
Submitted 25 April 2018
Accepted 13 September 2018
Published 19 October 2018

Corresponding authors
Tianyi Zang, tianyi.zang@hit.edu.cn
Yadong Wang, ydwang@hit.edu.cn

Academic editor
Xianjun Dong

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj.5611

Copyright
2018 Wang et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

BdBG: a bucket-based method for
compressing genome sequencing data
with dynamic de Bruijn graphs
Rongjie Wang1, Junyi Li2, Yang Bai1, Tianyi Zang1 and Yadong Wang1

1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, HeiLongJiang, China
2 School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen,
Guangdong, China

ABSTRACT
Dramatic increases in data produced by next-generation sequencing (NGS) technolo-
gies demand data compression tools for saving storage space. However, effective and
efficient data compression for genome sequencing data has remained an unresolved
challenge in NGS data studies. In this paper, we propose a novel alignment-free and
reference-free compression method, BdBG, which is the first to compress genome
sequencing data with dynamic de Bruijn graphs based on the data after bucketing.
Compared with existing de Bruijn graph methods, BdBG only stored a list of bucket
indexes and bifurcations for the raw read sequences, and this feature can effectively
reduce storage space. Experimental results on several genome sequencing datasets
show the effectiveness of BdBG over three state-of-the-art methods. BdBG is written in
python and it is an open source software distributed under the MIT license, available
for download at https://github.com/rongjiewang/BdBG.

Subjects Bioinformatics, Biotechnology, Computational Science, Data Science
Keywords Compression, Bucket-based, Next-generation sequencing, Dynamic de Bruijn graph

INTRODUCTION
The rapid development of sequencing technologies has made genome sequencing
more affordable. Next-generation sequencing (NGS), also known as high-throughput
sequencing, was introduced to the sequencing market in 2007. NGS enables sequencing
with higher throughput and has drastically reduced the cost per genome sequencing (Loh,
Baym & Berger, 2012). As a result, the amount of genome sequencing data has grown
exponentially over the past decade, posing significant challenges to data storage. Raw
sequencing data referred to as reads are stored in an ASCII-based text file in FASTQ
format. Each read in the file has three main fields: (i) read identifier, (ii) read sequence and
(iii) read quality score. To reduce storage and transmission costs, FASTQ files are often
compressed with common compression tools such as gzip (http://www.gzip.org/) and bzip
(http://www.bzip.org/). Although these traditional tools are fast and widely accepted, they
are not optimal for genome sequencing data compression.

NGS data compression methods can be divided into two main categories: reference-
based and de novomethods. Reference-based methods (Fritz et al., 2011; Kingsford & Patro,
2015; Zhang et al., 2015a; Zhang et al., 2015b; Arram et al., 2016; Huang et al., 2017) align

How to cite this article Wang et al. (2018), BdBG: a bucket-based method for compressing genome sequencing data with dynamic de
Bruijn graphs. PeerJ 6:e5611; DOI 10.7717/peerj.5611

https://peerj.com
mailto:tianyi.zang@hit.edu.cn
mailto:ydwang@hit.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.5611
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/rongjiewang/BdBG
http://www.gzip.org/
http://www.bzip.org/
http://dx.doi.org/10.7717/peerj.5611

the reads to the reference genome and record only the mapped positions and different
nucleotides in the alignment instead of recording the entire read sequence. Although
PATHENC (Kingsford & Patro, 2015) does not use the mapping strategy, it exploits the
reference genome by encoding the nucleotide based on the previous k nucleotides with an
arithmetic encoder (Solomon & Motta, 2010), if the next nucleotide appears in the reference
genome, then it increases the coding probability of the nucleotide. Despite achieving high
compression rates, these reference-based methods require considerable time for aligning
reads to the reference genome. Moreover, during the compression and decompression, all
of them require a reference genome. To eliminate the limitation of the reference genome
requirements during decompression, Quark (Sarkar & Patro, 2017) encodes the reads in
a semi-reference-based manner: the reference genome is required only for compression
rather than decompression. However, when there is no reference genome, neither the
reference-based nor semi-reference-based approaches are applicable.

The de novo methods exploit the coverage redundancy in NGS data. These methods
can be roughly further divided into three types: context modeling methods (such as
FQZCOMP (Bonfield & Mahoney, 2013) and DSRC2 (Roguski & Deorowicz, 2014)),
reference constructing methods (such as QUIP (Jones et al., 2012), LEON (Benoit et
al., 2015) and DARRC (Holley et al., 2018)), and read reordering methods (such as
SCALCE (Hach et al., 2012), BEETL (Cox et al., 2012), MINCE (Patro & Kingsford,
2015), ORCOM (Grabowski, Deorowicz & Roguski, 2015), HARC (Chandak, Tatwawadi
& Weissman, 2017), Assembltrie (Ginart et al., 2018) and FaStore (Roguski et al., 2018)).

The context modeling methods FQZCOMP (Bonfield & Mahoney, 2013) and
DSRC2 (Roguski & Deorowicz, 2014) encode nucleotides based on an order-k model,
using the previous k nucleotides to predict the next nucleotide, followed by the arithmetic
encoder.

The reference constructingmethodsQUIP (Jones et al., 2012), LEON (Benoit et al., 2015)
and DARRC (Holley et al., 2018) compress the reads by constructing a reference genome.
QUIP utilizes partial reads to assemble the reference contigs. LEON uses all reads to build
a de Bruijn graph (Compeau, Pevzner & Tesler, 2011) and encodes each read as a path in
the de Bruijn graph. DARRC constructs a de Bruijn graph with spanning super reads that
have been assembled by shared overlap reads. All of these reference constructing methods
require storage of reference contigs or de Bruijn graph, which consume a non-negligible
portion of the compressed file space.

The read reordering methods try to distribute the same or similar reads from the same
locus or repetitive sequences as closely as possible. This step reduces the density of the
read sequence entropy and contributes to downstream compression. Note that although
the read order has changed, the reads produced by the NGS protocols are generated from
random locations across the entire genome. In addition, these read reordering methods
assume that the original order of reads does not represent any meaningful information.

SCALCE (Hach et al., 2012) applies Local Consistent Parsing (LCP) (Sahinalp & Vishkin,
1996) to generate core substrings for clustering reads into different bins and then encoded
via 2/8 encoding, followed by gzip compression. BEETL (Cox et al., 2012) employs the

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 2/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.5611

Burrows-Wheeler-Transform (BWT) (Burrows & Wheeler, 1994) to group similar reads, af-
ter that, the reordered reads byBWTcanbe compressed via general compression techniques,
such as run length encoding (Bassiouni, 1985) or Huffman encoding (Huffman, 1952).

ORCOM (Grabowski, Deorowicz & Roguski, 2015) utilizes the concept of ‘mini-
mizer’ (Roberts et al., 2004) to dispatch similar read sequences into the same disk bin
and compresses each bin separately. The minimizer is defined as the lexicographically
smallest k-mer generated from the read sequence. The underlying intuition is that two
similar read sequences might have a large probability of sharing the same minimizer. The
read sequences in each bin are compressed independently by the context-based compressor
PPMd (Shkarin, 2002) or the arithmetic encoder.

MINCE (Patro & Kingsford, 2015) first distributes the read sequences into the bucket
that has the most shared k-mers. At the same time, to improve the speed of comparison,
each read sequence is compared only to the buckets indexed by the k-mers generated
from the read sequence itself. After that, it compresses the sequences in each bucket via
PLzip (https://www.nongnu.org/lzip/plzip.html), which is a lossless data compressor based
on the Lempel–Ziv-Markov chain algorithm (LZMA).

HARC (Chandak, Tatwawadi & Weissman, 2017) reorders reads approximately
according to the matching between the suffix of the current read and the prefix of the
target read based on two hash tables, then HARC encodes them to remove the redundancy
between consecutive reads. Assembltrie (Ginart et al., 2018) greedily constructs a cycle-
rooted trie with each read as a node. The parent and children are the reads sharing the
longest prefix and suffix overlap with the node based on k-mer hash tables, and each read
is encoded with the difference from its parent. FaStore (Roguski et al., 2018) employs the
‘minimizer’ method to cluster reads into bins, assembles the reads within each bin into
some possible large contigs, and finally encode the reads only with positions and variants
in the contigs.

In the above reference constructing studies, the constructed reference sequence must
be stored in a compressed file for decompression. However, the constructed reference
sequence also consumes a considerable amount of space, which substantially affects the
compression efficiency. In this study, we attempt to avoid storing the reference sequence
while preserving the benefits of read reference constructing and reordering methods.

In this paper, we propose a novel compression method, BdBG, as a new compressor
for genome sequencing data. BdBG consists of two main steps. First, similar reads are
dispatched to the same bucket based on the highest score of shared k-mers. Second, the
already encoded reads are used to construct a de Bruijn graphwithin each bucket separately,
and each read is encoded as a list of bifurcations in the graph. To avoid storing the de Bruijn
graph itself, we construct the de Bruijn graphs dynamically during encoding/decoding.
We applied our method, BdBG, to eight different genome and transcriptome sequencing
datasets. The results showed that the compression performance of BdBG is better than
that of GZIP, LEON (Benoit et al., 2015) and MINCE (Patro & Kingsford, 2015), with
improvements of up to 83%, 81%, and 52%, respectively.

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 3/16

https://peerj.com
https://www.nongnu.org/lzip/plzip.html
http://dx.doi.org/10.7717/peerj.5611

MATERIALS & METHODS
Overview
Figure 1 shows an overview of our proposed BdBGmethod, which includes read bucketing
and compressing steps. Each step can be further divided into several small parts. The first
step can be perceived as the MINCE (Patro & Kingsford, 2015) bucketing method: similar
reads are dispatched into the same bucket based on the score of shared k-mers. The purpose
of this step is to facilitate downstream compression. In the subsequent read compression
step, a de Bruijn graph is constructed with reads already encoded as the reference sequence
for encoding the read. Each read is encoded as a path in the de Bruijn graph. To avoid
storing the de Bruijn graph, the de Bruijn graph is dynamically constructed with reads that
have been encoded/decoded during compression/decompression. Finally, all the necessary
output streams needed to recover the reads are compressed by a general compressor PLzip
(https://www.nongnu.org/lzip/plzip.html).

Read bucketing
Each bucket has a unique index label `(b) and a collection of reads. When processing a
read r , all 2(|r |−k+1) bucket indexes labeled with k-mers generated from r are checked;
the factor of 2 is derived from considering both r and its reverse complement rc(r). By
default, k= 15. The read r is assigned to the bucket have the highest score b̄ that satisfies

b̄= argmax
b∈Z (r,k)

{Z (r,k) ∩ 6r ′∈ bucket (b)Z (r ′,k)} (1)

where Z (r,k) denotes the set of all k-mers in the read r and6r ′∈ bucket (b)Z (r ′,k) denotes all
k-mers generated from the reads in the bucket b. The similarity between read r and bucket
b is defined as the number of shared k-mers. The read r is dispatched to the bucket with
the highest score.

If the highest score bucket b̄ from Eq. (1) is indexed by the k-mer generated from the
forward direction of read r , then the read r is allocated to the bucket; otherwise, if bucket
b̄ is indexed by the k-mer generated from the reverse complement of read r , then rc(r) is
allocated to the bucket. If no bucket is indexed with the k-mer generated from the read r or
rc(r), a new bucket is created. Initially, the new bucket is indexed with a minimizer (Roberts
et al., 2004), which is defined as the lexicographically smallest k-mer in r and rc(r).

The reads in each bucket are sorted according to the bucket index positions and
nucleotides, which further brings similar sequences close to each other and has a positive
impact on subsequent compression.

Singleton reassigning
In an extreme case, a bucket may contain only one read after bucketing all reads. This is
called a singleton bucket. The read in the singleton bucket is hard to compress due to the
lack of a reference. To eliminate the singleton bucket effect, we adopt the same ‘rescue’
procedure as MINCE (Patro & Kingsford, 2015): when all read allocations are completed,
all singleton buckets are deleted, and the reads in these buckets are reassigned to the
remaining non-empty buckets according to Eq. (1). In the new reassignment process,
reads are more likely to be dispatched to other non-empty buckets, because there are

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 4/16

https://peerj.com
https://www.nongnu.org/lzip/plzip.html
http://dx.doi.org/10.7717/peerj.5611

Figure 1 An overview of the BdBGmethod. First, assign similar reads to the same bucket based on the
scores of shared k-mers between the read and k-mers in the bucket, and then each read is encoded as a
path in a dynamic de Bruijn graph, which is constructed by the already encoded reads. The necessary in-
formation required to recover reads from the de Bruijn graph is stored in compressed files, including the
bucket index, number of reads in the bucket, read index positions, directions of reads and a list of bifurca-
tions for the left and right paths.

Full-size DOI: 10.7717/peerj.5611/fig-1

more buckets available for allocation. If there are still reads that cannot be allocated to
any non-empty buckets, they are directly dispatched into a special bucket indexed by an
empty string, and finally compressed into the beginning of the output stream file in a 2-bit
(A= 00, C = 01, G= 10, T = 11) manner.

Read bucketing output
The outputs of read bucketing include the bucket description files: findex and fcov , and a
series of read description files: findexPos, frc , flen, fN and forder . The contents of these files have
the following meaning:

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 5/16

https://peerj.com
https://doi.org/10.7717/peerj.5611/fig-1
http://dx.doi.org/10.7717/peerj.5611

• findex—a list of bucket indexes, each of which is a common subsequence of reads within
the bucket and serves as the starting node for each read path in the following de Bruijn
graph. The bucket indexes are stored in ascending order, transformed into the 2-bit
manner and compressed with delta encoding.
• fcov—the number of reads in each bucket. For the number of reads in each bucket has a
wide range, each value is encoded in 32-bit.
• findexPos—a list of the positions of the bucket index in the reads. Since the NGS read data
have a relatively short length, each position is sorted in ascending order and encoded
with 8-bit and compressed with delta encoding.
• frc—a list of binary data in which a ‘0′ indicates that the read in a forward direction and
a ‘1′ indicates the read in a reverse-complement direction.
• flen—the length of each read. Each length is encoded in 8-bit, and it is necessary to
restore the unequal length of read sequences.
• fN—the position and length of the character ‘‘N’’ in the raw read sequences. Both pieces
of information are encoded in 8-bit. In the raw read sequences, all character ‘‘N’’ is
replaced by nucleotide ‘‘C’’.
• forder—the orders of reads in the raw file. Each order is encoded in 32-bit. For the
single-end reads, the output of this file is optional. For the paired-end reads, this
information is enforced to restore the paired-end information correctly.

In the end, all of these output files are compressed separately using the PLzip compressor
as part of the final output stream.

The de Bruijn graph
A de Bruijn graph (dBG) is a directed graph G = (V, E) consisting of a set of vertices V
and a set of direct edges E. A vertex v ∈V represents a distinct k-mer generated from the
reads, and a directed edge e ∈ E represents a (k-1)-length overlap between the suffix v ∈V
and prefix v ′ ∈V . Each vertex has |A| possible successors and |A| possible predecessors,
for the genome sequencing data A= {A,C,G,T }. We define the type of a given vertex
according to the number of successors and whether the successor is equal to the encoded
read path. Four types of nodes that we have defined in the de Bruijn graph, namely, Tip
nodes, Simple nodes, New nodes, and Branch nodes, as shown in Fig. 2. A Tip node is a
vertex without any successor. A Simple node is a vertex with only one successor and its
successor is identical to the read path. A New node is a vertex with only one successor
node, but the successor node is different from the read path. A Branch node is a vertex
with multiple successors.

Once a de Bruijn graph has been constructed from a set of reads R with a k-mer size
k, any read r ∈ R can be represented as a path of the graph containing |r |−k+1 nodes
(Limasset et al., 2016). To encode the read sequences, we only need to record the path
|r |− k+1 nodes and starting node information, which can be used to recover all read
sequences from the de Bruijn graph in a lossless way.

There are only four types of nodes in the graph as we define, and we record different
information for different node types. If it is a Simple node, nothing needs to be recorded;
if it is a New node, the position and nucleotide need to be recorded; if it is a Tip node or

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 6/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.5611

Figure 2 We define four types of nodes in the de Bruijn graph. A Tip node is a vertex without any suc-
cessor. A Simple node is a vertex with only one successor, and its successor is identical to the read next nu-
cleotide. A New node is a vertex with only one successor, but the successor is different from the read next
nucleotide. A Branch node is a vertex with more than one successor. The dotted lines indicate that the
read nucleotide corresponding node does not exist in the current graph.

Full-size DOI: 10.7717/peerj.5611/fig-2

Branch node, the read nucleotide needs to be recorded. We assume that the majority of the
read path is composed of Simple nodes and that only a small part of the path is composed
of the other three type nodes. This allows the read to be compressed effectively, and in fact,
the read sequences conform to this feature because it has a high degree of repeatability and
consistency.

However, in order to reconstruct the read sequence with path information, the de
Bruijn graph needs to be stored, and the graph itself also takes up a non-negligible storage
space. To avoid storing the de Bruijn graph and to improve the compression efficiency, we
propose a dynamic de Bruijn graph method.

Dynamic de Bruijn graph
When encoding/decoding a read, we construct a de Bruijn graph as the reference for this
read using all reads that have already been encoded/decoded in the bucket. Since the de
Bruijn graph is constructed dynamically from read by read after encoding/decoding and
synchronously constructed on both the encoder and decoder sides from an empty graph,
there is no need to store any information of the de Bruijn graph.

The de Bruijn graph is initialized with an empty graph when the first read sequence is
encoded/decoded, the path nodes are the Tip nodes for this sequence. Therefore, for the

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 7/16

https://peerj.com
https://doi.org/10.7717/peerj.5611/fig-2
http://dx.doi.org/10.7717/peerj.5611

Tip nodes, all nucleotides need to be stored, all of the first read sequences for each bucket
is saved into a file ffirSeq and encoded them in a 2-bit manner.

Encoding the read sequences
We encode each read as a path of the de Bruijn graph, and the path is described with a start
position and a list of bifurcations in the graph. The start position, as the read path ‘anchor’,
is the bucket index that shared with all reads in the bucket. From the ‘anchor’ position, the
path is separated into a left and a right path.

When the read from the ‘anchor’ node is encoded in any direction, there are four
possible nucleotide successors {A, C, G, T} in the de Bruijn graph. To avoid excessive
Branch nodes due to sequencing errors and mutations, we filter successor node abundance
ratios less than a fixed proportion threshold (0.2 by default). According to the number of
successors and the following nucleotide in the read, the node has been classified into four
different types, as defined in Fig. 2. For different types of nodes, we encode the read path
information into the bifurcation file fbifur in different ways.

If the node is a Simple node, nothing needs to be encoded. If it is a Tip node, the
read nucleotide is encoded in the 2-bit manner to the file fbifur . If it is a Branch node, the
nucleotide in the path is encoded into file fbifur with the arithmetic encoder. The encoding
probability used by the arithmetic encoder is obtained from the frequency distribution
of the successors. In the worst case, if it is a New node, the New node position and read
nucleotide are encoded into the bifurcation file fbifur . Since the nucleotide of the read
must be different from the only one successor nucleotide of the New node in the graph,
the nucleotide we want encoding is one of three remaining nucleotides. According to the
entropy of information theory (Shannon, 1948), only approximately log23 bits are needed
to encode this nucleotide with the arithmetic encoder.

When the nucleotide encoding is complete, the current node moves to the next node
on the read path and continues the encoding process described above, until the entire read
sequence is encoded. The details of the encoding procedure are shown in Algorithm 1, and
an encoding example is shown in Fig. 3.

To efficiently store the nucleotides, we store the nucleotides and the positions separately
from the bifurcation file. We add a binary New nodes flag file fnumFlag to indicate whether
the current node is a New node. If the node is a New node, we add a bit ‘1′ to the file
fnumFlag ; otherwise, if the node is a Tip node or a Branch node, we add a bit ‘0′ to the file
fnumFlag .

When encoding the left path of the read, we use the reverse-complement of the read,
so that the process of encoding the left path is exactly the same as the right path. After
encoding the read r , we insert all k-mers generated from r to the de Bruijn graph as the
following reads reference.

Handling paired-end reads
The sequencing data can be generated from one or both ends of a fragment, which is known
as a single-end or paired-end library type. The latter type is widely used in many areas of
sequence analysis, such as genome assembly, read error correction and variant calling. The
paired information is in the form of two reads residing on the same lines in two files or

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 8/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.5611

Algorithm 1: The pseudocode of encoding one read with the dynamic de Bruijn
graph in the BdBG method.
Input : One read R in a bucket, read index position α.
Output: Bifurcation left path list Lp and right path list Rp for read R.

1 // encode the right path
2 k–mer← R[α,α+k−1];
3 for i← α to |R|−k+1 do
4 Rsucc ← Successors_in_graph(k–mer);
5 if size of Rsucc = 1 then
6 if R[i+k] =Rsucc then
7 // Simple node, nothing to do.
8 else
9 // New node, add read nucleotide and position to the path.
10 Rp.add(R[i+k],i+k);
11 end
12 k–mer←Rsucc ;
13 else
14 // Tip node or Branch node, add read nucleotide to the path.
15 Rp.add(R[i+k]);
16 k–mer← Suffix(k–mer,k−1)+R[i+k];
17 end
18 end
19 // encode the left path
20 k–mer← rc(R[α,α+k−1]);
21 for i← α to 0 do
22 Lsucc ← Successors_in_graph(k–mer);
23 if size of Lsucc = 1 then
24 if rc(R[i+k])= Lsucc then
25 // Simple node, nothing to do.
26 else
27 // New node, add read nucleotide and position to the path.
28 Lp.add(rc(R[i+k]),i+k);
29 end
30 k–mer← Lsucc ;
31 else
32 // Tip node or Branch node, add read nucleotide to the path.
33 Lp.add(rc(R[i+k]));
34 k–mer← Suffix(k–mer,k−1)+ rc(R[i+k]);
35 end
36 end
37 // add all k–mers generated by read R into the de Bruijn graph.
38 graph.insert (Z(R,k));
39 return Lp,Rp;

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 9/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.5611

Figure 3 Schematic description of BdBG path encoding. (A) the path of three reads in the de Bruijn
graph is depicted, where the k-mer size is 3. The index anchor node is shown in blue, and the left path and
right path from the anchor are highlighted in red. The dotted lines indicate that the read path nodes do
not exist in the current de Bruijn graph. (B) the corresponding reads and the left path (in reverse comple-
ment, A↔ T, C↔ G) and the right path encoding list for these three reads are shown. Note that the first
read requires the information for all nodes (initialize graph=∅); the second read only need to record a
New node (3, G); and the third read needs to record a New node (0, A), and a Tip node (G).

Full-size DOI: 10.7717/peerj.5611/fig-3

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 10/16

https://peerj.com
https://doi.org/10.7717/peerj.5611/fig-3
http://dx.doi.org/10.7717/peerj.5611

alternatively located in a single file. BdBG stores the initial orders of reads to avoid the
loss of paired information caused by read bucketing. Because the original orders of reads
have a random uniform distribution after bucket rearrangement, storing the entire order
information requires approximately N ∗ log2(N) bits, where N is the number of reads.

Decompression
The main difference between the decompression and compression processes is that the
decompression process does not require read bucketing process. The decompression
process first decodes the first read sequence of each bucket from the file ffirSeq, the bucket
index from the file findex , and the number of reads per bucket from the file fcov . The length
and bucket index position per read are decoded from the file flen and the file findexPos, so the
length of the left and right paths per read in the de Bruijn graph is fixed.

We take decoding the right path as an example (the left path is symmetrical; the only
difference is that the decoded sequence is in reverse-complementary). We decode the
beginning of read using the bucket index as the read ‘anchor’, and four possible nucleotide
successors are queried in the de Bruijn graph. The number of successors for the node and
the auxiliary information from the file fnumFlag are queried to determine the node type.
The node can only be one of the four types of nodes defined in the encoding section. For
different node types, we use different decoding strategies for the read nucleotide.

If no successor exists, the current node is a Tip node, and we take 2 bits of data from the
file fbifurR and decode the nucleotide in the 2-bit manner.

If there is only one successor, the next 1 bit of data from the file fnumFlag is queried to
assist determine the node type. If it is true, the node is a New node, and log23 bits of data
from the file fbifurR are loaded and decoded it with the arithmetic decoder. Since we already
know that the only successor is not the read nucleotide X , for X ∈ {A,C,G,T }, we only
need to decode the nucleotide in the three remaining nucleotides {A,C,G,T }\ {X}. If it
is false, the node is a Simple node, and thus, the successor nucleotide is exactly the read
nucleotide we want to decode.

If more than one successor exists, the node is a Branch node, the probability distribution
of the successors is queried from the de Bruijn graph, and the nucleotide is decoded by the
arithmetic decoder from the file fbifurR.

After decoding the read nucleotide, the current node moves to the next node in the read
path and continues the above decoding process until the entire left and right paths are
decoded. After that, 1 bit from the file frc is loaded to determine whether the read should
be converted to the inverse complementary sequence. Then, all k-mers generated from the
read are inserted into the de Bruijn graph as the reference sequence for the subsequent read
decoding. Finally, the read characters ‘‘N’’ information is recovered from the file fN .

To decode paired-end read sequences, we rearrange the read orders according to the
information in the file forder . Thus, the output reads are the same as the original reads, and
the paired-end information is preserved.

Complexity
BdBG executes compression in two passes over reads: one pass dispatches similar reads
into the same bucket, and another pass encodes the read sequence into a list of bifurcations

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 11/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.5611

Table 1 Characteristics of the datasets used in the experiments.

Dataset ID Library type Organism Technology Read no. Len

ERR1147042 PE C. albicans Illumina GA IIX 2,969,502 101/101
ERR034088 PE S. enterica Illumina GA II 1,728,241 60/55
SRR554369 PE P. aeruginosa Illumina GA IIX 1,657,871 100/100
SRR959239 PE E. coli str.K-12 Illumina HiSeq 2000 2,686,416 98/98
ERR418881 PE S. aureus Illumina GA IIX 1,785,385 108/108
MH0001.081026 PE H.sapiens Gut Illumina GA 11,640,674 44/44
SRR327342 PE S.cerevisiae Illumina GA 15,036,699 63/75
SRR037452 SE H.sapiens Illumina GA 11,712,885 35

based on the de Bruijn graph. The latter is the only pass in the decompression process.
For a given read sequence, dispatching it into a bucket and encoding it in the de Bruijn
graph both require a number of operations proportional to the number of k-mers in
the read sequence itself. Thus, the time complexity for compression/decompression is
O((L−k+1)∗N)=O(N), where L is the read length, k is the k-mer size and N is the
number of read sequences.

In both the compression and decompression processes, two main data structures are
stored in the main memory: the raw read sequences and the k-mers generated from the
read sequences. These data structures consume a maximum space and complexity equal
to O(2LN +2k(L−k+1)N)=O(N) in the compression/decompression process, where L
is the read length, k is the k-mer size and N is the number of read sequences, 2 is the fact
that each nucleotide takes up 2 bits of space.

RESULTS
We performed experiments with our BdBG method on eight different real genome and
transcriptome sequencing datasets. All datasets were obtained from the National Center
for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database and can
be downloaded according to the dataset ID, as described in Table 1. These datasets were
generated from different library types, organisms, and Illumina technologies. Since our
BdBG compression method did not preserve the read identifiers and the quality scores in
the FASTQ file, we only compared the compression results of the read sequences in the
FASTQ file.

We compared our proposed BdBG method against three compression methods: GZIP
(http://www.gzip.org/), LEON (Benoit et al., 2015), and MINCE (Patro & Kingsford, 2015).
The last one, MINCE was among the top de novo compression tools in the recent survey
(Numanagić et al., 2016). The compression results are shown in Table 2; default parameters
were used for all compression tools. The compression rates obtained by BdBG ranged from
0.2494 bpb (bits per base) in S.aureus to 1.2058 bpb in the gut of H.sapiens. Compared with
GZIP, LEON, andMINCE, our proposedBdBGmethod achieved a satisfactory compression
rate in all datasets. Our method improves upon the compression performances of GZIP,
LEON, and MINCE by up to 83%, 81%, and 52%, respectively.

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 12/16

https://peerj.com
https://www.ncbi.nlm.nih.gov/sra?term=ERR1147042
https://www.ncbi.nlm.nih.gov/sra?term=ERR034088
https://www.ncbi.nlm.nih.gov/sra?term=SRR554369
https://www.ncbi.nlm.nih.gov/sra?term=SRR959239
https://www.ncbi.nlm.nih.gov/sra?term=ERR418881
http://www.ncbi.nlm.nih.gov/nuccore/MH0001.081026
https://www.ncbi.nlm.nih.gov/sra?term=SRR327342
https://www.ncbi.nlm.nih.gov/sra?term=SRR037452
http://www.gzip.org/
http://dx.doi.org/10.7717/peerj.5611

Table 2 Compression size for various datasets.

Dataset ID Compression Rate (Bits Per Base) BdBG File Size Reduction

GZIP LEON MINCE BdBG GZIP LEON MINCE

ERR1147042 2.4098 1.5757 0.8609 0.5247 −78.23% −66.70% −39.05%
ERR034088 2.3678 1.8970 1.1335 0.9543 −59.70% −49.69% −15.81%
SRR554369 2.4390 1.5541 0.7533 0.5227 −78.57% −66.37% −30.61%
SRR959239 1.6703 1.3978 0.3635 0.2791 −83.29% −80.03% −23.22%
ERR418881 0.4784 1.3152 0.5149 0.2494 −47.87% −81.04% −51.56%
MH0001.081026 2.5483 1.3176 1.3659 1.2058 −52.68% −8.49% −11.72%
SRR327342 2.4870 0.6655 0.6540 0.6331 −74.54% −4.87% −3.20%
SRR037452 2.5301 1.7720 1.0617 0.9230 −63.52% −47.91% −13.06%

DISCUSSION
We have shown that our method, BdBG, can achieve improved compression performance
by combining the read bucketing and reference constructing methods. In the read sequence
bucketing step, BdBG extends the MINCE (Patro & Kingsford, 2015) read sequence
clustering method, which brings similar read sequences to close together and benefit
the downstream compression. In the reference constructing step, The de Bruijn graphs
we build continues the entire process of encoding the data, rather than constructing the
entire de Bruijn graph at the beginning of the encoding, as in the LEON (Benoit et al.,
2015) method does. Consequently, our method can avoid storing space-intensive de Bruijn
graph, which can effectively improve the compression rate. Furthermore, BdBG makes
full use of reads that have been encoded and improves the strategies for encoding the
bifurcation file by the arithmetic encoder.

The results indicated that our method of constructing dynamic de Bruijn graphs
with already-encoded read sequences was effective for compressing the genome and
transcriptome sequencing dataset. For instance, when two similar read sequences have
only one different nucleotide, the information (read index, position, nucleotide) must
be recorded for the general-purpose Lempel–Ziv (Ziv & Lempel, 1977) compression tool.
However, for our method with the de Bruijn graph, we only need to record the information
(position, nucleotide) without keeping track of the reference read index, because all the
reference sequence information is included in the de Bruijn graph. In a better case, if the
node is a Branch node caused by the different nucleotide, we only need to record the
information (nucleotide), which considerably reduces the storage space required to record
the variances in the read sequence.

CONCLUSIONS
In this paper, we proposed BdBG, a new alignment-free and reference-free compression
method, based on the concept of bucketing similar reads into the same bucket and
compressing reads in each bucket separately via dynamic de Bruijn graphs. By using the
bucket index as the read ‘anchor’, BdBG only needs to record a list of bifurcations for
encoding the raw read sequences in the de Bruijn graph. Moreover, BdBG employs the

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 13/16

https://peerj.com
https://www.ncbi.nlm.nih.gov/sra?term=ERR1147042
https://www.ncbi.nlm.nih.gov/sra?term=ERR034088
https://www.ncbi.nlm.nih.gov/sra?term=SRR554369
https://www.ncbi.nlm.nih.gov/sra?term=SRR959239
https://www.ncbi.nlm.nih.gov/sra?term=ERR418881
http://www.ncbi.nlm.nih.gov/nuccore/MH0001.081026
https://www.ncbi.nlm.nih.gov/sra?term=SRR327342
https://www.ncbi.nlm.nih.gov/sra?term=SRR037452
http://dx.doi.org/10.7717/peerj.5611

dynamic de Bruijn graphs as the encoding reference sequence, thereby avoiding storage of
the de Bruijn graph and effectively further reducing the storage space. The experimental
results for the different datasets demonstrate the effectiveness of our proposed BdBG over
state-of-the-art methods.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their insightful comments on earlier versions of
this article.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Key Research and Development Programs (Nos.:
2016YFC0901605, 2016YFC1201702), and the Natural High-Tech R&D Programs (863)
of China (Nos.: 2015AA020101, 2015AA020108, 2014AA021505, 2012AA02A604). The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Key Research and Development Programs: 2016YFC0901605, 2016YFC1201702.
Natural High-Tech R&D Programs (863) of China: 2015AA020101, 2015AA020108,
2014AA021505, 2012AA02A604.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Rongjie Wang conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, approved the final draft.
• Junyi Li conceived and designed the experiments, prepared figures and/or tables,
approved the final draft.
• Yang Bai performed the experiments, prepared figures and/or tables, authored or
reviewed drafts of the paper.
• Tianyi Zang conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the paper, approved the final draft.
• Yadong Wang conceived and designed the experiments, analyzed the data.

Data Availability
The following information was supplied regarding data availability:

DDBJ (https://www.ddbj.nig.ac.jp/index-e.html): ERR1147042, ERR034088,
ERR418881;

ELBM-EBI (https://www.ebi.ac.uk/): SRR554369, SRR959239, SRR327342, SRR037452;

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 14/16

https://peerj.com
https://www.ddbj.nig.ac.jp/index-e.html
https://www.ncbi.nlm.nih.gov/sra?term=ERR1147042
https://www.ncbi.nlm.nih.gov/sra?term=ERR034088
https://www.ncbi.nlm.nih.gov/sra?term=ERR418881
https://www.ebi.ac.uk/
https://www.ncbi.nlm.nih.gov/sra?term=SRR554369
https://www.ncbi.nlm.nih.gov/sra?term=SRR959239
https://www.ncbi.nlm.nih.gov/sra?term=SRR327342
https://www.ncbi.nlm.nih.gov/sra?term=SRR037452
http://dx.doi.org/10.7717/peerj.5611

BGI (https://www.bgi.com/) MH0001.081026 (http://public.genomics.org.cn/BGI/
gutmeta/High_quality_reads/MH0001/081026/MH0001_081026_clean.1.fq.gz; http:
//public.genomics.org.cn/BGI/gutmeta/High_quality_reads/MH0001/081026/MH0001_
081026_clean.2.fq.gz).

REFERENCES
Arram J, Pflanzer M, Kaplan T, LukW. 2016. FPGA acceleration of reference-based

compression for genomic data. In: International conference on field programmable
technology. 9–16.

Bassiouni MA. 1985. Data compression in scientific and statistical databases. IEEE
Transactions on Software Engineering (10):1047–1058.

Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, Rizk G. 2015.
Reference-free compression of high throughput sequencing data with a probabilistic
de Bruijn graph. BMC Bioinformatics 16(1):1–14.

Bonfield JK, MahoneyMV. 2013. Compression of FASTQ and SAM format sequencing
data. PLOS ONE 8(3):e59190 DOI 10.1371/journal.pone.0059190.

BurrowsM,Wheeler DJ. 1994. A block-sorting lossless data compression algorithm. Palo
Alto: Digital Equipment Corporation.

Chandak S, Tatwawadi K,Weissman T. 2017. Compression of genomic sequenc-
ing reads via hash-based reordering: algorithm and analysis. Bioinformatics
34(4):558–567.

Compeau PE, Pevzner PA, Tesler G. 2011.How to apply de Bruijn graphs to genome
assembly. Nature Biotechnology 29(11):987–991 DOI 10.1038/nbt.2023.

Cox AJ, Bauer MJ, Jakobi T, Rosone G. 2012. Large-scale compression of ge-
nomic sequence databases with the burrows–wheeler transform. Bioinformatics
28(11):1415–1419 DOI 10.1093/bioinformatics/bts173.

Fritz HY, Leinonen R, Cochrane G, Birney E. 2011. Efficient storage of high throughput
DNA sequencing data using reference-based compression. Genome Research
21(5):734–740 DOI 10.1101/gr.114819.110.

Ginart AA, Hui J, Zhu K, Numanagić I, Courtade TA, Sahinalp SC, David NT. 2018.
Optimal compressed representation of high throughput sequence data via light
assembly. Nature Communications 9(1):566–574 DOI 10.1038/s41467-017-02480-6.

Grabowski S, Deorowicz S, Roguski L. 2015. Disk-based compression of data from
genome sequencing. Bioinformatics 31(9):1389–1395
DOI 10.1093/bioinformatics/btu844.

Hach F, Numanagić I, Alkan C, Sahinalp SC. 2012. SCALCE: boosting sequence
compression algorithms using locally consistent encoding. Bioinformatics
28(23):3051–3057 DOI 10.1093/bioinformatics/bts593.

Holley G,Wittler R, Stoye J, Hach F. 2018. Dynamic alignment-free and reference-free
read compression. Journal of Computational Biology 25(7):825–836.

Huang ZA,Wen Z, Deng Q, Chu Y, Sun Y, Zhu Z. 2017. LW-FQZip 2: a parallelized
reference-based compression of FASTQ files. BMC Bioinformatics 18(1):179
DOI 10.1186/s12859-017-1588-x.

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 15/16

https://peerj.com
https://www.bgi.com/
http://www.ncbi.nlm.nih.gov/nuccore/MH0001.081026
http://public.genomics.org.cn/BGI/gutmeta/High_quality_reads/MH0001/081026/MH0001_081026_clean.1.fq.gz
http://public.genomics.org.cn/BGI/gutmeta/High_quality_reads/MH0001/081026/MH0001_081026_clean.1.fq.gz
http://public.genomics.org.cn/BGI/gutmeta/High_quality_reads/MH0001/081026/MH0001_081026_clean.2.fq.gz
http://public.genomics.org.cn/BGI/gutmeta/High_quality_reads/MH0001/081026/MH0001_081026_clean.2.fq.gz
http://public.genomics.org.cn/BGI/gutmeta/High_quality_reads/MH0001/081026/MH0001_081026_clean.2.fq.gz
http://dx.doi.org/10.1371/journal.pone.0059190
http://dx.doi.org/10.1038/nbt.2023
http://dx.doi.org/10.1093/bioinformatics/bts173
http://dx.doi.org/10.1101/gr.114819.110
http://dx.doi.org/10.1038/s41467-017-02480-6
http://dx.doi.org/10.1093/bioinformatics/btu844
http://dx.doi.org/10.1093/bioinformatics/bts593
http://dx.doi.org/10.1186/s12859-017-1588-x
http://dx.doi.org/10.7717/peerj.5611

Huffman DA. 1952. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE 40(9):1098–1101 DOI 10.1109/JRPROC.1952.273898.

Jones DC, RuzzoWL, Peng X, Katze MG. 2012. Compression of next-generation
sequencing reads aided by highly efficient de novo assembly. Nucleic Acids Research
40(22):e171 DOI 10.1093/nar/gks754.

Kingsford C, Patro R. 2015. Reference-based compression of short-read sequences using
path encoding. Bioinformatics 31(12):1920–1928 DOI 10.1093/bioinformatics/btv071.

Limasset A, Cazaux B, Rivals E, Peterlongo P. 2016. Read mapping on de Bruijn graphs.
BMC Bioinformatics 17(1):237 DOI 10.1186/s12859-016-1103-9.

Loh PR, BaymM, Berger B. 2012. Compressive genomics. Nature Biotechnology
30(7):627–630 DOI 10.1038/nbt.2241.

Numanagić I, Bonfield JK, Hach F, Voges J, Ostermann J, Alberti C, Mattavelli M,
Sahinalp SC. 2016. Comparison of high-throughput sequencing data compression
tools. Nature Methods 13(12):1005.

Patro R, Kingsford C. 2015. Data-dependent bucketing improves reference-free
compression of sequencing reads. Bioinformatics 31(17):2770–2777.

Roberts M, HayesW, Hunt BR, Mount SM, Yorke JA. 2004. Reducing storage re-
quirements for biological sequence comparison. Bioinformatics 20(18):3363–3369
DOI 10.1093/bioinformatics/bth408.

Roguski Ł, Deorowicz S. 2014. DSRC 2—Industry-oriented compression of FASTQ files.
Bioinformatics 30(15):2213–2215 DOI 10.1093/bioinformatics/btu208.

Roguski L, Ochoa I, Hernaez M, Deorowicz S. 2018. FaStore—a space-saving solution
for raw sequencing data. Bioinformatics 1:2748–2756.

Sahinalp SC, Vishkin U. 1996. Efficient approximate and dynamic matching of patterns
using a labeling paradigm. In: Foundations of computer science, 1996. Proceedings.,
37th annual symposium on. IEEE, 320–328.

Sarkar H, Patro R. 2017. Quark enables semi-reference-based compression of RNA-seq
data. Bioinformatics 33(21):3380–3386 DOI 10.1093/bioinformatics/btx428.

Shannon CE. 1948. A mathematical theory of communication. The Bell System Technical
Journal 27(3):379–423 DOI 10.1002/j.1538-7305.1948.tb01338.x.

Shkarin D. 2002. PPM: one step to practicality. In: Data compression conference, 2002.
Proceedings. DCC 2002. IEEE, 202–211.

Solomon D, Motta G. 2010.Handbook of data compression. London: Springer-Verlag.
Zhang Y, Linsen L, Xiao J, Yang Y, Zhu Z. 2015a. Lossless reference-based compression

of next generation sequencing data in FASTQ format. In: Proceedings of the 18th
Asia Pacific symposium on intelligent and evolutionary systems, volume 2. New York:
Springer-Verlag, 127–135.

Zhang Y, Li L, Yang Y, Yang X, He S, Zhu Z. 2015b. Light-weight reference-based
compression of FASTQ data. BMC Bioinformatics 16(1):188
DOI 10.1186/s12859-015-0628-7.

Ziv J, Lempel A. 1977. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23(3):337–343 DOI 10.1109/TIT.1977.1055714.

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.5611 16/16

https://peerj.com
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1093/nar/gks754
http://dx.doi.org/10.1093/bioinformatics/btv071
http://dx.doi.org/10.1186/s12859-016-1103-9
http://dx.doi.org/10.1038/nbt.2241
http://dx.doi.org/10.1093/bioinformatics/bth408
http://dx.doi.org/10.1093/bioinformatics/btu208
http://dx.doi.org/10.1093/bioinformatics/btx428
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1186/s12859-015-0628-7
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.7717/peerj.5611

