conditional R2 values or the model coefficients for prey density and claw size.

DISCUSSION
Comparative functional response analysis (CFRA) has consistently demonstrated that
the functional responses of invaders reflect their known ecological impacts, but it
has traditionally focussed on interspecific comparisons between invasive and native
species (e.g., Dick et al., 2013; Alexander et al., 2014; Paterson et al., 2015). CFRA has not
previously been used to investigate geographic variation in functional responses of a
single, cosmopolitan invader. Here, we did not observe large differences in the functional
responses of green crabs from populations within regions: Although it cannot be assumed
our results apply to entire ranges, as this would require more extensive sampling in both
North America and Europe, crabs from populations several hundred kilometres apart but
in the same region showed similar attack rates, prey handling times, and maximum feeding
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Figure 5 Predicted proportion of mussels killed by European green crabs in relation to prey density,
claw size (mm), and the region of origin, derived from top generalized linear mixed-effects model.
The predicted proportion of mussels killed by European green crabs (with 95% confidence intervals) in
relation to (A) prey density, (B) claw size (mm), and (C) the region from which crabs were collected:
North America (British Columbia and Nova Scotia, BC & NS), South Africa (SA), and Northern Ireland,
UK (NI). Predictions are derived from a generalized linear mixed-effects model (see top model in Ta-
ble 1), and are shown for each factor when the other factors are fixed at their mean or proportional values.

Full-size DOI: 10.7717/peerj.5634/fig-5

rates. However, differences in functional response curves and parameters among regions
were large. Furthermore, the higher functional responses of invasive green crabs from
North America compared to South Africa and Northern Ireland appear to reflect, at least
qualitatively, their predatory impacts in the wild (see Glude, 1955; Welch, 1968; Grosholz
et al., 2000; Grosholz et al., 2011; Mabin et al., 2017). Despite their experimental simplicity,
functional responses might therefore be a useful, relative estimate of predation that can
help inform predictions about the ecological impacts of green crabs in areas where more
refined impact predictions are not yet available or impossible to make.

We found regional differences in green crab capacity to kill mussels. These differences
stemmed mainly from differences in handling times, and by extension maximum feeding
rates (which are mathematically derived from handling times), although some variation
in attack rates was also observed. The foraging success of predators depends on their
behaviour, morphology, and physiology as they detect, attack, capture, and consume
prey (Hassell, 1978; Lima, 2002). Attack rate (a) reflects the first two steps of this foraging
sequence.We found some inter-regional differences in attack rates, with invasive crabs from
BC demonstrating higher attack rates than those in Northern Ireland. Handling time (h),
by comparison, reflects the time it takes for a predator to capture and consume prey items
and is influenced by physiological and morphological constraints on the predator (Elner &
Hughes, 1978;Hassell, 1978; Vucic-Pestic et al., 2010). Handling times were markedly lower,
and maximum feeding rates (1/h T) higher, for green crabs from North America than for
those from South Africa and Northern Ireland. Interestingly, higher resource consumption
by invasive species, compared to native species, is usually realized either through higher
attack rates (e.g., Dick et al., 2013) or lower prey handling times (e.g., Bollache et al., 2008;
Haddaway et al., 2012; Alexander et al., 2014), but rarely both. Differences in attack rates

Howard et al. (2018), PeerJ, DOI 10.7717/peerj.5634 12/22

https://peerj.com
https://doi.org/10.7717/peerj.5634/fig-5
http://dx.doi.org/10.7717/peerj.5634


among regions might have been driven by differences in individual activity levels, which
are often higher in invasive than in native species (Sih, Bell & Johnson, 2004). In contrast,
differences in claw size likely drove the observed differences in handling times. Green crabs
fromNorthAmerica (BC andNS) had significantly larger claws, and shorter handling times,
than crabs from South Africa. Crabs with larger claws have a morphological advantage over
crabs with smaller claws, because large claws reduce the effort required to break mussels
and the risk of claw damage (Behrens Yamada, Davidson & Fisher, 2010). This suggests that
invasive green crabs from North America are morphologically better suited to handling
hard-shelled prey than those from South Africa. Contrary to the pattern, however, native
green crabs in Northern Ireland had large claws, on par with those of North American
green crabs, but their handling times were significantly lower, more closely matching those
seen in South African crabs. Because handling time incorporates both breaking time and
eating time (Elner & Hughes, 1978; Lee & Seed, 1992; Smallegange & Van der Meer, 2003;
Calderwood, O’Connor & Roberts, 2016), perhaps crabs in Northern Ireland are under less
pressure to ‘eat quickly’ due to less competition or kleptoparasitism (Smallegange, Van
der Meer & Kurvers, 2006; Chakravarti & Cotton, 2014), while still requiring large claws to
crush thick-shelled local mussels.

There are four possible explanations for inter-regional differences in claw size and
prey handling times. First, differences could be primarily driven by genetic variation.
While there are detectable founder effects in some green crab populations (Darling et al.,
2008), genetic variation does not explain the large phenotypic variation seen, including
in claw size, within the native range of green crabs (Brian et al., 2006). It therefore seems
unlikely that inter-regional variation in claw size is linked to a variable genetic make-up
of founder individuals. Second, claw size could be a highly plastic trait. Green crabs can
modify their claw sizes in response to prey shell thickness (Brian et al., 2006; Schaefer &
Zimmer, 2013). This phenotypic response occurs under laboratory conditions (Baldridge
& Smith, 2008) and along biogeographic gradients (Smith, 2004). In our study, claw size
did not covary with prey shell thickness. However, the standardized mussel prey we
offered might have not always reflected local diets of green crabs. For example, green
crabs in British Columbia are currently only found in soft-sediment habitats where
their diet consists mainly of infaunal clams (Klassen & Locke, 2007), which can have very
thick shells (Boulding, 1984). In contrast South African green crabs eat predominantly
small gastropods and soft-bodied prey (e.g., polychaetes) (Le Roux, Branch & Joska, 1990).
Claw size may therefore normally be more closely linked to prey characteristics than our
results suggest. Third, differences in water temperatures could affect the calcification of
crab exoskeletons and of their molluscan prey. Warmer temperatures lead to decreased
calcification, so crabs in warmer habitats may therefore have weaker claws with which
to attack shelled prey. However, because the effect of decreased calcification would also
make prey shells weaker, handling times should be unaffected overall (Landes & Zimmer,
2012). Finally, inter-regional variation in claw sizes, and by extension handling times, may
reflect selective forces beyond prey defenses, including reproduction (mate competition)
and agonistic interactions (interference competition) (Lee & Seed, 1992). Claw size is the
best determinant of success in intra- and interspecific agonistic interactions between crabs
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(Lee & Seed, 1992; Sneddon, Huntingford & Taylor, 1997). It is notable that green crabs
in North America face competition from large-clawed decapods like Dungeness crab
(Metacarcinus magister) in BC and American lobster (Homarus americanus) in NS
(McDonald, Jensen & Armstrong, 2001; Rossong et al., 2006). A combination of exposure to
thick-shelled prey and a highly competitive environment could explain the especially large
claws and fast handling times of green crabs sampled from North America compared to
those from other populations.

Globally, the impacts of green crabs seem to vary among regions, with some populations
(e.g., North America and Tasmania) appearing to have larger impacts on intertidal
communities than others (e.g., South Africa, Australia, or Japan) (Behrens Yamada, 2001).
The quantitative evidence for this variability is provided by a few large-scale field studies
showing that green crabs are effective bivalve predators that have negatively impacted
native community composition, trophic interactions, critical habitat, and human economic
interests (Welch, 1968; Grosholz et al., 2000;Walton et al., 2002; DeRivera, Grosholz & Ruiz,
2011; Matheson et al., 2016). Our finding that green crabs sampled from North America
have higher attack rates and lower prey handling times than those sampled from other
regions is consistent with these field observations. Moreover, North American green
crabs have had markedly different patterns of spread than in other regions, including in
South Africa where green crabs have a comparatively restricted range despite becoming
established decades ago (Mabin et al., 2017). The limited success and impacts of invasive
green crabs in South Africa have been attributed to abiotic conditions (e.g., fast-flowing
water and highly exposed coasts) being unfavourable to range expansion (Le Roux, Branch
& Joska, 1990; Robinson et al., 2005; Hampton & Griffiths, 2007). Our results demonstrate
that South African green crabs exploit a similar prey less effectively than green crabs from
other invasive regions. This suggests that the variable success of different populations of
green crabs is partially driven by biotic interactions, not just habitat suitability.

The CFRA approach has been successful because it entails an extreme reduction of
the complexity of experimental conditions. Functional response studies do not seek to
generate absolute values of foraging parameters under realistic environmental and other
contexts (e.g., habitat structure). Instead, the approach generates relative parameters that
are comparable across species and contexts. Thus, high-impact invasive species typically
display functional response curves that are steeper and/or have higher asymptotes than
similar native species or lower-impact invaders (e.g., Dick et al., 2013; Alexander et al.,
2014; Paterson et al., 2015). Our study is the first to establish that there is also marked
inter-regional variation in the functional responses of a globally invasive consumer that
appears to reflect, at least qualitatively, the regionally variable impacts of green crabs.

CONCLUSIONS
CFRA can be a powerful approach with which to compare the relative impacts of invasive
consumers both within and among species. As it relates to European green crab, it would
be interesting to apply the method used here to populations of green crab we were not able
to cover, such as those in Australia, the more southern parts of the North American ranges,
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and elsewhere in the native range. This method could also be applied to native decapod
species that co-occur with green crab to help identify how much competition influences
foraging behaviours. Finally, while we make the inference that the functional responses
described here may reflect impacts of green crabs in the field, data gaps in the literature
make it difficult to be more definitive about that relationship or use these functional
response results predictively. Methods to link experimental functional responses to field
impacts exist (e.g., Parker et al., 1999; Dick et al., 2017), but at a minimum require data on
abundance that is largely unavailable for European green crab. Where this information is
available, functional responses offer a simplified, standardized metric of per capita impact
that can be used to predict the ecological impacts of invasive species.
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