A new species of *Leptobrachium* (Anura, Megophryidae) from western Thailand (#29477)

First submission

Editor guidance

Please submit by 12 Aug 2018 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data. Download from the location described by the author.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 6 Figure file(s)
- 3 Table file(s)
- 2 Raw data file(s)

DNA data checks

- Have you checked the authors data deposition statement?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Vertebrate animal usage checks

- Have you checked the authors <u>ethical approval statement?</u>
- Were the experiments necessary and ethical?
- Have you checked our <u>animal research policies</u>?

Field study

- Have you checked the authors <u>field study permits</u>?
- Are the field study permits appropriate?

New species checks

- Have you checked our <u>new species policies</u>?
- Do you agree that it is a new species?
- Is it correctly described e.g. meets ICZN standard?

For assistance email peer.review@peerj.com

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to Peerl standards, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see Peerl policy).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

A new species of *Leptobrachium* (Anura, Megophryidae) from western Thailand

Parinya Pawangkhanant 1 , Nikolay A Poyarkov $^{\text{Corresp., 2,3}}$, Tang Van Duong 2,4 , Mali Naiduangchan 5 , Chatmongkon Suwannapoom $^{\text{Corresp. 1}}$

Corresponding Authors: Nikolay A Poyarkov, Chatmongkon Suwannapoom Email address: n.poyarkov@gmail.com, chatmongkonup@gmail.com

We describe a new species of the genus Leptobrachium from the Khao Laem Mountain, Suan Phung District, Ratchaburi Province, Tenasserim Region, western Thailand, based on molecular and morphological evidence. The new species, Leptobrachium tenasserimense **sp. nov.**, can be distinguished from all other congeners by the following combination of characters: (1) adult SVL of 41.4-58.8 mm in males and 54.7-58.6 mm in females; (2) rounded finger and toe tips; (3) relative finger lengths: II<IV<I<IIII; relative toe lengths: I<II<V<III<IV; (4) toe webbing thick and well developed; (5) inner metatarsal tubercle small; (6) iris bicolored, black ventrally and turquoise dorsally, with light blue sclera; (7) dorsum brown to grey with distinct darker markings edged with brown; (8) belly and limbs ventrally whitish with contrasting confluent black reticulations; (9) tympanum mostly free of dark marking; (10) narrow dark canthal stripe present; (11) lateral row of dark spots absent; (12) limbs dorsally with distinct dark bars; tibia with 4-5 dark transverse bars; (13) dense dark reticulation or large dark blotch at groin continuing to ventral and posterior sides of thighs; (14) femoral gland in shape of large white blotch; (15) males with single vocal sac, mature males lack lip spinules. Our study provides further evidence for a hidden biodiversity of montane areas of Tenasserim Region on the border of Thailand and Myanmar.

¹ Division of Fishery, School of Agriculture and Natural Resources, University of Phayao, Phayao, Thailand

² Faculty of Biology, Department of Vertebrate Zoology, Moscow State University, Moscow, Russia

³ Laboratory of Tropical Ecology, Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam

⁴ Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hanoi, Vietnam

⁵ Rabbit in the Moon Foundation, Suan Phung, Ratchaburi, Thailand

1 A new species of Leptobrachium (Anura, Megophryidae) from western Thailand

2

- 3 Parinya Pawangkhanant¹, Nikolay A. Poyarkov, Jr. ^{2,3}, Tang Van Duong^{2,4}, Mali Naiduangchan⁵,
- 4 Chatmongkon Suwannapoom¹

5

- 6 ¹ Division of Fishery, School of Agriculture and Natural Resources, University of Phayao,
- 7 Phayao, Thailand
- 8 ² Faculty of Biology, Department of Vertebrate Zoology, Moscow State University, Moscow,
- 9 Russia
- 10 ³ Laboratory of Tropical Ecology, Joint Russian-Vietnamese Tropical Research and
- 11 Technological Center, Hanoi, Vietnam
- 12 ⁴ Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hanoi,
- 13 Vietnam
- 14 ⁵ Rabbit in the Moon Foundation, Suan Phung, Ratchaburi, Thailand

15

- 16 Corresponding authors: Chatmongkon Suwannapoom (chatmongkonup@gmail.com); Nikolay
- 17 A. Poyarkov (n.poyarkov@gmail.com)

18

- 19 Abstract:
- 20 We describe a new species of the genus Leptobrachium from the Khao Laem Mountain, Suan
- 21 Phung District, Ratchaburi Province, Tenasserim Region, western Thailand, based on molecular
- and morphological evidence. The new species, Leptobrachium tenasserimense sp. nov., can be
- 23 distinguished from all other congeners by the following combination of characters: (1) adult SVL
- of 41.4–58.8 mm in males and 54.7–58.6 mm in females; (2) rounded finger and toe tips; (3)
- 25 relative finger lengths: II<IV<I<III; relative toe lengths: I<II<V<IIII<IV; (4) toe webbing thick
- and well developed; (5) inner metatarsal tubercle small; (6) iris bicolored, black ventrally and
- turquoise dorsally, with light blue sclera; (7) dorsum brown to grey with distinct darker markings
- 28 edged with brown; (8) belly and limbs ventrally whitish with contrasting confluent black
- 29 reticulations; (9) tympanum mostly free of dark marking; (10) narrow dark canthal stripe present;
- 30 (11) lateral row of dark spots absent; (12) limbs dorsally with distinct dark bars; tibia with 4–5
- 31 dark transverse bars; (13) dense dark reticulation or large dark blotch at groin continuing to

- ventral and posterior sides of thighs; (14) femoral gland in shape of large white blotch; (15)
- males with single vocal sac, mature males lack lip spinules. Our study provides further evidence
- 34 for a hidden biodiversity of montane areas of Tenasserim Region on the border of Thailand and
- 35 Myanmar.
- 36 **Key words:** Leptobrachium tenasserimense sp. nov.; taxonomy; mtDNA; Tenasserim;
- 37 Ratchaburi Province; phylogeny; biodiversity; Indochina; Amphibia; Spadefoot toad

40

41

42

43

44

45

46

Introduction

The frog family Megophryidae is a key element of Southeast Asian herpetofauna, currently includes 218 species, and is distributed throughout Pakistan and southern China southwards to the Philippines and the Greater Sunda Islands (*Frost, 2018*). Due to the high unrecognized diversity and morphological similarity of many species within the family, molecular phylogenetic tools are crucial for studies of the group's taxonomy, which currently remains in a constant state of flux (*Matsui et al., 2010; Matsui, 2013; Poyarkov et al., 2015, 2017; Chen et al., 2017, 2018*).

47 The genus Leptobrachium Tschudi, 1838 (asian spadefoot toads) currently includes 35 species, which are widely distributed from southern China westwards to northeastern India and 48 49 Myanmar, through Indochina mainland to peninsular Malaysia, Borneo, Sumatra, Java and Philippines (Frost, 2018; Sondhi & Ohler, 2011; Stuart et al. 2011, 2012; Yang et al., 2016). 50 51 Leptobrachium frogs have recently been included in several phylogenetic studies (Frost et al., 2006; Rao & Wilkinson, 2008; Zheng et al., 2008; Brown et al., 2009; Zhang et al., 2010; 52 Matsui et al., 2010; Wogan, 2012; Yang et al., 2016; Li et al. 2018). At the genus level, all these 53 studies agree that Leptobrachium species are grouped into two major clades: the Sundaland/ 54 55 western Indochina Clade, composed of species from Sundaland, southern Thailand and southern Myanmar (corresponding to the subgenus *Leptobrachium* sensu stricto), and the China/ eastern 56 Indochina Clade, composed of species from eastern Indochina and southern China, including 57 Hainan Island (corresponding to the subgenus *Vibrissaphora*). At the species level, a number of 58 analyses have revealed the presence of unrecognized cryptic diversity with a number of 59 previously unknown mitochondrial DNA (mtDNA) lineages found throughout Asia, likely 60 corresponding to yet undescribed species (Brown et al., 2009; Hamidy et al., 2012; Matsui et al., 61 2010; Yang et al., 2016). 62

To date, three *Leptobrachium* species were documented in Thailand, which belong to two *Leptobrachium* subgenera: *Leptobrachium (Vibrissaphora) chapaense* (Bourret) (according to recent molecular data, populations from northern Thailand likely correspond to *L. huashen* Fei & Ye, described from the southern part of Yunnan Province of China, see *Yang et al., 2016* for discussion), *L. hendricksoni* Taylor, and *L. smithi* Matsui, Nabhitabhata & Panha (the letter two species belong to the subgenus *Leptobrachium* sensu stricto). Previous records of *L. hasseltii* Tschudi, *L. nigrops* Berry & Hendrickson, and *L. pullum* (Smith) for Thailand appear to be based on misidentifications or require further confirmation (see *Taylor, 1962*; *Matsui et al., 1999*; *Wogan, 2012*; *Brown et al., 2009*). A recent molecular study by *Matsui et al. (2010)* based on the analysis of tissues obtained from larval specimens of *Leptobrachium* sp., collected in Pilok District of Kanchanaburi Province in Tenasserim Region, revealed the presence of a previously unknown mtDNA-lineage, denoted as "*Leptobrachium* sp. 4".

During our field work in mountain areas of western Thailand we discovered and collected a medium-sized species of *Leptobrachium* that most closely resembles *L. smithi* and *L. rakhinense* Wogan (originally described as *L. rakhinensis*), but distinctly differs from these and all other recognized congeners in morphological characters. Subsequent analyses of 16S rRNA mtDNA gene sequences confirmed that this population is conspecific with the lineage "*Leptobrachium* sp. 4" of *Matsui et al.* (2010) and confirmed that it represents an undescribed species of *Leptobrachium*. In this paper we present an updated mtDNA-based genealogy for *Leptobrachium*, and apply integrative taxonomic analysis to describe the Tennasserim population as a new species.

Materials and methods

Nomenclatural acts. The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone (see Articles 8.5-8.6 of the Code). This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information can be viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this

publication is as follows: urn:lsid:zoobank.org:pub:766A1EC7-4D17-412D-9DA6-C64E75EA3AFE. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central and CLOCKSS.

Sampling. Specimens were collected on Khao Laem Mountain, Suan Phung District, Ratchaburi Province, western Thailand, by Parinya Pawangkhanant and Chatmongkon Suwannapoom. The geographic position of the surveyed locality and the distribution of the members of the *L. smithi* complex in Indochina are shown in Fig. 1. Geographic coordinates and elevation were obtained using a Garmin GPSMAP 60CSx and recorded in WGS 84 datum. Specimens were fixed in 10% buffered formalin after tissues were preserved in 95% ethanol. Specimens were later transferred to 70% ethanol. Specimens and tissues were subsequently deposited in the herpetological collections of the School of Agriculture and Natural Resources, University of Phayao (AUP, Phayao, Thailand) and of the Zoological Museum of Moscow University (ZMMU, Moscow, Russia).

Specimens collection protocols and animal use were approved by the Institutional Ethical Committee of Animal Experimentation of the University of Phayao, Phayao, Thailand (certificate number UP-AE59-01-04-0022 issued to Chatmongkon Suwannapoom) and were strictly complacent with the ethical conditions of the Thailand Animal Welfare Act. Field work, including collection of animals in the field and specimen exportation, was authorized by the Institute of Animals for Scientific Purpose Development (IAD), Bangkok, Thailand (permit number U1-01205-2558, issued to Chatmongkon Suwannapoom).

Morphology. Sex of adult individuals was determined using gonadal dissection or by direct observation of calling in life. Measurements were taken to the nearest 0.01 mm using a digital caliper and subsequently rounded to a precision of 0.1 mm. The following 24 morphological characteristics were measured following Matsui (1984): (1) snout-vent length (SVL); (2) head length (HL); (3) snout length (SL); (4) snout-nostril length (S-NL); (5) nostrileyelid length (N-EL); (6) eye length (EL); (7) tympanum-eye length (T-EL); (8) tympanum diameter (TD); (9) head width (HW); (10) intercanthal distance (ICD); (11) internarial distance (IND); (12) interorbital distance (IOD); (13) upper eyelid width (UEW); (14) upper eyelid margin distance (UEMD); (15) fourth toe length (FTL); (16) first finger length (FFL); (17) outer palmar tubercle length (OPTL); (18) inner palmar tubercle length (IPTL); (19) tibia length (TL); (20) foot length (FL); (21) hindlimb length (HLL); (22) hand length (HAL); (23) forearm width

PeerJ

134

135

136

137

138

139

140

141

142

143

- 125 (FAW); and (24) inner metatarsal tubercle length (IMTL). Webbing formula is given following
 126 Savage (1975). Terminology for eye coloration description in living individuals is in accordance
 127 with Glaw & Vences (1997). Sexual size dimorphism index (SDI) was calculated following
 128 Wogan (2012) as mean female SVL divided by mean male SVL of adult individuals.
- The morphological characteristics for comparison and the data on their states in other species of *Leptobrachium* were taken from the following studies: *Bain et al.* (2009); *Bourret* (1937); *Fei et al.* (2005, 2009, 2012); *Lathrop et al.* (1998); *Matsui* (2013); *Matsui et al.* (1999); Ohler et al. (2004); Orlov (2005); Rao et al. (2006); Sondhi & Ohler (2011); Stuart et al. (2006, 2011, 2012); Wogan (2012); Yang et al. (2016).
 - DNA isolation and sequencing. Total DNA was extracted from ethanol-preserved muscle or liver tissues using standard phenol-chloroform extraction procedures (*Hillis et al.*, 1996) followed with isopropanol precipitation. We used the primers 16SL-1 and 16SH-1 from Hedges (1994) to amplify ~537 base pairs of the 16S rRNA mtDNA gene for the new species. For PCR conditions and primer sequences see Poyarkov et al. (2015), Nguyen et al. (2018) and Duong et al. (2018). PCR products were sent to Evrogen (Moscow, Russia) for subsequent purification and sequencing in both directions. The obtained sequences were checked by eye using Chromatogram Editor software DNABaser v4.20.0; primer sequences were removed and the edited sequences were submitted to GenBank under the accession numbers MH581080–MH581082 (Table 1).
- Phylogenetic analyses. The matrilineal genealogy was assumed to reflect the 144 phylogenetic relationships of the species. To assess the genealogical relationships within the 145 genus Leptobrachium, in addition to the newly collected specimens, 12S rRNA - 16S rRNA 146 mtDNA fragment sequences of all currently recognized Leptobrachium species were included in 147 the genetic analysis (see Table 1 for details). Sequences of *Oreolalax rhodostigmatus* Hu & Fei, 148 Scutiger chintingensis Liu & Hu, Leptobrachella melanoleuca (Matsui), Megophrys nasuta 149 (Schlegel) (Megophryidae) and Pelodytes punctatus (Daudin) (Pelodytidae) were used as 150 outgroups (Table 1). Sequences were initially aligned using the ClustalW (Thompson et al., 151 1997) and consequently checked and adjusted in Bioedit 7.0.5 (Hall, 1999) with default 152 parameters. In total, a dataset of 81 ingroup and 5 outgroup sequences with a total length of up to 153 2494 bp was used for the analysis. 154

PartitionFinder v.1.1.0 (Lanfear et al., 2012) was applied to estimate the optimal 155 evolutionary models for the dataset analysis. The best-fitting model of DNA evolution was the 156 GTR+I+G, as suggested by the Akaike Information Criterion (AIC) and the Bayesian 157 Information Criterion (BIC). The matrilineal genealogy was inferred using Maximum Likelihood 158 (ML) and Bayesian inference (BI) approaches. Maximum likelihood analysis was conducted in 159 RAxML v8.2.4 (Stamatakis, 2014). BI analyses were conducted using MrBayes v.3.1.2 160 (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003); Metropolis-coupled Markov 161 chain Monte Carlo (MCMCMC) analyses were run with one cold chain and three heated chains 162 for ten million generations and sampled every 1000 generations; five independent MCMCMC 163 runs were performed and 1000 trees were discarded as burn-in. Confidence in node topology was 164 assessed by posterior probability (BI PP, see Huelsenbeck & Ronquist, 2001) for BI and by non-165 166 parametric bootstrapping with 1000 replicates (ML BS, see Felsenstein, 1985) for ML analyses. Tree nodes with bootstrap (ML BS) values 70% or greater and Bayesian posterior probabilities 167 (BI PP) values over 0.95 were a priori regarded as sufficiently resolved (Felsenstein, 2004; 168 Hillis & Bull, 1993; Huelsenbeck & Hillis, 1993), while ML BS values between 70% and 50% 169 170 (BI PP between 0.95 and 0.90) were treated as tendencies and nodes with ML BS values below 50% (BI PP below 0.90) were regarded as unresolved. Mean uncorrected genetic distances (p-171 172 distances) between sequences and species were calculated using MEGA 7.0 (Kumar et al., 2016). 173

174

175

176

177

178

179

180

181

182

183

184

185

Results

Molecular relationships. Both BI and ML analyses resulted in highly similar topologies (Fig. 2). Genealogical relationships of the genus *Leptobrachium* correspond well to those reported by *Matsui et al. (2010)* and suggest its division into two reciprocally monophyletic groups, which correspond to the subgenus *Leptobrachium* sensu stricto from Sundaland, Philippines, Malayan Peninsula, western Thailand and Myanmar, and the subgenus *Vibrissaphora*, including species from southern China, northern Thailand and eastern Indochina (Vietnam, Cambodia and Laos) (see Fig. 2). The latter subgenus is subdivided into two subclades: V-I, comprised of species from southern China and northern Indochina, and subclade V-II, which includes species from southern and central parts of Annamite Mountains in eastern Indochina (Fig. 2). Subgenus *Leptobrachium* sensu stricto is subdivided into three subclades, the

genealogical relationships among which are essentially unresolved: subclade L-I includes *L. smithi*, *L. rakhinense* and an undescribed species *Leptobrachium* sp. from Tenasserim Region of Thailand (*L. smithi* complex); subclade L-II comprises taxa from Borneo, Sumatra and Philippines (*L. montanum* Fischer complex); and subclade L-III includes species from southern Thailand, Malay Peninsula, Java, Bali, Sumatra and Borneo (*L. hasseltii – L. hendricksoni – L. nigrops* complex).

The unknown *Leptobrachium* species from the Ratchaburi Province of Thailand is predictably placed within the Sundaland/ western Indochina clade of *Leptobrachium* as a member of *L. smithi* species complex. It is grouped with high node support (1.0/100, hereafter node support values are given for BI PP/ BS ML, respectively) with the "*Leptobrachium* sp. 4" sample of Matsui et al. (2010) from Pilok District of Kanchanaburi Province, and together they unambiguously form a sister mtDNA lineage to the group including *L. smithi* and *L. rakhinense* (1.0/100, see Fig. 2).

Genetic divergence. The uncorrected pairwise divergences in the 16S rRNA gene fragment within and among *Leptobrachium* species examined in our analysis are summarized in Supplementary Table 1. The observed interspecific genetic distances ranged from p = 0.9% (between *L. hainanense* Ye & Fei and *L. guangxiense* Fei, Mo, Ye & Jiang) to 23.6% (between *L. promustache* (Rao, Wilkinson & Zhang) and *Leptobrachium* sp. from Tenasserim). The undescribed *Leptobrachium* species from Tenasserim was found to be most closely related to *L. smithi* (p = 10.4%) and *L. rakhinense* (p = 10.5%). These levels of divergences in 16S rRNA gene are notably higher than those observed between many recognized species of *Leptobrachium* (see Supplementary Table 1). Intraspecific genetic variation in the 16S rRNA gene fragment was 0.0–0.8% in the undescribed *Leptobrachium* species from Tenasserim, 0.0% in *L. rakhinense*, and 0.0–1.3% in *L. smithi*, respectively.

Systematics

Our analysis unambiguously suggests that the population of *Leptobrachium* sp. from the Tenasserim Region mountains in western Thailand is a member of the *L. smithi* species complex and represents a distinct highly-divergent mtDNA lineage with sister relationship to the group including *L. smithi* and *L. rakhinense*. As we show below, the observed molecular differences correspond to the differences in external morphological traits, which are considered to be useful

for the diagnostics of *Leptobrachium* species, and allow to distinguish *Leptobrachium* sp. from all other congeners. Based on molecular and morphological lines of evidence, we hence consider the *Leptobrachium* sp. from the Tenasserim as a new species and describe it herein.

- Leptobrachium tenasserimense sp. nov.
- 222 (Figs. 3–6; Tables 2 and S1)

- 224 Chresonymy:
- 225 "Leptobrachium sp. 4" Matsui et al., 2010: 263.
- Holotype. AUP-00362, an adult male, collected from montane forest of Khao Laem Mt., Suan Phung District, Ratchaburi Province, western Thailand (13°32'50.35" N, 99°12'14.18" E; elevation 715 m a.s.l.) on September 8, 2017, by Parinya Pawangkhanant (Figs. 3–4).
 - **Paratypes.** Five adult males: AUP-00360, AUP-00361, AUP-01284 (field ID NAP-06598), AUP-01285 (field ID NAP-06599) and ZMMU A-5919 (field ID NAP-06600); and two adult females: AUP-01283 (field ID NAP-06596) and ZMMU A-5918 (field ID NAP-06597); all specimens with collection information same as for the holotype.
 - **Etymology.** The specific name is a Latinized toponymic adjective in neutral gender derived from "Tenasserim" a historical name of the region in the northern part of the Malayan Peninsula in southern Indochina, and for the mountain chain known as "Tenasserim Hills", where the new species occurs.

Diagnosis. A member of the genus *Leptobrachium* on the basis of head width being larger than tibia length; skin dorsally with a network of ridges; oval and large axillary glands present; extremities of digits rounded; breeding males lacking spines on fingers and breast; and bicolored iris (*Yang et al., 2016*). The new species can be distinguished from other congeners by the following combination of morphological characteristics: (1) medium-sized species, with adult SVL of 41.4–58.8 mm in males and 54.7–58.6 mm in females; (2) rounded finger and toe tips; (3) relative finger lengths: II<IV<I<III; relative toe lengths: I<II<V<IIIIII, (4) toe webbing thick and well developed; (5) inner metatarsal tubercle comparatively small; (6) iris bicolored, black ventrally and turquoise dorsally, with light blue sclera; (7) dorsum brown to grey with distinct darker markings edged with brown, dark head markings usually distinct; (8) belly and limbs ventrally whitish with dense contrasting confluent black blotches and reticulations; (9)

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

tympanum; (10) dark canthal stripe present, narrow, not covering loreal region; (11) lateral row of dark spots or blotches absent; (12) limbs, including fingers and toes, dorsally with distinct dark bars; tibia with 4–5 dark transverse bars; (13) dense dark reticulation or large dark blotch at groin continuing to ventral and posterior sides of thighs; (14) femoral gland in shape of large white blotch; (15) males with single vocal sac, mature males lack lip spinules.

Description of holotype. Adult male with SVL 58.8 mm; habitus robust, body slightly tapering to groin (Fig. 3A,B). Head. Head broad and flattened, slightly wider (HW to SVL ratio 41.7%) than long (HL to SVL ratio 40.5%), HW/HL ratio 102.9%; snout gently rounded in dorsal view, sharply sloping in profile, notably projecting beyond lower jaw in lateral view; nostrils round with a dorsolateral orientation, located below canthus rostralis, closer to tip of snout than to eye (N-EL to SVL ratio 10.6%); canthus rostralis distinct, sharp; loreal region slightly concave, steep; internarial distance (IND to SVL ratio 7.6%) twice shorter than interorbital distance (IOD to SVL ratio 16.1%), IND/IOD ratio 47.1%; eyes large, bulging, distinctly projecting from sides of head in lateral and dorsal views, eye diameter slightly smaller (EL to SVL ratio 12.7%) than snout length (SL to SVL ratio 18.2%); interorbital distance (IOD to SVL ratio 16.1%) two times greater than upper eyelid width (UEW to SVL ratio 8.1%); pineal ocellus absent; tympanum distinct, round, not depressed relative to surrounding area, tympanum diameter (TD to SVL ratio 5.3%) almost a half of eye diameter (TD/EL ratio 41.6%), comprising ca. two thirds of the distance between tympanum and eye (TD/TEL ratio 67.5%); no vomerine teeth; tongue large, broad and unnotched; vocal sac single, gular. Limbs. Forelimbs slender, long; fingers slender (Fig. 3C), free of webbing; finger tips rounded and slightly swollen; relative finger lengths: II<IV<I<III; all fingers with weak dermal fringes to tips; two strong semi-circular palmar tubercles, prominent, bulging, contacting each other medially, much larger than finger tips, inner palmar tubercle slightly smaller than outer palmar tubercle; callous tissue forming low ridges on ventral surfaces of all fingers, subdigital ridges distinctly divided into three subarticular tubercles on finger III and into 2 subarticular tubercles on finger IV; nuptial pads absent. Hindlimbs relatively short, slender (HLL to SVL ratio 114.7%); heels not contacting when legs held at right angles to body; tibia distinctly longer (TL to SVL ratio 35.2%) than foot (FL to SVL ratio 27.0%), FL/TL ratio 76.6%; tibiotarsal articulation of adpressed limb reaching to the level of middle of tympanum. Toes slightly flattened (Fig. 3D), all with thick dermal lateral ridges; toe

webbing thick and well-developed, toe webbing formula: I 1–2 II 1–3 III 1–3 ½ IV 3¾–1½ V. Tips rounded, slightly swollen; relative toe lengths: I<II<V<III<IV; all toes with thick dermal lateral fringes reaching to the toe tips. Subarticular tubercles indistinct, replaced by elongated low callous ridges; inner metatarsal tubercle distinct, oval, comparatively small (IML to SVL ratio 4.9%) comprising ca. 30.0% of distance between tip of toe I and tubercle; outer metatarsal tubercle absent. Skin. Cornified spinules or spines on upper lip absent. Skin dorsally with distinct network of dermal ridges, with minute granules scattered on dorsal surface of head, especially on interorbital region, granules getting denser on upper eyelid; ventral surfaces weakly granular, granules getting more distinct on belly and body flanks; supratympanic ridge low, distinct, running from posterior corner of eye to axilla; limbs smooth ventrally, with dermal ridges dorsally, forming dense longitudinal rows on upper arm; flat axillary gland barely distinct at medial border of axilla behind arm insertion; femoral gland flat, small, rounded, present on distal half of posteroventral surface of thigh closer to knee than to vent.

Measurements of holotype (all in mm). SVL 58.8; HL 23.8; SNL 4.9; NEL 6.2; SL 10.7; EL 7.5; TEL 4.6; TD 3.1; HW 24.5; IND 4.5; ICD 9.8; IOD 9.4; UEW 4.8; UEMD 20.4; FFL 6.9; OPTL 2.4; IPTL 1.5; HAL 11.2; FAW 4.1; HLL 67.4; TL 20.7; FL 15.8; FTL 9.2; IMTL 2.9.

Coloration of holotype in life. In life, dorsally grayish-brown with three large dark-brown blotches in interorbital region forming an inverted V-shaped pattern and less distinct dark blotches on dorsum (Fig. 4B,C); all blotches edged with dark-brown; a fine black canthal stripe running along canthus rostralis from anterior corner of eye to nostril bifurcating ventrally posterior to nostril; loreal region and upper jaw brown separated by a thin dark-brown line from light-gray tip of snout, a prominent (thick black) supratympanic stripe running along the supratympanic ridge from posterior corner of eye to mouth angle, getting wider above tympanum and covering the dorsal one-fourth of tympanum; dorsal background grayish in color laterally fading to lighter whitish color towards belly; axilla and groin with numerous irregular dark blotches; ventral surfaces with white to bluish-white background color heavily reticulated with contrasting black confluent blotches, getting denser posteriorly and towards groin (Fig. 3D); limbs dorsally dark-gray with distinct black bars: three bars on each thigh, four to five less distinct bars on shanks, two to three dark bars on tibiotarsus; ventrally limbs with numerous irregular black and white blotches; posterior surfaces of thighs banded with black bars confluent

with dark coloration on groin and flanks; small white spots scattered around vent. Iris bicolored, black to dark brown in lower two-thirds, whitish-turquoise in upper one-third; scleral arc bright light blue.

Coloration of holotype in preservative. In preservative (Fig. 3) the general coloration pattern did not change significantly, but dorsal brown coloration faded to dark-grey, bluish or cream tints and ventral coloration faded to white; black blotches on ventral surface, groin and posterior surfaces of thighs are distinct. Iris and sclera coloration completely faded.

Variation. Morphological variation of the type series is presented in Table 2. In general, morphology and coloration of the type species are similar with that described for the holotype. Males have smaller body size (mean SVL 49.3±4.8; N=6) than female paratypes (mean SVL 56.7±2.0; N=2); SDI index equals 1.15. Details of paratype female (ZMMU A-5918) coloration in life are shown in Fig. 5. In life, females have much paler throat coloration and less contrasting black and white blotched pattern on belly (Fig. 5); females also tend to have slightly lighter coloration of dorsum than males (Fig. 6). Paratype female ZMMU A-5918 has no dark markings on tympanum (Fig. 6C).

Distribution. Currently known only from two localities in the northern part of Tenasserim: from the type locality in Suan Phung District, Ratchaburi Province (this work), and from Pilok District in Kanchanaburi Province (*Matsui et al., 2010*) (see Fig. 1). Occurrence in Phetchaburi Province of Thailand and in the adjacent parts of Tanintharyi Division of Myanmar is strongly anticipated.

Ecology and Natural history. Specimens of the new species were recorded along a slow-flowing stream in a montane tropical forest on Khao Laem Mountain at elevations from 700 to 1000 m a.s.l. (see Fig. 4A). The polydominant tropical forest at the type locality had dense vegetation with tangles of the giant bamboo (*Dendrocalamus asper* (Schult.) Backer). Frogs were observed in leaf litter or under tree roots; males were calling during our field observations in August, September and November 2017. Amplexus was recorded in November 2017 (see Fig. 6C).

Herpetofauna species recorded sympatrically with the new species at the type locality include: *Leptobrachium smithi*, *Xenophrys* cf. *major* (Boulenger), *Leptobrachella melanoleuca* (Matsui), *Leptobrachella fuliginosa* (Matsui), *Amolops panhai* Matsui & Nabhitabhata, *Alcalus tasanae* (Smith), *Limnonectes jarujini* Matsui, Panha, Khonsue & Kuraishi, *Limnonectes doriae*

341 (Boulenger), Limnonectes macrognathus (Boulenger), Microhyla berdmorei (Blyth), 342 Acanthosaura crucigera Boulenger, Pseudoxenodon macrops (Blyth), Trimeresurus popeiorum 343 Smith, and Rhabdophis chrysargos (Schlegel). At the type locality of the new species in Khao 344 Laem Mountain L. smithi was recorded in the same biotopes as Leptobrachium tenasserimense 345 sp. nov. at elevations around 800 to 1200 m a.s.l. and the two species shared same streams for 346 reproduction.

Comparisons. Together with *L. smithi* and *L. rakhinense*, the new species belongs to subclade L1 of the Sundaland/ Thailand clade (subgenus *Leptobrachium*), which occurs in southern Myanmar, Thailand, Peninsular Malaysia, Sumatra, Java, Bali, Borneo, and the Philippines. Unrelated island *Leptobrachium* taxa are omitted from comparisons for simplicity. Thus, we compared *Leptobrachium tenasserimense* sp. nov. to the mainland members of the subgenus *Leptobrachium*, and to all other recognized species of *Leptobrachium* from Thailand and surrounding parts of Indochina which belong to the subgenus *Vibrissophora*.

By the absence of spines on the upper lip in sexually active males, *Leptobrachium tenasserimense* **sp. nov.** distinctly differs from those congeners which were formerly referred to as the genus *Vibrissaphora*, i.e., *L. ailaonicum* (Yang, Chen & Ma) (northern Vietnam and Yunnan), *L. promustache* (northern Vietnam and Yunnan) and *L. ngoclinhense* (Orlov) (central Vietnam), all of which are reported to possess cornified spines on the upper lip in sexually active males (*Rao et al.*, 2006; *Fei et al.*, 2005, 2009; *Yang et al.*, 2016).

Eye coloration in life is reported to be an important diagnostic characteristic for species identification of the genus *Leptobrachium* (*Hamidy & Matsui, 2010*; *Matsui et al., 1999*; *Stuart et al., 2011, 2012*; *Wogan, 2012*; *Yang et al., 2016*). By having a bicolored iris with lower one-third black and upper one-third turquoise with light-blue sclera, *Leptobrachium tenasserimense* **sp. nov.** can be distinguished from the following members of the subgenus *Vibrissaphora: L. chapaense* (northern Vietnam and Yunnan; iris uniformly dark brown with black sclera), *L. huashen* (Yunnan and northern Thailand; iris bicolored with white upper one-third or uniformly dark brown with black sclera), *L. guangxiense* (central-and northern Vietnam; iris bicolored with upper one-fourth to one-third white with black sclera), *L. masatakasatoi* Matsui (northern Laos and adjacent Vietnam; iris uniform brown or bicolored with white upper one-fourth; sclera black); *L. xanthops* Stuart, Phimmachak, Seateun & Sivongxay (Bolaven Plateau, Laos; upper half of iris pale yellow with whitish sclera), *L. buchardi* Ohler, Teynié & David (Bolaven

Plateau, Laos; upper third of iris whitish-green with bright blue sclera), L. leucops Stuart, Rowley, Tran, Le & Hoang (Langbian Plateau, Vietnam; upper part of iris white with gray or dark sclera), L. xanthospilum Lathrop, Murphy, Orlov & Ho (central Vietnam; upper third of iris white, sclera dark-brown); L. banae Lathrop, Murphy, Orlov & Ho (central Vietnam; upper third of iris whitish, sclera white); L. bompu Sondhi & Ohler (Himalaya; iris uniformly grey-blue, dark sclera), L. mouhoti Stuart, Sok & Neang and L. pullum (Smith) (southern and central Vietnam; iris black or dark-brown with an orange-yellow or red sclera), L. ngoclinhense (central Vietnam; iris uniformly dark brown). By having gray dorsum with darker blotches outlined with dark-brown and having whitish venter with contrasting confluent black blotches the new species can be further distinguished from L. banae (reddish dorsum, reddish bands on limbs), L. xanthospilum (large, yellow, glandular spots on the flanks), L. mouhoti and L. pullum (dark uniform brownish or blackish coloration, belly light-gray with dark mottling posteriorly), L. xanthops, L. leucops, L. masatakasatoi, L. chapaense, L. guangxiense, L. huashen (all have dark belly with no contrasting white and black pattern) and L. buchardi (light greyish belly without dark patterning).

From the mainland members of the subgenus *Leptobrachium* the new species can be distinguished by the following combination of morphological attributes. From *L. nigrops* (Singapore, southern peninsular Malaysia, Sumatra and an unconfirmed record from Thailand) the new species can be easily distinguished by having a bicolored iris (vs. uniform black or dark brown iris in *L. nigrops*), larger adult body size with male SVL 41.4–58.8 mm, female SVL 54.7–58.6 mm (vs. male SVL 24.9–40.1 mm, female 33.7–42.7 mm in *L. nigrops*) and gray dorsum with darker blotches outlined with dark-brown (vs. light-gray to beige dorsum with large brown blotches and longitudinal stripes in *L. nigrops*).

Leptobrachium tenasserimense **sp. nov.** can be distinguished from *L. hendricksoni* by having a black and turquoise bicolored iris (vs. iris uniformly pale red or black and red bicolored iris in *L. hendricksoni*), a narrow dark canthal stripe (vs. broad dark canthal stripe covering narial area in *L. hendricksoni*), distinct dark markings on head and dorsum (vs. head and dorsal markings absent or indefinite in *L. hendricksoni*), by lack of dark markings in tympanal area (vs. tympanum covered with dark markings in *L. hendricksoni*), by having 4-5 dark tibial bars (vs. no tibial bars in *L. hendricksoni*), by having contrasting whitish belly with dark confluent pattern

(vs. creamy belly with black speckles in *L. hendricksoni*) and by females being slightly larger than males, SDI 1.15 (vs. females much larger than males, SDI 1.38 in *L. hendricksoni*).

Comparisons of the new species with the members of subclade L1 of the Sundaland/ Thailand clade (subgenus *Leptobrachium*), namely with *L. smithi* and *L. rakhinense*, appear to be the most pertinent. *Leptobrachium tenasserimense* **sp. nov.** can be distinguished from *L. smithi* (from Thailand, western Laos, northern peninsular Malaysia and easternmost Myanmar) by the following combination of morphological attributes: black and turquoise bicolored iris (vs. black and red or black and bright yellow bicolored iris in *L. smithi*), narrow dark canthal stripe (vs. broad dark canthal stripe covering narial area in *L. smithi*), absence of dark markings in tympanal area (vs. tympanum covered with dark markings in *L. smithi*), presence of distinct dark markings on head and dorsum (vs. dorsum dark gray with no distinct markings in *L. smithi*), contrasting black and white ventral coloration that uniformly covers throat, chest, belly and ventral surfaces of limbs (vs. mostly whitish belly background coloration with dark speckles occurring posteriorly in *L. smithi*), finger II shorter than finger IV (vs. finger IV shorter than finger II in *L. smithi*), and comparatively smaller SDI = 1.15 (vs. SDI = 1.34 in *L. smithi*). Furthermore, *L. tenasserimense* **sp. nov.** can be distinguished by posterior surfaces of thighs having white spots (vs. uniformly black posterior surfaces of thighs in *L. smithi*).

Leptobrachium tenasserimense sp. nov. is morphologically similar to L. rakhinense from Rakhine State in Myanmar but can be distinguished by the following combination of morphological attributes: black and turquoise bicolored iris with light blue sclera (vs. black and red bicolored iris with light blue sclera in L. rakhinense), narrow dark canthal stripe (vs. broad dark canthal stripe broadly covering narial area in L. rakhinense), absence of dark markings in tympanal area (vs. tympanum covered with dark coloration in L. rakhinense), gray dorsum with darker blotches outlined with dark-brown (vs. light gray to brown dorsum with distinct dark brownish blotches outlined with white in L. rakhinense), ventral coloration with white background covered with contrasting confluent black blotches (vs. light venter with white speckles in L. rakhinense). Furthermore, Leptobrachium tenasserimense sp. nov. can be distinguished by absence of lateral series of dark spots (vs. distinct in L. rakhinense); also, new species possesses very distinctive fore- and hind leg stripes, while in L. rakhinense leg bars are not as distinctive.

Discussion

Our study confirms previous views on phylogenetic relationships within the genus *Leptobrachium*, suggesting its subdivision into two major geographic groups, corresponding to (1) Sundaland – western Indochina and (2) southern China – eastern Indochina centers of diversification. The *Leptobrachium smithi* species complex is a monophyletic group of the first clade, inhabiting western Indochina, southern Myanmar and northern part of Malayan Peninsula (see Fig. 1). Our work further indicates the presence of yet undescribed diversity within the genus *Leptobrachium*: in addition to the new species described herein, two lineages from Borneo tentatively indicated as *L*. cf. *montanum* 1 and 2 (samples 9 and 10; see Fig. 2, Table 1), and one lineage from northern Vietnam tentatively indicated as *L*. cf. *chapaense* (sample 11; see Fig. 2, Table 1), likely correspond to yet undescribed species. Further studies are required to clarify their taxonomic status.

Iris and sclera coloration in life is recognized as a useful diagnostic character for species identification in the genus *Leptobrachium* (*Matsui et al., 1999, 2010; Hamidy & Matsui, 2010; Sondhi & Ohler, 2011; Stuart et al., 2011, 2012; Wogan, 2012; Yang et al., 2016). Matsui et al. (2010)* analyzed possible evolution of the eye coloration in *Leptobrachium* and suggested that bicolored white and black iris was characteristic for the common ancestor of the China – East Indochina Clade (subgenus *Vibrissaphora*), whereas the ancestral iris coloration for the Sundaland – West Indochina Clade (subgenus *Leptobrachium* sensu stricto) was reconstructed as uniform black, and black and white bicolored iris was not recorded in this clade to date. All members of the *L. smithi* complex share a bluish (to some extent) coloration of scleral arc, but differ in iris coloration: *L. smithi* has a black and orange or black and yellow bicolored iris; *L. rakhinense* has a black and red bicolored iris, while *Leptobrachium tenasserimense* sp. nov. has a black and almost white (light-turquoise) bicolored iris. This suggests that the black and white bicolored iris coloration is also present in the Sundaland – West Indochina Clade of *Leptobrachium* and likely corresponds to the ancestral condition for the genus.

Distribution of members of the *L. smithi* complex is shown in Fig. 1. *Leptobrachium rakhinense* is restricted to the Rakhine Yoma Mountain Range in south-western Myanmar (*Wogan, 2012*). Distribution of this species extends northwards to Mizoram and Meghalaya states of India and Bangladesh (*Chanda, 2002; Ahmed et al., 2009; Mahony et al., 2009*); however, the taxonomic status of populations outside Myanmar is tentative and requires

clarification. *Leptobrachium smithi* has a wide distribution in western Indochina extending from western Laos to northern Thailand, and southwards along the Tenasserim Mountain Range across the Isthmus of Kra to southernmost Thailand and Malaysian Island of Langkawi (*Matsui et al., 1999, 2010; Grismer et al., 2006*); this species was also recorded in the adjacent parts of Myanmar, including Shan and Mon states and Tanintharyi Division (*Wogan, 2012*). *Leptobrachium tenasserimense* **sp. nov.** occurs only in montane areas of northern Tenasserim and is currently recorded from two provinces in western Thailand: Ratchaburi and Kanchanaburi. The new species is also likely to inhabit Phetchaburi Province in northern Tenasserim, as well as adjacent parts of Tanintharyi Division of Myanmar. Further field surveys are required for estimation of *Leptobrachium tenasserimense* **sp. nov.** distribution extent, which is crucial for the determination of the IUCN conservation status of the new species.

It is remarkable that the new species is sympatrically distributed with *L. smithi* both in Ratchaburi and Kanchanaburi provinces. Both species were recorded sharing the same biotopes in Ratchaburi Province, though *Leptobrachium tenasserimense* **sp. nov.** prefers higher elevations and less disturbed montane forests and never occurs lower than 700 m a.s.l., while *L. smithi* is recorded from a much wider range of elevations (ca. 10–1500 m a.s.l.). The ecology and distribution of these two species in the Tenasserim Region requires additional investigation. Since *Leptobrachium tenasserimense* **sp. nov.** is suggested to be a sister lineage to other members of the *L. smithi* species complex, it is likely that the northern Tenasserim Region played an important role in the diversification of this lineage of *Leptobrachium*. It's noteworthy that a similar biogeographic pattern was also recently reported for the genus *Leptobrachella* (see *Chen et al., 2018*).

Conclusions

Our new discovery of *Leptobrachium tenasserimense* **sp. nov.** indicates that montane forests of northern Tenasserim Region on the border of Thailand and Myanmar contain herpetofaunal diversity that is still unrecognized. This comparatively narrow area is known for an exceptionally high number of endemic species of amphibians and reptiles discovered by recent herpetofaunal surveys (*Mulcahy et al., 2018*), including a new genus and species of microhylid frogs (*Suwannapoom et al., 2018*), two new species of megophryid frogs (*Matsui, 2006*); two new species of bufonid frogs (*Wilkinson et al., 2012; Matsui et al., 2018*), five

endemic gecko species and two endemic species of snakes (see *Sumontha et al., 2017*). Possible reasons behind such exceptional herpetofaunal endemism are yet unclear; recent studies indicate that the northern part of Tenasserim Region played a key role in the faunal exchange between Sundaland and the mainland Indochina during the Cenozoic (see *Chen et al., 2018* for discussion). Our study provides further evidence for the hidden biodiversity of the Tenasserim Region, and suggests that it's herpetofauna is still clearly underestimated. Further field surveys are required for facilitating herpetological exploration and elaboration of measured conservation of this hidden diversity.

Acknowledgements

We would like to thank the Laboratory Animal Research Center, University of Phayao and The Institute of Animal for Scientific Purposes Development (IAD), Thailand for the permission to work in the field. We want to thank the Rabbit in the Moon foundation for help during the field work; we thank Kanokwan Yimyoo for constant assistance in the field and in the lab and Pattarawhich Dawwrueng for assistance, and Thiti Ruengsuwan, Kawin Jiaranaisakul, Akkrachai Aksornneam for help during the field work. NAP thanks Valentina F. Orlova and Roman A. Nazarov (Zoological Museum of Moscow State University) for help during the work in collection under their care, Evgeniya N. Solovyeva (Zoological Museum of Moscow University) for help with data analyses, and Alexandra A. Elbakyan for help with accessing required literature. We are indebted to Natalia Ershova for proofreading. We express our sincere gratitude to the Academic Editor and the three anonymous Reviewers for their useful suggestions on the earlier version of the manuscript.

REFERENCES

- Ahmed MF, Das A, Dutta SK. 2009. Amphibians and Reptiles of Northeast India. A
 Photographic Guide. Guwahati, India: Aaranyak Publishing, 169 p.
- Bain RH, Nguyen TQ, Doan KV. 2009. First record of *Leptobrachium promustache* from Vietnam. *Herpetology Notes* 2: 27–29.
- Bourret R. 1937. Notes herpétologiques sur l'Indochine française. XIV. Les batraciens de la collection du Laboratoire des Sciences Naturelles de l'Université. Descriptions de quinze

525	especes ou variétés nouvelles. Annexe au Bulletin Général de l'Instruction Publique.
526	Hanoi, 56 p.
527	Brown RM, Siler CD, Diesmos AC, Alcala AC. 2009. Philippine frogs of the genus
528	Leptobrachium (Anura; Megophryidae): phylogeny-based species delimitation,
529	taxonomic review, and descriptions of three new species. Herpetological Monographs
530	23 (1): 1–44.
531	Chanda SK. 2002. Handbook. Indian Amphibians. Calcutta: Zoological Survey of India, 335 p.
532	Chen JM, Poyarkov NA, Suwannapoom C, Lathrop A, Wu YH, Zhou WW, Yuan ZY, Jin
533	JQ, Chen HM, Liu HQ, Quang Nguyen T, Ngoc Nguyen S, Duong V T, Eto K,
534	Nishikawa K, Matsui M, Orlov NL, Stuart BL, Brown RM, Rowley JJL, Murphy
535	RW, Wang YY, Che J. 2018. Large-scale phylogenetic analyses provide insights into
536	unrecognized diversity and historical biogeography of Asian leaf-litter frogs, genus
537	Leptolalax (Anura: Megophryidae). Molecular Phylogenetics and Evolution 124: 162-
538	171.
539	Chen JM, Zhou WW, Poyarkov NA, Jr, Stuart BL, Brown RM, Lathrop A, Wang YY,
540	Yuan ZY, Jiang K, Hou M, Chen HM, Suwannapoom C, Nguyen NS, Duong VT,
541	Papenfuss TJ, Murphy RW, Zhang YP, Che J. 2017. A novel multilocus phylogenetic
542	estimation reveals unrecognized diversity in Asian horned toads, genus Megophrys sensu
543	lato (Anura: Megophryidae). Molecular Phylogenetics and Evolution 106: 28-43.
544	Duong TV, Do DT, Ngo CD, Nguyen TQ, Poyarkov NA. 2018. A new species of the genus
545	Leptolalax (Anura: Megophryidae) from southern Vietnam. Zoological Research 38(3):
546	181–196.
547	Fei L, Hu SQ, Ye CY, Huang YZ. 2009. Fauna Sinica. Amphibia Vol. 2 Anura. Science Press,
548	Beijing, 957 p. [In Chinese]
549	Fei L, Ye CY, Jiang JP. 2012. Colored atlas of Chinese amphibians and their distributions.
550	Sichuan Publishing House of Science & Technology, Chengdu, 619 p. [In Chinese]
551	Fei L, Ye CY. 2005. Two new species of Megophryidae from China. In: Fei L, Ye CY, Huang
552	YZ, Jiang JP, Xie F (Eds.), An Illustrated Key to Chinese Amphibians. Chongqing,
553	Sichuan Publishing House of Science and Technology: 253–255 [In Chinese with English
554	abstract].

- Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap.
- *Evolution* **39**(4): 783–791.
- 557 Felsenstein J. 2004. Inferring phylogenies. Sinauer Associates, Inc. Publishers, Sunderland,
- 558 Massachusetts, 2: 465.
- 559 Frost DR, Grant T, Faivovich J, Bain RH, Haas A, Haddad CFB, de Sá RO, Channing A,
- Wilkinson M, Donnellan SC, Raxworthy CJ, Campbell JA, Blotto BL, Moler PE,
- Drewes RC, Nussbaum RA, Lynch JD, Green DM, Wheeler WC. 2006. The
- amphibian tree of life. *Bulletin of the American Museum of Natural History* **297**: 1–370.
- Frost DR. 2018. Amphibian Species of the World: an Online Reference. Ver. 6.0 (accessed on 18
- June 2018). http://research.amnh.org/herpetology/amphibia/index.html. American
- Museum of Natural History, New York
- 566 Glaw F, Vences M. 1997. Anuran eye colouration: definitions, variation, taxonomic
- implications and possible functions. *In:* Bohme W, Bischoff W, Ziegler T (Eds.)
- 568 Herpetologia Bonnensis. Bonn: European Herpetological Society: 125–138.
- 569 Grismer LL, Youmans TM, Wood PL, Ponce A, Wright SB, Jones BS, Johnson R, Sanders
- 570 KL, Gower DJ, Yaakob NS, Lim KKP. 2006. Checklist of the herpetofauna of Pulau
- Langkawi, Malaysia, with comments on taxonomy. *Hamadryad* **30**(1-2): 61–74.
- 572 Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
- program for Windows 95/98/NT. *In: Nucleic acids symposium series*. London,
- Information Retrieval Ltd., c1979–c2000: 95–98.
- 575 Hamidy A, Matsui M, Nishikawa K, Belabut DM. 2012. Detection of cryptic taxa in
- 576 Leptobrachium nigrops (Amphibia, Anura, Megophryidae), with description of two new
- 577 species. *Zootaxa* **3398**: 22–39.
- 578 Hamidy A, Matsui M. 2010. A new species of blue-eyed Leptobrachium (Anura:
- Megophryidae) from Sumatra, Indonesia. *Zootaxa* **2395**: 34–44.
- 580 Hedges SB. 1994. Molecular evidence for the origin of birds. Proceedings of the National
- 581 *Academy of Sciences* **91**(7): 2621–2624.
- 582 Hillis DM, Bull JJ. 1993. An empirical test of bootstrapping as a method for assessing
- confidence in phylogenetic analysis. *Systematic Biology* **42**(2): 182–192.
- Hillis DM, Moritz C, Mable BK. 1996. *Molecular Systematics*. 2nd edition. Sinauer Associates,
- Inc., Sunderland, Massachusetts, xvi + 655 p.

- Huelsenbeck JP, Hillis DM. 1993. Success of phylogenetic methods in the four-taxon case.
- *Systematical Biology* **42**: 247–264.
- 588 Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogeny.
- 589 *Bioinformatics* **17**: 754–755.
- 590 Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis
- version 7.0 for bigger datasets. *Molecular Biology and Evolution* **33**(7): 1870–1874.
- 592 Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. PartitionFinder: combined selection of
- 593 partitioning schemes and substitution models for phylogenetic analyses. *Molecular*
- *Biology and Evolution* **29**(6): 1695–1701.
- 595 Lathrop A, Murphy RW, Orlov NL, Ho CT. 1998. Two new species of Leptobrachium
- (Anura: Megophryidae) from the central highlands of Vietnam with a redescription of
- 597 Leptobrachium chapaense. Russian Journal of Herpetology **5**(1): 51–60.
- 598 Li J, Wei S, Hu M, Luo Z, Zhao M, Wu H. 2018. Reflection of paleoclimate oscillations and
- tectonic events in the phylogeography of moustache toads in southern China. *Journal of*
- 600 Zoology **305**: 17–26.
- 601 Mahony S, Hasan MK, Kabir MM, Ahmed M, Hossain MK. 2009. A catalogue of
- amphibians and reptiles in the collection of Jahangirnargar University, Dhaka,
- Bangladesh. *Hamadryad* **34**(1–2): 80–94.
- 604 Matsui M, Hamidy A, Murphy RW, Khonsue W, Yambun P, Shimada T, Ahmad N,
- Belabut DM, Jiang JP. 2010. Phylogenetic relationships of megophryid frogs of the
- genus Leptobrachium (Amphibia, Anura) as revealed by mtDNA gene sequences.
- 607 *Molecular Phylogenetics and Evolution* **56**: 259–272.
- 608 Matsui M, Khonsue W, Panha S. 2018. Two new species of Ansonia from Thailand (Anura:
- Bufonidae). Zoological Science **35**: 39–40.
- 610 Matsui M, Nabhitabhata J, Panha S. 1999. On Leptobrachium from Thailand with a
- description of a new species (Anura: Pelobatidae). *Japanese Journal of Herpetology*
- **18**: 19–29.
- 613 Matsui M. 1984. Morphometric variation analyses and revision of the Japanese toads (genus
- Bufo, Bufonidae). Contributions from the Biological Laboratory, Kyoto University 26:
- 615 209–428.

- 616 Matsui M. 2006. Three new species of Leptolalax from Thailand (Amphibia, Anura,
- Megophryidae). *Zoological Science* **23**: 821–830.
- 618 Matsui M. 2013. A New Leptobrachium (Vibrissaphora) from Laos (Anura: Megophryidae).
- 619 *Current Herpetology* **32**(2): 182–189.
- 620 Mulcahy DG, Lee JL, Miller AH, Chand M, Thura MK, Zug GR. 2018. Filling the BINs of
- life: Report of an amphibian and reptile survey of the Tanintharyi (Tenasserim) Region of
- Myanmar, with DNA barcode data. *ZooKeys* **757**: 85–152.
- Nguyen LT, Poyarkov NA, Le DT, Vo BD, Phan HT, Duong TV, Murphy RW, Nguyen SN.
- 624 **2018.** A new species of *Leptolalax* (Anura: Megophryidae) from Son Tra Peninsula,
- 625 central Vietnam. *Zootaxa* **4388**(1): 1–21.
- 626 Ohler A, Teynié A, David P. 2004. A green-eyed Leptobrachium (Anura: Megophryidae) from
- southern Laos. *Raffles Bulletin of Zoology* **52**: 695–700.
- 628 **Orlov NL. 2005.** A new species of the genus *Vibrissaphora* Liu, 1945 (Anura: Megophryidae)
- from Mount Ngoc Linh (Kon Tum Province) and analysis of the extent of species overlap
- in the fauna of amphibians and reptiles of the north-west of Vietnam and Central
- Highland. *Russian Journal of Herpetology* **12**(1): 17–38.
- Poyarkov NA, Duong TV, Orlov NL, Gogoleva SS, Vassilieva AB, Nguyen LT, Nguyen
- VHD, Nguyen SN, Che J, Mahony S. 2017. Molecular, morphological and acoustic
- assessment of the genus *Ophryophryne* (Anura, Megophryidae) from Langbian Plateau,
- southern Vietnam, with description of a new species. *ZooKeys* **672**: 49–120.
- Poyarkov NA, Rowley JJL, Gogoleva SS, Vassilieva AB, Galoyan EA, Orlov NL. 2015. A
- new species of *Leptolalax* (Anura: Megophryidae) from the western Langbian Plateau,
- 638 southern Vietnam. *Zootaxa* **3931**(2): 221–252.
- Rao DQ, Wilkinson A, Zhang MW. 2006. A new species of the genus Vibrissaphora (Anura:
- Megophryidae) from Yunnan Province, China. *Herpetologica* **62**: 90–108.
- Rao DQ, Wilkinson JA. 2008. Phylogenetic relationships of the mustache toads inferred from
- mtDNA sequences. *Molecular Phylogenetics and Evolution* **46**(1): 61–73.
- Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed
- 644 models. *Bioinformatics* **19**(12): 1572–1574.
- 645 Savage JM. 1975. Systematics and distribution of the Mexican and Central American stream
- frogs related to *Eleutherodactylus rugulosus*. *Copeia* **1975**: 254–306.

- 647 Smith MA. 1921. New or little-known reptiles and batrachians from southern Annam (Indo-
- 648 China). *Proceedings of the Zoological Society of London* **1921**: 423–440.
- 649 **Sondhi S, Ohler A. 2011.** A blue-eyed *Leptobrachium* (Anura: Megophryidae) from Arunachal
- 650 Pradesh, India. *Zootaxa* **2912**: 28–36.
- 651 Stamatakis A. 2014. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of
- large phylogenies. *Bioinformatics* **30**(9): 1312–1313.
- 653 Stuart BL, Phimmachak S, Seateun S, Sivongxay N. 2012. A new Leptobrachium (Anura:
- Megophryidae) from the highlands of southeastern Laos. *Zootaxa* **3155**: 29–37.
- 655 Stuart BL, Rowley JJL, Tran DTA, Le DTT, Hoang HD. 2011. The Leptobrachium (Anura:
- Megophryidae) of the Langbian Plateau, southern Vietnam, with description of a new
- species. *Zootaxa* **2804**: 25–40.
- 658 Stuart BL, Sok K, Neang T. 2006. A collection of amphibians and reptiles from hilly eastern
- 659 Cambodia. *The Raffles Bulletin of Zoology* **54**(1): 129–155.
- 660 Sumontha M, Kunya K, Dangsri S, Pauwels OSG. 2017. Oligodon saiyok, a new limestone
- dwelling kukri snake (Serpentes: Colubridae) from Kanchanaburi Province, western
- Thailand. *Zootaxa* **4294**(3): 316–328.
- 663 Suwannapoom C, Sumontha M, Tunprasert J, Ruangsuwan T, Pawangkhanant P, Korost
- DV, Poyarkov NA. 2018. A striking new genus and species of cave-dwelling frog
- (Amphibia: Anura: Microhylidae: Asterophryinae) from Thailand. *PeerJ* 6: e4422.
- 666 **Taylor EH. 1962.** The amphibian fauna of Thailand. *University of Kansas Science Bulletin* **43**:
- 667 265–599.
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL X
- windows interface: flexible strategies for multiple sequence alignment aided by quality
- analysis tools. *Nucleic Acids Research* **25**: 4876-4882.
- Wilkinson JA, Sellas AB, Vindum JV. 2012. A new species of Ansonia (Anura: Bufonidae)
- from northern Tanintharyi Division, Myanmar. *Zootaxa* **3163**: 54–68.
- 673 Wogan GOU. 2012. A new species of *Leptobrachium* from Myanmar (Anura: Megophryidae).
- 674 *Zootaxa* **3415**: 23–36.
- 675 Yang J, Wang Y, Chan BPL. 2016. A new species of the genus Leptobrachium (Anura:
- Megophryidae) from the Gaoligongshan Mountain Range, China. Zootaxa 4150: 133–
- 677 148.

678	Zhang M, Rao D, Yang J, Yu G, Wilkinson JA. 2010. Molecular phylogeography and
679	population structure of a midelevation montane frog Leptobrachium ailaonicum in a
680	fragmented habitat of southwest China. Molecular Phylogenetics and Evolution 54(1):
681	47–58.
682	Zheng Y, Li S, Fu J. 2008. A phylogenetic analysis of the frog genera Vibrissaphora and
683	Leptobrachium, and the correlated evolution of nuptial spine and reversed sexual size
684	dimorphism. Molecular Phylogenetics and Evolution 46: 695-707.
685	

Table 1(on next page)

Specimens and sequences used for molecular analyses.

Sample IDs correspond to those shown in Fig. 2. GenBank AN – GenBank Accession Number.

Sample ID	Species	GenBank AN	Voucher	Locality							
	Ingroup										
1	L. abbotti	AB646398	KUHE39294	Malaysia, Sabah, Kinabalu Mt., Poring							
2	L. ailaonicum echinatum	AB719257	MNHN1999.5657	Vietnam, Lao Cai Prov., Sa Pa							
3	L. ailaonicum ailaonicum	EF544224	IZCASH30027	China, Yunnan Prov., Ailaoshan Mt.							
4	L. banae	EF544229	ROM32200	Vietnam, Gia Lai Prov., Krong Pa							
5	L. boringii	EF544207	IZCASH30021	China, Sichuan Prov., Emeishan Mt.							
6	L. buchardi	HQ709353	FMNH258086	Laos, Champasak Prov., Boloven Highlands, Paksong Distr.							
7	L. cf. chapaense	DQ283052	AMNHA163791	Vietnam, Ha Giang Prov., Vi Xuyen, Cao Bo							
8	L. cf. guangxiense	EF544232	ROM32176	Vietnam, Vinh Phuc Prov., Tam Dao							
9	L. cf. montanum	GQ995543	AH196	Malaysia, Sarawak, Mulu N.P.							
10	L. cf. montanum	AB646406	KUHE08073	Malaysia, Sabah, Tampaluri							
11	L. chapaense	KR018126	AMSR171623	Vietnam, Lao Cai Prov., Sa Pa							
12	L. guangxiense	JX467672	200807003	China, Guangxi Prov., Shiwanshan Mt.							
13	L. gunungense	AB646405	KUHE39377	Malaysia, Sabah, Kinabalu Mt., Sungai Carson							
14	L. hainanense	AB530447	KUHEUNLL68	China, Hainan Prov., Wuzhishan Mt.							
15	L. hasseltii	AB646408	KUHE44535	Indonesia, Java, Central Java, Ungaran Mt.							
16	L. hendricksoni	AB530411	KUHE15336	Malaysia, Penang							
17	L. hendricksoni	AB530417	KUHE15680	Malaysia, Kuala Lumpur							
18	L. huashen	AB530443	ROM41243	China, Yunnan Prov., Simao							
19	L. huashen	AB530442	KUHEUNtissueL57	Thailand, Chiang Mai Prov., Doi Angkang							
20	L. huashen	AB530444	KUHE19122	Thailand, Chiang Mai Prov., Doi Intanon, Ban Khun Klang							
21	L. ingeri	AB719253	MZBAmp11791	Indonesia, Belitung, Tanjung Pandang							
22	L. ingeri	AB719242	KUHE53848	Malaysia, Sarawak, Matang							
23	L. kanowitense	AB719255	KUHE42590	Malaysia, Sarawak, Kanowit							
24	L. kantonishikawai	AB646391	KUHE53562	Malaysia, Sarawak, Bario							
25	L. leishanense	EF544200	IZCASH30004	China, Guizhou Prov., Leigongshan Mt.							
26	L. leucops	HQ709356	BLS11838	Vietnam, Lam Dong Prov., Bidoup - Nui Ba N.P.							
27	L. liui liui	EF544182	IOZCAS28061	China, Fujian Prov., Wuyishan Mt.							
28	L. liui yaoshanense	AB530441	KUHEUNLL54	China, Guangxi Prov., Huaping							
29	L. lumadorum	AB530410	ABTC76306	Philippines, Mindanao Prov., Davao							
30	L. mangyanorum	GQ995553	KU304401	Philippines, Mindoro Prov., Sablayan, Siburan Mt.							
31	L. masatakasatoi	AB530445	KUHE34396	Laos, Phupan Prov., Xamneua							
32	L. montanum	AB646386	KUHE53783	Malaysia, Sarawak, Kubah, Serapi Mt.							
33	L. montanum	AB646385	KUHE42817	Indonesia, Central Kalimantan, Lamandau, Belantikan							
34	L. montanum	AB646374	KUHE44536	Indonesia, East Kalimantan, Kutai							
35	L. mouhoti	EF672272	FMNH261758	Cambodia, Mondulkiri Prov., O'Reang							

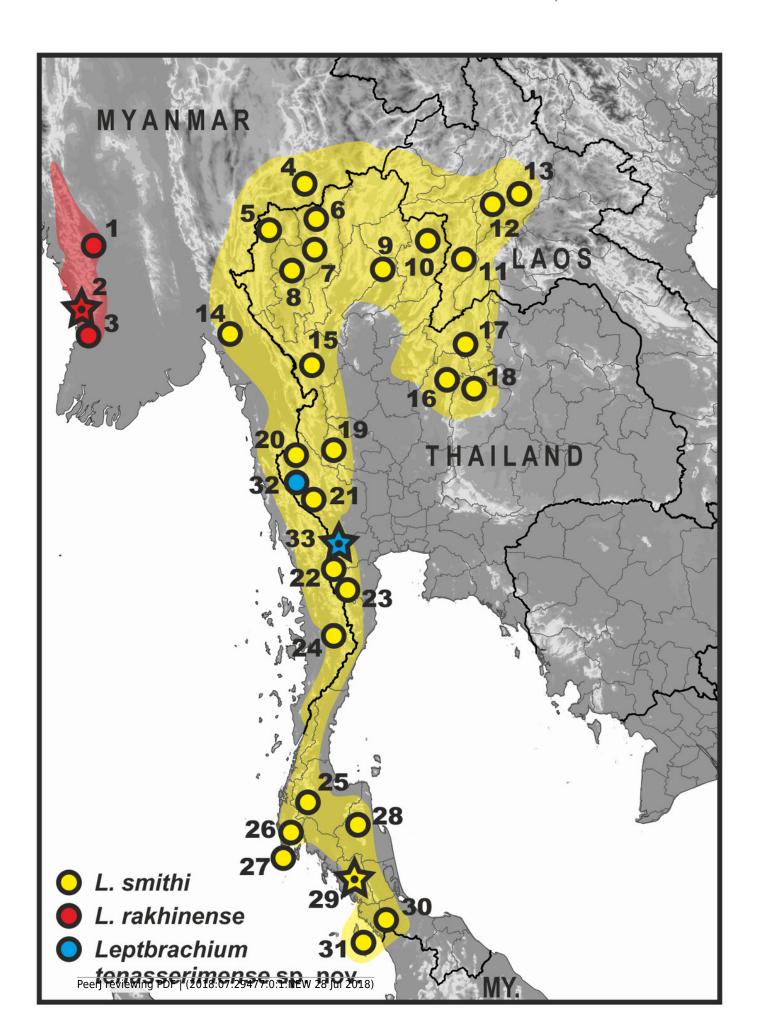
36	L. ngoclinhense	EF544228	ROMFS39612	Vietnam, Quang Nam Prov., Ngoc Linh
	_			Mt.
37	L. nigrops	AB719249	KUHE15430	Malaysia, Selangor, Kuala Lumpur
38	L. promustache	EF544240	IOZCAS2904-1	China, Yunnan Prov., Hekou Co., Daweishan Mt.
39	L. pullum	MH581082	ROMFS39611	Vietnam, Kon Tum Prov., Kon Plong
40	L. rakhinense	JX127250	CAS222296	Myanmar, Rakhine State, Gwa township
41	L. rakhinense	DQ283239	CAS222293	Myanmar, Rakhine State, Gwa township
42	L. smithi	AB530432	KUHE19281	Thailand, Loei Prov., Phu Luang
43	L. smithi	AB530433	KUHE19282	Thailand, Loei Prov., Phu Luang
44	L. smithi	AB530434	KUHE19834	Thailand, Mae Hong Son Prov., Phasua W.F.
45	L. smithi	AB530435	KUHE19839	Thailand, Mae Hong Son Prov., Phasua W.F.
46	L. smithi	AB530436	KUHE20200	Thailand, Phetchaburi Prov., Kaeng Krachan
47	L. smithi	AB530437	KUHE20201	Thailand, Phetchaburi Prov., Kaeng Krachan
48	L. smithi	AB530438	KUHE23342	Thailand, Trang Prov., Kaochong
49	L. smithi	AB530439	UMD0139	Malaysia, Perlis, Langkawi
50	L. smithi	AB719246	KUHE23318	Thailand, Trang Prov., Kaochong
51	L. smithi	EF672271	CAS222215	Myanmar, Mon State, Kyaihto Township, Kyaik Hti Yo W.S.
52	L. smithi	GQ995541	FMNH258092	Laos, Sayaboury Prov.
53	L. smithi	GQ995542	KUDSM910	Thailand, no detailed locality data
54	L. smithi	JN848340	MNHNP925	Thailand, Phang Nga Prov.
55	L. smithi	JN848341	MNHNP926	Thailand, Phang Nga Prov.
56	L. smithi	JN848342	MNHNP321	Thailand, Phang Nga Prov.
57	L. smithi	JN848343	MNHNP981	Thailand, Phang Nga Prov.
58	L. smithi	JN848344	MNHNK3182	Laos, Luang Prabang Prov., Ban Sop Khao
59	L. smithi	JN848345	MNHN2006.2424	Laos, Luang Prabang Prov., Ban Sop Khao
60	L. smithi	JN848346	MNHN2006.2431	Laos, Luang Prabang Prov., Ban Keng Koung
61	L. smithi	JN848347	MNHNK3266	Laos, Luang Prabang Prov., Ban Van Thong
62	L. smithi	JN848349	MNHN2006.2555-1	Laos, Luang Prabang Prov., Luang Prabang
63	L. smithi	JN848350	MNHNK3267	Laos, Luang Prabang Prov., Ban Van Thong
64	L. smithi	JN848352	LEL80	Thailand, Chiang Mai Prov., Doi Chiang Dao Mt.
65	L. smithi	KR827850	20008227	Thailand, Phang Nga Prov., Namtok Raman Forest Park
66	L. smithi	KR827851	0186Y	Thailand, Phetchabun Prov., Thung Salaeng Luang N.P.
67	L. smithi	KR827852	0158Y	Thailand, Phetchabun Prov., Thung Salaeng Luang N.P.
68	L. smithi	KR827853	TADP981	Thailand, Phang Nga Prov., Namtok Raman Forest Park
69	L. smithi	KR827854	TADP925	Thailand, Phang Nga Prov., Namtok Raman Forest Park

70	L. smithi	KR827855	MNHNK3094	Laos, Luang Prabang Prov., Ban Sop Khao
71	L. smithi	KR827856	MNHN2006.2303	Laos, Luang Prabang Prov., Ban Keng Koung
72	L. smithi	KR827857	MNHN2006.2556	Laos, Luang Prabang Prov., Houey Thao
73	L. smithi	KR827858	MNHN2006.2555-2	Laos, Luang Prabang Prov., Luang Prabang
74	L. tagbanorum	GQ995551	PNMRMB3025	Philippines, Palawan Prov., Nara
75	L. tenasserimense sp. nov.	AB530440	KUHEUNAS2	Thailand, Kanchanaburi Prov., Pilok Distr.
76	L. tenasserimense sp. nov.	MH581080	ZMMU A-5918	Thailand, Ratchaburi Prov., Suan Phung Distr.
77	L. tenasserimense sp. nov.	MH581081	AUP-01284	Thailand, Ratchaburi Prov., Suan Phung Distr.
78	L. tengchongense	KX066880	SYSa004604d	China, Yunnan Prov., Tengchong
79	L. waysepuntiense	AB646388	MZBAmp11313	Indonesia, Sumatra, North Sumatra, Martabe
80	L. xanthops	JN711502	NCSM78468	Laos, Xe Kong Prov., Dakchung
81	L. xanthospilum	EF544231	ROM32186	Vietnam, Gia Lia Prov., Tram Lap
	Outgroup			
	Leptobrachella melanoleuca	LC202000	KUHE35710	Thailand
	Megophrys nasuta	LC202013	KUHE53577	Malaysia
	Oreolalax rhodostigmatus	EF397248	CIB-ZYCA746	China, Guizhou Prov., Da Fang Co.
	Scutiger chintingensis	EF397269	ROM39065	China, Sichuan Prov., Hongya Co.
	Pelodytes punctatus	DQ283111	no voucher	Spain, Catalonia, Barcelona

Table 2(on next page)

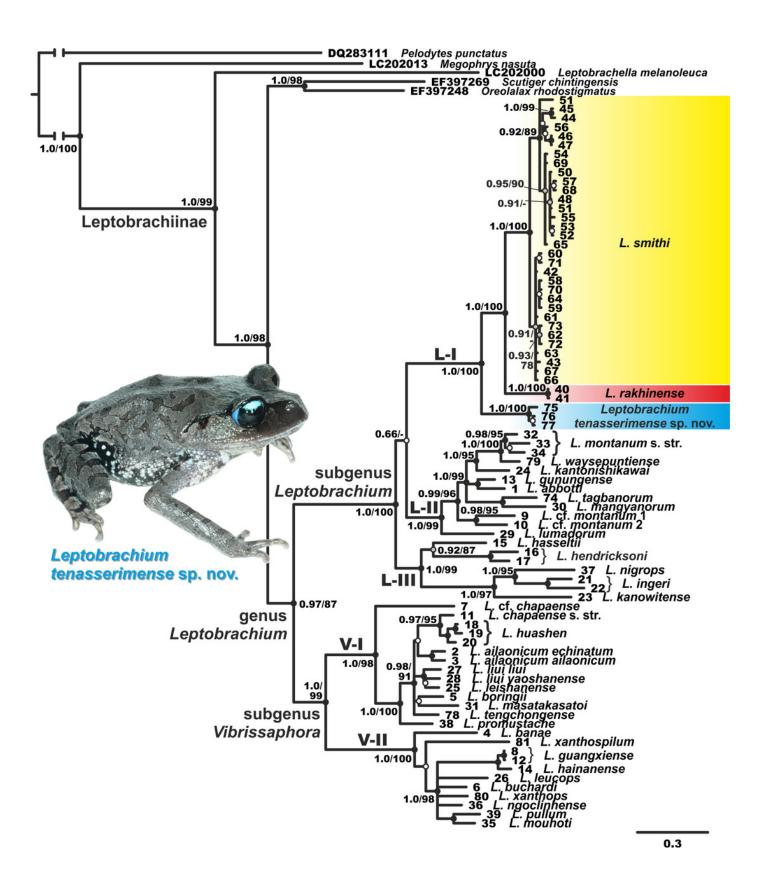
Selected measurements (in mm) of *Leptobrachium tenasserimense* sp. nov. type series.

For character abbreviations see Materials and methods. SD - standard deviation.


- 1 **TABLE 2.** Selected measurements (in mm) of *Leptobrachium tenasserimense* **sp. nov.** type series. For character abbreviations see
- 2 Materials and methods.

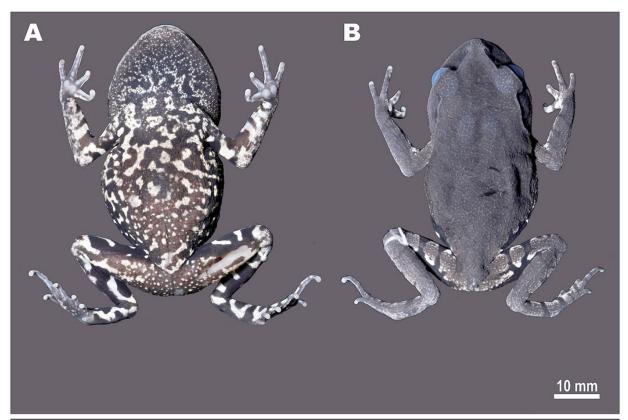
Specimen	Type status	Sex	SAL	HIL	SNL	NEL	\mathbf{SL}	EL	TEL	TD	HW	IND	ICD	IOD	UEW	UEMD	FFL	OPTL	IPTL	HAL	FAW	HLL	II	FL	FTL
AUP-00362	(Holotype)	m	58.8	23.8	4.9	6.2	10.7	7.5	4.6	3.1	24.5	4.5	9.8	9.4	4.8	20.4	6.9	2.4	1.5	11.2	4.1	67.4	20.7	15.8	9.2
AUP-00361	(Paratype)	m	52.5	24.2	5.1	6.6	10.1	6.3	9.0	2.9	26.7	5.0	9.6	7.4	4.9	23.6	6.4	2.0	2.0	11.0	3.0	64.1	15.4	18.7	17.1
AUP-00360	(Paratype)	m	51.3	23.8	4.1	5.2	9.9	6.5	3.5	2.8	21.2	5.0	9.8	9.4	4.3	13.2	4.9	2.2	1.9	10.8	3.7	43.4	19.7	16.7	11.1
AUP-01285	(Paratype)	m	41.4	15.8	3.7	4.0	6.7	6.1	3.7	2.1	17.6	3.6	7.1	6.5	4.1	13.2	4.1	1.5	1.1	7.7	2.2	47.9	15.9	13.1	8.4
AUP-01284	(Paratype)	m	45.2	17.2	4.1	4.1	7.4	6.1	2.9	2.7	19.4	3.9	7.8	6.2	4.3	14.6	5.3	1.9	1.7	9.1	2.4	50.2	17.2	13.7	9.0
ZMMU A-5919	(Paratype)	m	46.9	19.5	3.3	4.3	6.9	6.6	3.0	3.3	20.0	4.0	9.3	7.0	4.5	16.0	5.2	1.9	1.3	10.9	3.5	56.6	17.4	15.8	7.5
Males (N=6)		mean	49.3	20.7	4.2	5.1	8.6	6.5	4.4	2.8	21.6	4.3	8.9	7.6	4.5	16.8	5.5	2.0	1.6	10.1	3.1	54.9	17.7	15.6	10.4
		SD	4.8	3.2	0.6	0.9	1.6	0.3	1.6	0.3	2.7	0.5	1.0	1.2	0.2	3.4	0.8	0.2	0.3	1.1	0.6	7.8	1.7	1.5	2.5
AUP-01283	(Paratype)	f	54.7	24.1	4.2	5.7	8.9	7.1	4.6	3.0	22.5	4.4	8.9	9.0	4.7	16.6	5.8	1.7	1.3	10.4	3.0	60.0	20.0	15.2	10.2
ZMMU A-5918	(Paratype)	f	58.6	25.3	4.2	4.8	8.7	7.7	3.2	4.5	25.6	4.7	11.7	8.5	5.6	18.5	5.7	2.1	1.6	12.6	3.7	72.8	21.2	18.4	10.3
Females (N=2)		mean	56.7	24.7	4.2	5.3	8.8	7.4	3.9	3.8	24.1	4.6	10.3	8.8	5.2	17.6	5.8	1.9	1.5	11.5	3.4	66.4	20.6	16.8	10.2
		SD	2.0	0.6	0.0	0.5	0.1	0.3	0.7	0.8	1.5	0.1	1.4	0.3	0.4	0.9	0.0	0.2	0.1	1.1	0.4	6.4	0.6	1.6	0.0

Map of Thailand and adjacent parts of Indochina, showing distribution of *Leptobrachium smithi* species group members (clade L1).


Yellow – *L. smithi*, red – *L. rakhinense*, blue – *Leptobrachium tenasserimense* **sp. nov.** Star denotes type locality of the respective species. For locality numbers see Appendix 1.

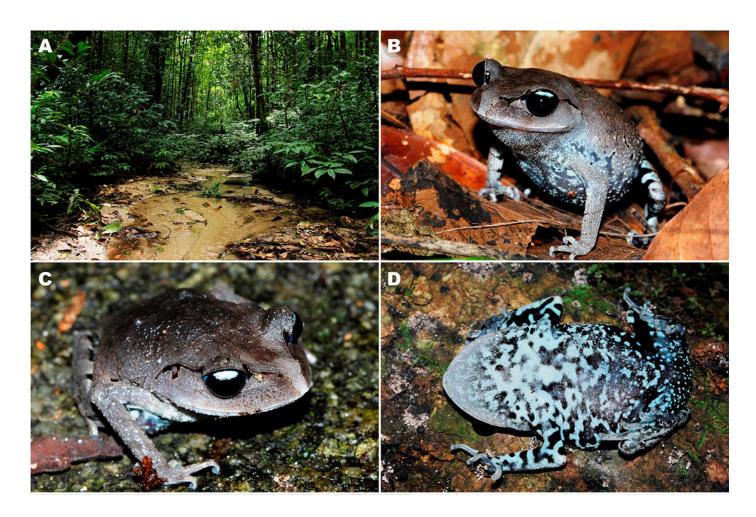
Phylogenetic BI tree of *Leptobrachium* reconstructed on the base of 2,494 bp (partial $12S \ rRNA - tRNA^{val} - 16S \ rRNA$ sequences).

Values on the branches correspond to BI PP/ML BS, respectively; black, grey and white circles correspond to well-supported, moderately supported and non-supported nodes, respectively. Color marking of species in *Leptobrachium smithi* species group corresponds to Fig. 1. For specimen and locality information see Table 1.



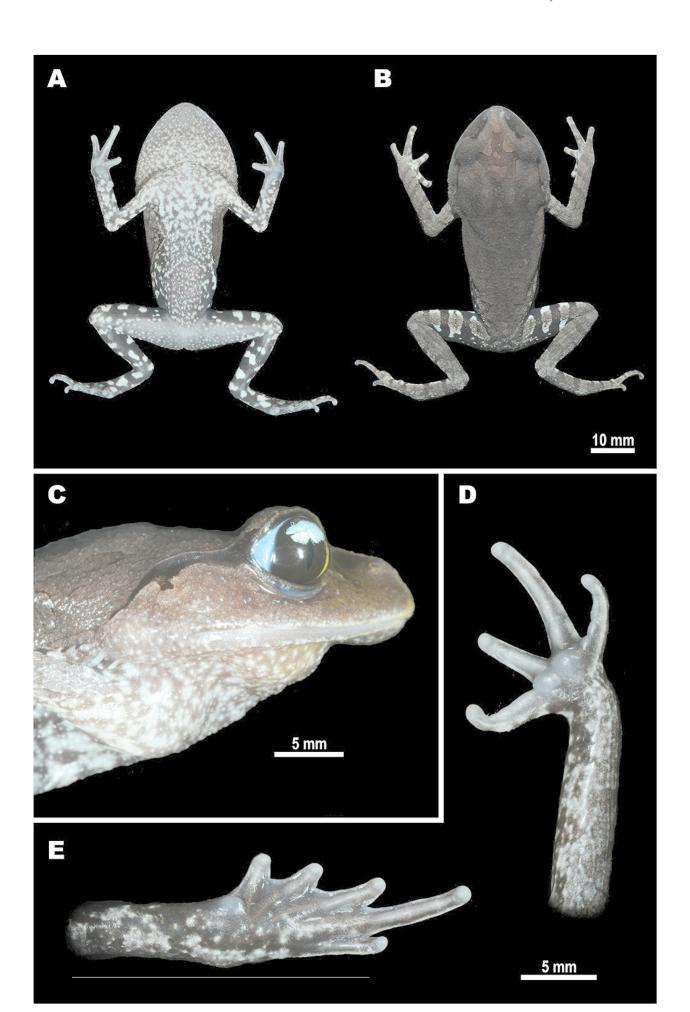
Male holotype of *Leptobrachium tenasserimense* sp. nov. (AUP-00362) after preservation.

(A) Ventral view; (B) dorsal view; (C) volar view of left hand; (D) palmar view of right foot. Photos by Parinya Pawangkhanant.

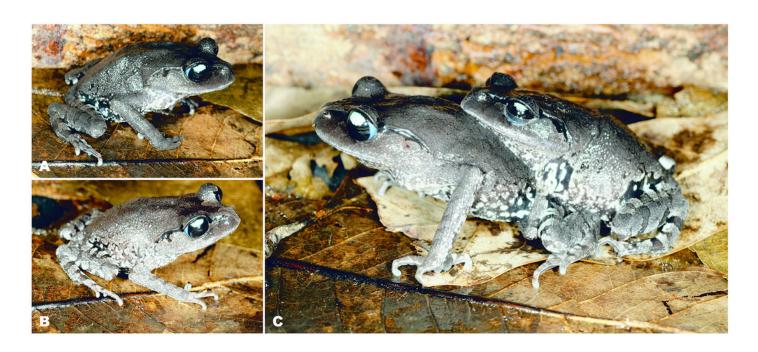

*Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.

Leptobrachium tenasserimense sp. nov. in life.

(A) Natural habitat at the type locality in Khao Laem Mountain, Suan Phung District, Ratchaburi Province; (B), (C) and (D) the male holotype (AUP-00362) *in situ*. Photos by Parinya Pawangkhanant.



Female paratype of Leptobrachium tenasserimense sp. nov. (ZMMU A-5918) in life.


(A) Ventral view; (B) dorsal view; (C) lateral view of head; (D) volar view of left hand; (D) palmar view of left foot. Photos by Nikolay A. Poyarkov.

*Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.

Paratypes of Leptobrachium tenasserimense sp. nov. in situ.

(A) Male ZMMU A-5919; (B) female ZMMU A-5918; (C) amplexus. Photos by Nikolay A. Poyarkov.

