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ABSTRACT
Mechanisms generating and maintaining biodiversity at regional scales may be
evaluated by quantifying β-diversity along environmental gradients. Differences
in assemblages result in biotic complementarities and redundancies among sites,
which may be quantified through multi-dimensional approaches incorporating
taxonomic β-diversity (TBD), functional β-diversity (FBD) and phylogenetic
β-diversity (PBD). Here we test the hypothesis that snake TBD, FBD and PBD
are influenced by environmental gradients, independently of geographic distance.
The gradients tested are expected to affect snake assemblages indirectly, such as clay
content in the soil determining primary production and height above the nearest
drainage determining prey availability, or directly, such as percentage of tree cover
determining availability of resting and nesting sites, and climate (temperature and
precipitation) causing physiological filtering. We sampled snakes in 21 sampling plots,
each covering five km2, distributed over 880 km in the central-southern Amazon Basin.
We used dissimilarities between sampling sites to quantify TBD, FBD and PBD,
which were response variables in multiple-linear-regression and redundancy analysis
models. We show that patterns of snake community composition based on TBD, FBD
and PBD are associated with environmental heterogeneity in the Amazon. Despite
positive correlations between all β-diversity measures, TBD responded to different
environmental gradients compared to FBD and PBD. Our findings suggest that
multi-dimensional approaches are more informative for ecological studies and
conservation actions compared to a single diversity measure.

Subjects Biodiversity, Ecology
Keywords Brazil, Environmental filtering, Functional diversity, Phylogenetic diversity,
Taxonomic diversity

INTRODUCTION
Investigating how environmental gradients influence community structure is crucial to
understanding mechanisms and processes affecting biodiversity at different scales
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(Keddy, 1992). Quantifying species-habitat associations across continuous landscapes
helps disentangle the mechanisms generating and maintaining patterns of regional and
local biodiversity. This has been widely demonstrated in the Amazon rainforests by
estimates of assemblage β-diversity associated with environmental gradients at mesoscales
(Drucker, Costa & Magnusson, 2008; Fraga, Lima & Magnusson, 2011; Bueno et al.,
2012; Ribeiro, Lima & Magnusson, 2012; Rojas-Ahumada, Landeiro & Menin, 2012;
Moulatlet et al., 2014; Menger et al., 2017). In general, levels of β-diversity across
heterogeneous continuous landscapes has been estimated through biotic
complementarities and redundancies among sites. Most studies focused on measures of
β-diversity based on between-site dissimilarities in quantitative (based on abundance data)
and qualitative (presence/absence data) species composition. However, use of
multiple dimensions may be more informative, because different diversity measures often
carry complementary information (Devictor et al., 2010; Weinstein et al., 2014).

Numerous methods have been developed to quantify β-diversity, and each method
potentially gives different insights into the mechanisms driving biodiversity (Dehling
et al., 2014). Values of taxonomic β-diversity (TBD) may change across heterogeneous
landscapes in response to variation in availability of resources, because of selection
for different physiological characteristics, ecological plasticity, intra and interspecific
interactions, and dispersal ability (Mariac et al., 2011; Hangartner, Laurila & Räsänen,
2012). In general, patterns of community assembly are caused by different portions of
environmental gradients providing suitable conditions to habitat-specialist species,
while generalists cover larger portions of gradients (Kinupp & Magnusson, 2005).

Estimates of functional β-diversity (FBD) may change across heterogeneous landscapes
because function is mediated by phenotypes potentially affecting the species performance
and fitness, such as morphological, biochemical, behavioral and phenological traits
(Petchey & Gaston, 2002). Functional traits can be environmentally filtered when
environmental heterogeneity is sufficient to cause variation in local adaptation to different
selection pressures (Weinstein et al., 2014). Additionally, some traits such as foraging
mode may determine the ability of snakes to cross different habitat patches in Amazonia
(Fraga et al., 2017). High levels of FBD are often related to ecosystem dynamics, stability
and productivity (Tilman, 2001).

Estimates of phylogenetic β-diversity (PBD) usually incorporate information on the
evolutionary history that is shared among species throughout assemblages
(Milcu et al., 2013). High values of PBD suggest convergent adaptation among historically
isolated assemblages, but recently connected (Weinstein et al., 2014), which is expected as a
result from timescale variation in stability and connectivity among habitat patches
(Morlon et al., 2011; Jetz & Fine, 2012). In the Amazon rainforests, a combination
between the Andean uplift and climate change are though as major factors driving habitat
evolution, and consequently driving species diversification, dispersal and extinction
(Hoorn et al., 2010). Alternatively, levels of PBD positively related to FBD suggest
assemblages evolutionary structured by niche conservatism (Wiens & Graham, 2005).

Measures of β-diversity based on between-site differences in TBD, FBD and PBD are
more effective at identifying factors shaping community structure than measures of
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a-diversity, such as number of species or functional groups at particular sites
(Cadotte et al., 2009; Flynn et al., 2011). This is because mechanisms influencing
community assembly act on biotic complementarities and redundancies among sites,
and not on the number of organism-units within sites (Diaz & Cabido, 2001;McGill et al.,
2006). In general, a-diversity measures fail to capture the contribution of each species
to the regional diversity, because different sites may have equal values of diversity
(e.g., number of species), even if the species found in each site are taxonomically,
functionally or phylogenetically distinct. Identifying mechanisms underpinning
β-diversity has clear implications for conservation management. These include
identification of unique characteristics in the regional diversity, which makes a site
irreplaceable and therefore a priority for conservation actions (Pressey et al., 1993).
This approach has been used to test the efficiency of protected areas in France
(Meynard et al., 2011), the effects of forest modification on birds and trees in South Africa
(Grass et al., 2015), and the efficiency of environmental law in Brazil (Fraga, Lima &
Magnusson, 2011; Bueno et al., 2012).

Although much of the Amazon basin appears relatively homogeneous in satellite
images, ecological studies at mesoscales have shown that subtle changes along
environmental gradients influence patterns of co-occurrence of frogs (Ribeiro, Lima &
Magnusson, 2012; Rojas-Ahumada, Landeiro & Menin, 2012), understory birds
(Bueno et al., 2012; Menger et al., 2017), plants (Costa, Magnusson & Luizão, 2005;
Drucker, Costa & Magnusson, 2008) and snakes (Fraga, Lima & Magnusson, 2011). In this
study, we sampled a continuous landscape across about 880 km of rainforest, from
central to southwest Amazonia. Most species of snakes recorded are widely distributed
throughout the Amazon basin and some occur in other ecosystems in South America.
However, species do not occupy all sites within their ranges, and different assemblages
could be expected even at scales of tens of kilometers (Fraga, Lima & Magnusson, 2011).
The wide distributions indicate that assemblage differences are more likely to result
from environmental effects than from historical contingencies, such as dispersal limitation
across geographic barriers.

In this study we examine the influence of environmental gradients on TBD, FBD and
PBD estimates for snake assemblages in the Amazon rainforests. Investigating multiple
assemblage dimensions in the same study system potentially allows accessing broad
pictures of factors causing and maintaining biodiversity. Snakes are useful organisms to
test for multidimensional changes in assemblages over landscapes in the Amazon because
of the exceptionally-high species diversity (Bernarde et al., 2012), great species-trait
diversity (e.g., body size and colors, reproductive and foraging modes), which implies
large variation in functional traits (Martins & Oliveira, 1999), and heterogeneous habitats
that potentially affect dispersal and gene flow (Fraga et al., 2017). In addition, snakes
have been included in estimates of global reptile decline (Gibbons et al., 2000),
which highlights the importance of assessing a broad picture of mechanisms generating
diversity. This is particularly important in the area we sampled, because it is under
strong anthropogenic pressure due to rapid urban growth (Soares-Filho et al., 2006;
Fraga et al., 2013a), deforestation associated with paving the major access road
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(Fearnside & Graça, 2006; Soares-Filho et al., 2006), and flooding by hydroelectric
power plants (Fearnside, 2014). Few studies have attempted to identify multiple factors
driving snake community assembly (Fraga, Lima & Magnusson, 2011). Furthermore,
to our knowledge, the standardized sampling effort used over such a large area in this
study is unprecedented.

We evaluate the effects of environmental gradients on snake assemblages and
investigate spatial structuring causing levels of TBD, FBD and PBD among sites. We test
the general hypothesis that patterns of community composition in taxonomic, functional
and phylogenetic spaces result from current environmental heterogeneity.
Additionally, we hypothesize that different β-diversity measures should respond to
different environmental gradients, because they carry complementary information on
snake assemblages.

MATERIALS AND METHODS
Snake sampling
We sampled snakes in 21 RAPELD sampling sites (Magnusson et al., 2005, 2013),
each of which has trails covering five km2 (five km separated by one km). RAPELD is a
Brazilian acronym to accommodate two study scales, rapid assessments and long-term
ecological research (PELD—in Portuguese, Pesquisas Ecológicas de Longa Duração).
RAPELD sampling sites will be mentioned throughout the text as modules.

In each module, we sampled 10 250 m long by 10 m wide plots with center lines
following the altitudinal contours. The plots were distributed along two parallel five km
long trails (five plots per trail) with standardized distance of one km between
neighboring plots. The modules were distributed almost linearly over 880 km (Fig. 1)
from central (Manaus, Amazonas) to southwest Amazonia (Porto Velho, Rondônia).
The study area includes Central Amazonia, to the north of the Amazon River, the
interfluve between the middle regions of the Madeira and Purus rivers, and the upper
Madeira River, in southwestern Amazonia. Three modules were installed at the
Ducke Reserve, which is a 100 km2 fragment of non-flooded primary rainforest, located
on the northern outskirts of Manaus. Eleven modules were installed along the federal
highway BR-319 that connects Manaus to western Brazil. The highway was largely
abandoned in the 1980s, and the modules were installed mainly to enable multi-taxa
impact assessments of the effect of the road on biodiversity. Along this road, modules
were placed in areas covered by primary and old-secondary rainforest, with patches
of flooded forest and campinarana (forest on white sand). The southern Madeira River
region contains seven modules. The Madeira River was recently dammed by two large
hydroelectric power plants in the Porto Velho region, and the modules were
installed along the banks of the river for monitoring the effects of flooding on
biodiversity. The data used in this study were collected prior to flooding (see details
below). The region is covered by primary and secondary rainforest under increasing
threat of human occupation.

We sampled snakes by nocturnal active visual search, with two observers per plot,
and standard searching time of 1 h per plot. In the Amazon, nocturnal search
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simultaneously allows finding foraging nocturnal species, and resting diurnal species
(field observation). To increase the sampling effort and accuracy in species detection,
we undertook four non-consecutive surveys of each plot between 2007 and 2014. We show
below that temporal variation (e.g., caused by seasonal environmental variables) in
assemblage structure is unlikely, because species composition did not differ among the
surveys. Snakes were collected under RAN-ICMBio/IBAMA (Ministry of Environment,
Government of Brazil) permanent license no 13777-2/2008 in the name of Albertina
Pimentel Lima (coordinator of the sampling expeditions). The license includes ethical
approval of all the procedures used.

Detection probabilities of snakes are usually very low (Steen, 2010; Fraga et al., 2014),
and they may bias the results by generating statistical artifacts such as the arc effect
(Gauch, 1982), mainly because no species occurrence is shared between sampling units.
To avoid statistical artifacts in this study, we used modules as sampling units rather
than plots. This results in loss of degrees of freedom, but it increases the predictive
power of the analysis because the sampling units usually shared more than one species.

Figure 1 Map of the study area in Brazilian Amazonia showing plots where snake assemblages were
sampled. Black circles are five km2 RAPELD sampling modules (see definition of RAPELD in the
methods). The numbers can be used to check the species found in each module in Table S1. (A) Ducke
Reserve, Manaus. (B) Federal highway BR-319, Purus-Madeira interfluve. (C) Upper Madeira River,
Rondônia. Full-size DOI: 10.7717/peerj.5628/fig-1
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All the analyses in this study are based on 26 species (Table S1), belonging to four families
(Boidae, Colubridae, Dipsadidae and Viperidae).

Taxonomic b-diversity
We represented TBD as the scores from a Principal Coordinates Analysis (PCoA)
ordination of a matrix of Forbes’ similarity index (Forbes, 1907) on species
presence/absence data between modules. We transformed Forbes’ similarities in
dissimilarities between modules by 1—Forbes. The Forbes index has been indicated as
robust in the case of incomplete sampling (Alroy, 2015), which is common in studies of
snakes in the Amazon due to the low detection probabilities of most species (Fraga
et al., 2014). The PCoA was undertaken in the vegan package (Oksanen et al., 2015) in
R (R Development Core Team, 2015).

Functional b-diversity
We constructed a trait matrix using 10 continuous and discrete traits, measured or
observed for adult individuals only. These were maximum total length, tail length
proportional to body length, diameter of the eye proportional to head length, maximum
size of offspring, discrete habitat (aquatic, arboreal, cryptozoic, fossorial, terrestrial),
period of activity (diurnal, nocturnal), foraging mode (ambush, active), diet (birds, bird
eggs, centipedes, earthworms, frogs, fish, lizards, mammals, snails, snakes, Squamata eggs,
tadpoles), defensive behavior (ball posture, bite, caudal autotomy, cloacal discharge,
constriction, enlarged head, flattened body, hidden head, inflated neck, liana imitation,
shown mucosa, sound, strike, tail shaking, tail sting, venom, vomit) and reproductive
mode (oviparous, viviparous). All the traits used have been described as ecologically
relevant for snakes (literature compilation in Burbrink & Myers (2015)). Further details
on functional traits may be found in Table S2.

The continuous traits were measured, and we used average values per species
(see Petchey & Gaston, 2006). For the species for which we found less than five individuals,
we supplemented our data with published data (Beebe, 1946; Belluomini & Hoge, 1958;
Duellman, 1978; Cunha & Nascimento, 1983, 1993; Dixon & Soini, 1986; Michaud &
Dixon, 1989; Starace, 1998;Martins & Oliveira, 1999; Fraga et al., 2013a). We also obtained
most of the data for discrete traits per species from the literature, and they were
supplemented with field observations. The levels of most discrete traits are not mutually
exclusive (e.g., species which feed on a variety of prey), so we coded discrete traits into
independent binary traits as suggested by Petchey & Gaston (2007).

We used the trait matrix to estimate FBD using the dbFD function in the functional
diversity (FD) R-package (Laliberté & Legendre, 2010; Laliberté, Legendre & Shipley, 2014).
This function calculates Gower distances between species, which is an index thought
to be more appropriate when analyzing mixed continuous and discrete traits, although the
results are often strongly correlated with Euclidean distances (Petchey & Gaston, 2007).
The dbFD function transforms the Gower distance matrix by calculating square roots.
This is important to avoid negative eigenvalues in the PCoA calculated from the
distance matrix, which should be set in Euclidean space to avoid biased estimates of FD
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(Laliberté & Legendre, 2010). PCoA was used to obtain scores representing four different
functional indices (Villéger, Mason & Mouillot, 2008), which are functional richness,
functional evenness, functional divergence and functional dispersion (FDis). In this study,
we represented FBD using FDis, because this index estimates FBD based on average distances
to the centroid of multivariate dispersion (Anderson, 2006). FDis has been described as a
β-diversity index which is not affected by species richness, it can handle any number and type
of traits and it is little biased by outliers (Anderson, Ellingsen & McArdle, 2006).

We visually controlled the robustness of the FBD estimate by constructing a functional
tree (Fig. S1) based on Gower pairwise distances between species, which was calculated
in the vegan R-package (Oksanen et al., 2015). We undertook a hierarchical cluster
analysis on the Gower dissimilarity matrix to build an UPGMA functional tree, using the
hclust function (argument average) in R.

Phylogenetic b-diversity
We estimated PBD based on a well-supported phylogenetic hypothesis proposed by
Pyron, Burbink & Wiens (2013). Phylogeny of Squamata reptiles was reconstructed
by analyzing 12 concatenated genes (five mtDNA and seven nuclear) from more
than 4,000 species. Levels of clade support were estimated by non-parametric
Shimodaira- Hasegawa-Like implementation of the approximate likelihood-ratio test
(further details in Pyron, Burbink & Wiens (2013)). We used the APE R-package (Paradis,
Claude & Strimmer, 2004) to obtain a subtree composed of the species sampled in this
study (Fig. S2).

We estimated PD using the phylosor function of the picante R-package (Kembel
et al., 2010), which estimates fractions of branch lengths in a phylogenetic tree that are
shared among communities (Kembel et al., 2010). The phylosor function returns a pairwise
phylogenetic similarity matrix, which was converted to a pairwise distance matrix
(1-phylosor matrix) and summarized by PCoA scores.

Environmental gradients and inferential analysis
We evaluated the influence of clay content in the soil on the diversity measures because
this gradient affects primary production, which influences the overall trophic network
(Cintra et al., 2013). Clay content was measured in a pooled five g sample derived from
six subsamples per plot, and we used averages per module. Technicians at the Laboratório
Temático de Solos e Plantas of the Instituto Nacional de Pesquisas da Amazônia (INPA,
Manaus, Brazil) conducted the physical analyses following standard methods
(Empresa Brasileira de Pesquisa Agropecuária (Embrapa), 2009).

The height above the nearest drainage (HAND) algorithm estimates the depth to the
water table, which represents a gradient of relative water potential, in which higher
values indicate large gravitational potential and lower values may reflect soil waterlogging
in the absence of drainage. Here we tested the effects of HAND (log-normalized) on
snake diversity because vertical and horizontal distances from drainage are correlated in a
micro-watershed scale (Schietti et al., 2013), and horizontal distance from drainage was
previously identified as an important factor affecting snake assemblages through
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availability of physiological optimal or prey availability at assemblage (Fraga, Lima &
Magnusson, 2011) and population (Fraga et al., 2013b) levels in Amazonia. We used
percentage of tree cover (log-normalized) because this gradient potentially filters species
by their adaptability to variation in habitat openness, considering the variation in factors
such as availability of resting and nesting sites (Burger & Zappalorti, 1986), availability
of prey and protection from predators (Webb & Shine, 1997), and light intensity
(Pringle, Webb & Shine, 2003). The gradients HAND and tree cover were obtained
from raster surfaces downloaded from the public repository Ambdata (Amaral et al., 2013;
www.dpi.inpe.br/Ambdata).

We used temperature of the coldest month and precipitation of the wettest month
because climate is often considered as a primary factor determining distribution of
biodiversity at numerous spatial and temporal scales. Climate may limit species
distribution through physiological filtering, especially in ectothermic animals such as
snakes (Blain et al., 2009). Climate data were obtained from raster surfaces downloaded
from the Worldclim database (Fick & Hijmans, 2017). All raster surfaces used in this
study have a resolution of one km, and values for each gradient were extracted by the raster
R-package (Hijmans, 2015) using geographic coordinates per module.

Geographic distance has been found to be an important factor driving β-diversity for
several vertebrates, because potentially carries unmeasured environmental variation
(Qian & Ricklefs, 2012). Our study area covers about 4,400 km2, and therefore we expect
spatial autocorrelation in the environmental data. To reduce the effects of geographic
distance on the environmental gradients we calculated Euclidean distances between
centroid coordinates per module, and reduced dimensionalities using the first axis from a
PCoA. The coordinates were used in linear regressions given by gradient = a + b
(geographic distance). Residuals from these models were used as independent variables in
inferential models to quantity proportions of snake diversity that are explained by
environmental variation. We used this approach because multiple-linear-regressions
using raw environmental data as independent variables returned slight spatial
autocorrelation in the residuals for TBD (Moran´s I = -0.272, P = 0.06), FBD
(Moran´s I = -0.320, P = 0.02) and PBD (Moran´s I = -0.261, P = 0.08), which was
negatively significant (P < 0.05) in 20–30% of 10 geographic distance classes (Fig. S3).

To test for the effects of gradients on the diversity measures we used
multiple-linear-regression models, that were built following the general formula diversity
measure = a + b1(clay content residuals) + b2(HAND residuals) + b3(tree cover residuals) +
b4(temperature residuals) + b5(precipitation residuals). The gradients measured are given
in different units, so we scaled them using the scale function in R (Becker, Chambers &
Wilks, 1988). The residuals representing gradients showed little multicollinearity (�0.7
in all cases). We have considered significant relationships at P � 0.05 after Bonferroni
correction. Additional information (e.g., amplitude and average values) on the gradients
can be found in the Table S3.

Alternatively, we used redundancy analysis (RDA) to test the effects of environmental
gradients on raw distance matrices among sampling units, separately for each diversity
measure. This approach was useful to verify the robustness of the results obtained
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by the multiple linear regressions, considering information loss by dimensionality
compression through PCoA. We constructed the models using taxonomic, functional and
phylogenetic distance matrices as dependent variables, and environmental gradients as
independent variables, which is equivalent to multiple-multivariate linear regression
models (Legendre, Fortin & Borcard, 2015). We used a permutation test of significance
(5,000 randomizations) to decide between accept or reject null hypothesis.

We also compared the subsets of species that were found per plot in each of the
four surveys (2007–2014), to control any effect of temporal variation on the diversity
measures. We calculated Forbes pairwise dissimilarities among each survey on each plot,
summarized the resulting matrix using PCoA (axis 1), and tested differences among
surveys using ANOVA. We set a two-factors model—plot and survey—to decouple
assemblage compositions between space and time. We found that differences in
assemblage composition are associated with plots (P = 0.03), and plots and surveys
interacting with each other (P = 0.01), but not with surveys alone (P = 0.26). This finding
demonstrates that the patterns of spatial assemblage structure shown in this study have
no bias of assemblages changing over time.

To quantify relationships between different diversity measures we used matrix
regression with permutation test of significance (5,000 randomizations). The models were
set up with the pairwise distance matrices used to summarize TBD, FBD and PBD.

Table 1 Summary of statistical coefficients from multiple linear regressions testing the effects of
environmental gradients on estimates of snake β-diversity in Brazilian Amazonia.

Coefficient TBD FBD PBD

R2 0.612 0.377 0.319

P 0.001 0.02 0.05

Clay content SE 0.007 0.01 0.002

t -4.431 -0.499 1.233

P 0.002 1 1

HAND SE 0.08 0.127 0.033

t -0.045 3.325 3.142

P 1 0.023 0.034

Tree cover SE 0.16 0.247 0.064

t 3.929 -1.435 0.661

P 0.007 0.859 1

Temperature of the
coldest month

SE 0.23 0.035 0.009

t -0.34 -0.044 -0.574
P 1 1 1

Precipitation of the
wettest month

SE 0.003 0.005 0.001

t -1.804 1.382 -0.589
P 0.457 0.936 1

Notes:
Bolded P-values are statistically significant after Bonferroni correction. R2 values are adjusted to the number of sampling
units.
TBD, taxonomic b-diversity; FBD, functional b-diversity; PBD, phylogenetic b-diversity; HAND, height above the
nearest drainage; SE, standard error.
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RESULTS
The first axis of PCoA ordination captured 59% of the original variance in the raw data
used to estimate TBD, and the second axis captured 39%. However, the variance
captured by axis 1 was not related to the environmental variation quantified by the
gradients tested (P > 0.25 in all cases). Therefore, we used axis 2 to represent TBD.
PCoA axis 1 captured 100% of the variance for FBD and 30% for PBD and were used as
univariate versions of the diversity measures in the inferential models.

The multiple linear regression explained 61 percent (adjusted R2) of the variance in
TBD (F5,15 = 7.31, P = 0.001, residual standard error = 0.29). This finding was particularly
associated to the effects of clay content (P = 0.002) and tree cover (P = 0.034) on β-diversity
among the sampling modules. HAND, temperature and precipitation were not
related to TBD (P > 0.45 in all cases). About 37% of the variance in FBD was explained
by the multiple regression (F5,15 = 3.42, P = 0.02, residual standard error = 0.45), which was
mainly due to the effects of HAND (P = 0.023) on dissimilarities between modules.
Clay content, tree cover, temperature and precipitation were not related to FBD (P > 0.85
in all cases). About 32% of the variance in PBD was explained by the gradients (F5,15 = 2.87,
P = 0.05, residual standard error = 0.11), but only HAND (P = 0.034) contributed
to the model. The other gradients tested were not related to PBD (P = 1 in all cases). All the
multiple regression models returned residuals that did not differ statistically from a
normal distribution (Shapiro–Wilk W > 0.92, P > 0.12 in all cases). A complete summary

Figure 2 Relationships (partials from multiple linear regressions) between different measures of snake β-diversity and environmental
gradients in central-southwestern Brazilian Amazonia. (A) TBD, taxonomic β-diversity, (B) FBD, functional β-diversity, (C) PBD, phyloge-
netic β-diversity. HAND, height above the nearest drainage. Environmental gradients are shown as residuals from linear regressions used to reduce
the effects of geographic distance on the environmental heterogeneity measured. Full-size DOI: 10.7717/peerj.5628/fig-2
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of the multiple-regression models can be found in Table 1 and the partial regressions
from each model are presented in Fig. 2.

The RDA models significantly captured 32% of the constrained variance to TBD
(F5–15 = 1.42, P = 0.05), 43% to FBD (F5–15 = 2.27, P = 0.04) and 36% to PBD (F5–15 = 1.71,
P = 0.03). In general, the results were consistent with the multiple regressions (Table S4).
However, tree cover did not significantly explain TBD (P = 0.24).

All diversity measures were positively related to each other (Fig. 3). However, TBD
was more strongly related to PBD (r2 = 0.67, P < 0.0001) compare to the relationships
between TBD and FBD (r2 = 0.13, P < 0.0001), and between FBD and PBD (r2 = 0.23,
P < 0.0001).

DISCUSSION
Our data indicate that environmental gradients affect snake co-occurrence in
central-southern Amazonia, which results in levels of β-diversity identified by taxonomic,
functional and phylogenetic dissimilarities among modules. These findings are consistent
with temperate snake assemblages, which may be structured by phylogenetic species
variability and trait variability (Burbrink & Myers, 2015). Furthermore, our data
corroborate a previous study in Brazil, which found variation in phylogenetic and
phenotypic compositions of snake assemblages associated with environmental gradients
(Cavalheri, Both & Martins, 2015). However, the variation found in that study was
primarily due to differences between forested and open biomes, which is expected to be
pronounced. In this study, we show that variation in snake assemblages along
environmental gradients is consistent even within biomes, where structural differences
between sites are often subtle.

Environmental gradients affecting species composition have been found in many
groups of organisms in the Amazon, such as frogs (Ribeiro, Lima & Magnusson, 2012;
Rojas-Ahumada, Landeiro & Menin, 2012), understory birds (Bueno et al., 2012;
Menger et al., 2017), plants (Drucker, Costa & Magnusson, 2008; Moulatlet et al., 2014)
and snakes (Fraga, Lima &Magnusson, 2011). In general, it is expected that species occupy

Figure 3 Relationships between dissimilarity matrices used to summarize different estimates of
snake β-diversity in central-southwestern Brazilian Amazonia. TBD, taxonomic β-diversity; FBD,
functional β-diversity; PBD, phylogenetic β-diversity. (A) Relationship between TBD and FDB.
(B) Relationship between TBD and PBD. (C) Relationship between FBD and PBD.

Full-size DOI: 10.7717/peerj.5628/fig-3
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portions of gradients in a way to optimize the balance between dispersal capacity,
physiological needs and availability of resources (Laliberté, Legendre & Shipley, 2014).
However, our data indicate that TBD is affected by different sets of environmental
gradients compared to FBD or PBD, which suggests that patterns of spatial structure
in snake assemblages in the Amazon may not be characterized by a single diversity
measure. In fact, choosing environmental gradients as predictors in species-habitat
association models is not a trivial task, although it is an effective approach to
evaluate conservation issues such as environmental legislation (Fraga, Lima &
Magnusson, 2011; Bueno et al., 2012).

We found that clay content in the soil predicted snake community assembly based on
taxonomic dissimilarities among modules. Associations between soil texture and patterns
of vertebrate community structure are often assumed as indirectly causal, because soil
texture affects many factors driving regional species occurrence, such as vegetation density
(Woinarski, Fisher & Milne, 1999) and distance from streams (Bueno et al., 2012).
The environmental heterogeneity in the Amazon rainforests includes soil texture gradients
from poorly drained, seasonally flooded sandy soils (Cintra et al., 2013), in which plants
find poor substrate for rooting (Quesada et al., 2012), to well-drained soils that support
older well-developed forests (De-Castilho et al., 2006; Emilio et al., 2013). Therefore,
variation in soil texture across landscapes generates high β-diversity via suitability of the
conditions for dispersal and colonization, which has been found in plant (Costa,
Magnusson & Luizão, 2005; Costa et al., 2008), invertebrate (Franklin, Magnusson &
Luizão, 2005) and vertebrate (Woinarski, Fisher & Milne, 1999; Bueno et al., 2012;
this study) assemblages.

We showed that HAND is related to snake assemblages based on functional traits and
phylogeny. Distance above the drainage has been identified as an important factor
structuring plant (Drucker, Costa & Magnusson, 2008) and animal (Fraga, Lima &
Magnusson, 2011; Bueno et al., 2012; Rojas-Ahumada, Landeiro & Menin, 2012)
assemblages in the Amazon, and riparian zones may be biologically distinct from adjacent
areas (Sabo et al., 2005). Despite the fact that most Amazonian snakes can cross
different habitats, distance from drainage may influences β-diversity (Fraga, Lima &
Magnusson, 2011) and structures populations in terms of variation in density and body size
(Fraga et al., 2013b). In this study, we found that HAND affects FBDmainly because lower
distances from drainage favor assemblages composed by arboreal (e.g., Imantodes
lentiferus) and aquatic species (e.g., Helicops angulatus). Lower values of HAND are often
associated with seasonal surface waterlogging (Schietti et al., 2013), which may complicate
fossorial and terrestrial lifestyles. Therefore, variation in HAND across the landscape
generates regional dispersal corridors that may be more suitable for some species than
others, which could affect FBD and PBD.

We found inconsistency between the effects of tree cover on TBD estimated by
multiple regression and RDA. Different results may reflect different levels of statistical
sensitivity of the models to the data structure, or unidentified sampling bias. Therefore,
we assume tree cover in this study as a probable filter to snake regional co-occurrence.
Variation in tree cover along continuous landscapes generates mosaics of more and less
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suitable habitats for different subsets of species, through factors that directly affects species
biology. These include availability (Lindenmayer et al., 1991) and non-random selection
of nesting and resting sites (Burger & Zappalorti, 1986; Webb & Shine, 1997),
thermo-regulatory requirements, availability of prey, scent chemical trails from potential
prey (e.g., small mammals), protection from predators (Webb & Shine, 1997), variation in
light intensity, air and ground temperatures and wind speed (Pringle, Webb & Shine,
2003). Furthermore, variation in tree cover at wider spatial scales (e.g., biomes) may define
regional subsets of species according to their morphological adaptation to use different
plant strata (Cavalheri, Both & Martins, 2015). This finding is relevant for conservation,
because maintenance of regional assemblages depends on protecting large areas,
which contain wide amplitudes of tree-cover gradients.

Changes in phylogenetic (PBD) composition among plots were proportional to
changes in the snake taxonomic identities (TBD). Spatial congruence between estimates
of phylogenetic and TBD has been suggested as often higher compared to a-diversity
measures (Devictor et al., 2010; Bernard-Verdier et al., 2013; Arnan, Cerdá & Retana,
2017), especially in cases of niche conservatism (Wiens & Graham, 2005). The tendency of
species to retain ancestral characteristics along generations results in local or regional
assemblages structured by environmental filtering, despite different environmental
gradients may affect different diversity measures (Webb et al., 2002). Additionally,
the positive correlations between diversity measures show that TBD and FBD efficiently
captured a phylogenetic signal, which suggests assemblages evolutionary structured by
Brownian motion, in which species change mainly through genetic drift and natural
selection randomly directed (Losos, 2008). Concerning the positive relation between
FBD and PBD, we found that environmental gradients drive co-occurrence of species that
are simultaneously phylogenetically related and have similar ecological requirements
(Keddy, 1992; Myers & Harms, 2009), and one measure may be used as a proxy to the
other. Contrarily, TBD was not a good proxy for FBD, because large proportions of data
were poorly fitted between both diversity measures. Ultimately, combinations of TBD and
FBD should be part of studies on community ecology, because they give integrative
approaches that reveal taxonomic, ecological and evolutionary forces acting on community
structuring, which is very useful for conservation (Devictor et al., 2010).

From the point of view of conservation, the positive relationships between diversity
measures directs the focus of biodiversity monitoring programs and reserve planning
to cover higher levels of phylogenetic diversity, because this measure reflects the
maintenance of ecosystem processes operating over long timescales (Cadotte, Carscadden
& Mirotchnick, 2011). FD is estimated based on sets of traits that reflect environmental
tolerances and requirements, which in turn determine where species can live (Lavorel
et al., 1997) and interact with each other in assemblages (Davies et al., 2007).
Therefore, loss of evolutionarily distinct species may result in irreversible loss of functions
for ecosystems (Bracken & Low, 2012). However, at larger scales it may be difficult
to decide which diversity measure should be prioritized in conservation, and a
multi-dimensional approach may be more appropriate (Devictor et al., 2010), despite
greater difficulties of interpretation.

de Fraga et al. (2018), PeerJ, DOI 10.7717/peerj.5628 13/22

http://dx.doi.org/10.7717/peerj.5628
https://peerj.com/


Our findings are unlikely to be biased by the spatial distribution of sampling units
(see González-Caro et al., 2012), because the RAPELD system provides regular distribution
of plots across the landscape regardless of logistical issues (Magnusson et al., 2013).
However, snakes usually have low detection probabilities (Steen, 2010; Fraga et al., 2014),
which have been estimated at less than 10% for multiple surveys of many Amazonian
species in RAPELD plots (Fraga et al., 2014). Low detection probabilities often cause false
absences of species from plots, and this may generate misinterpretation of how species
respond to landscape change (Gu & Swihart, 2004). We are unable to totally discount
effects of low detectability on our results. However, the strong relationships between
diversity measures and environmental gradients showed that a combination of high
sampling effort, different methods used to quantify biodiversity and the use of an
appropriate multivariate distance measure may considerably reduce the effects of false
absences and return reliable results.

CONCLUSIONS
We used an unprecedented standardized sampling effort to show that environmental
heterogeneity is associated with β-diversity in Amazonian-forest snakes. Positive correlations
between β-diversity measures estimated show that PBD alone may be sufficient to
investigate spatial structure in Amazonian snake assemblages under taxonomic,
functional and phylogenetic perspectives. However, TBD response to different
environmental gradients suggests that testing the effects of a set of environmental
gradients on at least two β-diversity measures can generate deeper understanding of
factors causing spatial community assembly. This finding highlights the efficiency of
using multi-dimensional approaches to quantify biodiversity in community-level
conservation status assessments and decision-making on natural resources management.
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