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Estimating the growth of fishes is critical to understanding their life history and conducting

fisheries assessments. It is imperative to sufficiently sample each size and age class of

fishes to construct models that accurately reflect biological growth patterns, but this may

be a challenging endeavor for highly-exploited species in which older fish are rare. Here,

we use the Gulf Corvina (Cynoscion othonopterus), a vulnerable marine fish that has been

persistently overfished for two decades, as a model species to compare the performance

of several growth models. We fit the von Bertalanffy, Gompertz, logistic, Schnute, and

Schnute-Richards growth models to length-at-age data by nonlinear least squares

regression and used simple indicators to reveal biased data and ensure our results were

biologically feasible. We then explored the consequences of selecting a biased growth

model with a per-recruit model that estimated female spawning-stock-biomass-per-recruit

and yield-per-recruit. Based on statistics alone, we found that the Schnute-Richards model

described our data best. However, it was evident that our data were biased by a bimodal

distribution of samples and underrepresentation of large, old individuals, so we found the

Schnute-Richards model output to be biologically implausible. By simulating an equal

distribution of samples across all age classes, we found that sample distribution distinctly

influenced model output for all growth models tested. Consequently, we determined that

the growth pattern of the Gulf Corvina was best described by the von Bertalanffy growth

model, which was the most robust to biased data, comparable across studies, and

statistically comparable to the Schnute-Richards model. Growth model selection had

important consequences for assessment, as the per-recruit model employing the Schnute-

Richards model fit to raw data predicted the stock to be in a much healthier state than
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per-recruit models employing other growth models. Our results serve as a reminder of the

importance of complete sampling of all size and age classes when possible, and

transparent identification of biased data when complete sampling is not possible.
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17 Abstract

18 Estimating the growth of fishes is critical to understanding their life history and conducting 

19 fisheries assessments. It is imperative to sufficiently sample each size and age class of fishes to 

20 construct models that accurately reflect biological growth patterns, but this may be a challenging 

21 endeavor for highly-exploited species in which older fish are rare. Here, we use the Gulf Corvina 

22 (Cynoscion othonopterus), a vulnerable marine fish that has been persistently overfished for two 

23 decades, as a model species to compare the performance of several growth models. We fit the 

24 von Bertalanffy, Gompertz, logistic, Schnute, and Schnute-Richards growth models to length-at-

25 age data by nonlinear least squares regression and used simple indicators to reveal biased data 

26 and ensure our results were biologically feasible. We then explored the consequences of 

27 selecting a biased growth model with a per-recruit model that estimated female spawning-stock-

28 biomass-per-recruit and yield-per-recruit. Based on statistics alone, we found that the Schnute-

29 Richards model described our data best. However, it was evident that our data were biased by a 

30 bimodal distribution of samples and underrepresentation of large, old individuals, so we found 

31 the Schnute-Richards model output to be biologically implausible. By simulating an equal 

32 distribution of samples across all age classes, we found that sample distribution distinctly 

33 influenced model output for all growth models tested. Consequently, we determined that the 

34 growth pattern of the Gulf Corvina was best described by the von Bertalanffy growth model, 

35 which was the most robust to biased data, comparable across studies, and statistically 

36 comparable to the Schnute-Richards model. Growth model selection had important consequences 

37 for assessment, as the per-recruit model employing the Schnute-Richards model fit to raw data 

38 predicted the stock to be in a much healthier state than per-recruit models employing other 

39 growth models. Our results serve as a reminder of the importance of complete sampling of all 
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40 size and age classes when possible, and transparent identification of biased data when complete 

41 sampling is not possible. 

42 Introduction

43 Age and size data inform estimates of life history parameters that are crucial to fisheries 

44 stock assessments. In early assessments such as Beverton and Holt’s yield-per-recruit model 

45 (1957), size at age was critical for estimating reproductive output and thus the sustainability of 

46 fisheries. In today’s age-structured stock assessments, size at age is used to convert from biomass 

47 to number of fish, determine selectivity, and calculate expected length compositions (Francis, 

48 2016). Similarly, size (i.e., length or weight) at age is used in size-structured stock assessment 

49 models to inform transitions between size bins and determine length composition (Punt et al., 

50 2016). Accurately representing the relationship between size and age is particularly important for 

51 vulnerable fish and in data-poor fisheries, in which life-history parameters and population 

52 structure often drive stock assessments and management decisions (Dulvy et al., 2004; Froese, 

53 2004; Honey et al., 2010; Hordyk et al., 2016). Specifically, these types of assessments rely 

54 heavily on age-length data to confer insights on vulnerability and overfishing (Erisman et al., 

55 2014). 

56 When modelling the relationship between age and size for the purposes of assessment, and 

57 for any purpose, each age and size class must be sufficiently represented to generate growth 

58 parameters that reflect biological growth (Cailliet et al., 1986; Cailliet and Tanaka, 1990; Francis 

59 and Francis, 1992; Cailliet and Goldman, 2004). It is important to make the distinction between 

60 this type of sampling and sampling to reflect population structure, which should not be the goal 

61 of age and growth studies as this reflects bias due to the relative scarcity of large and old 
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62 individuals. Sufficiently representing each size and age class may be especially difficult in 

63 highly-exploited species, as exploitation alters the population structure of fishes by preferentially 

64 selecting for large and old fish individuals (Mason, 1998; Berkeley et al., 2004). The 

65 ramifications for failing to acknowledge selection are clear, as length-selective fishing mortality 

66 distorts growth curves (Walker et al., 1998). Further, the lack of representation of large and old 

67 individuals could result in underestimation of lifespan and longevity, which makes fishery 

68 management measures less effective (Campana, 2001; Cailliet and Andrews, 2008; Goldman et 

69 al., 2012). Large and old fish drive estimates of the maximum average length parameter L∞, and 

70 without them, L∞ is underestimated and the growth rate (typically denoted by K) is 

71 overestimated. The underestimation of L∞ and the overestimation of K lead to the assumptions of 

72 a shorter generation time and less mortality, and thus more resiliency to high levels of fishing 

73 pressure (Campana, 2001; Goldman et al., 2012; Harry, 2017). The L∞ term is particularly 

74 important when growth models are incorporated into stock assessment (Wells et al., 2013). This 

75 problem may also occur in growth modelling for vulnerable fish or in data-poor fisheries, where 

76 lack of representation of each age and size class due to sampling constraints or the scarcity of 

77 individuals may similarly affect parameter estimates. Fishery dependent data are often the only 

78 data available for growth modelling, which may be acceptable only as long as the inherent biases 

79 and limitations are acknowledged. 

80 Several models have been developed to quantify the relationship between age and size, 

81 with body length being the most common metric of size. Typically, asymptotic growth models 

82 are used to quantify this relationship. These models describe fast growth rate in the earliest years 

83 of life and slower growth in later years. Despite some criticism (Roff, 1980; Czarnołe‘ski and 

84 Kozlowski, 1998), the most widely used is the von Bertalanffy growth model (Chen et al., 1992; 
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85 Kimura, 2008). Rooted in bioenergetics, this model is intended to give a biologically relevant 

86 representation of how catabolic and anabolic processes work within a fish to change growth over 

87 the lifespan of fishes (von Bertalanffy, 1938; Pauly, 2010). Over the years, there have been many 

88 re-parameterizations of von Bertalanffy with incorporation of growth-influencing factors and 

89 applications to a variety of situations (Gallucci II and Quinn, 1979; Ratkowsky, 1986; Helser and 

90 Lai, 2004; Kimura, 2008; Brunel and Dickey-Collas, 2010; van Poorten and Walters, 2016), but 

91 the original parametrization is still the most commonly used (Lorenzen, 2016). Other asymptotic 

92 growth models are commonly used in fisheries, such as the Gompertz growth model (Gompertz, 

93 1825) and the logistic growth model (Ricker, 1975).

94 In recent years, fish growth models have moved from a foundation in bioenergetics to 

95 being more statistically driven (van Poorten and Walters, 2016). These models are inherently 

96 more flexible, allowing them to capture subtleties in growth patterns that may not be captured by 

97 the more inflexible growth models. The Schnute model (Schnute, 1981), for example, has four 

98 curve families that the model may assume based on which types of data the model is fit to and 

99 what other functions are incorporated into the framework. Another flexible growth model, the 

100 Schnute-Richards model (Schnute and Richards, 1990), can describe biphasic growth among 

101 several other forms. By design, the Schnute-Richards model may be equivalent to the other 

102 growth models discussed above when the proper values are specified for its dimensionless 

103 parameters. Fish growth is inherently plastic and fish do not all grow the same way (Weatherley, 

104 1990; Lorenzen, 2016), so a flexible growth model may be advantageous in certain situations. 

105 However, these flexible models may also be more sensitive to sampling biases in data, 

106 potentially producing growth patterns that reflect the size-frequency distribution of fish collected 

107 rather than the biological growth pattern of the species.
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108 The Gulf Corvina (Cynoscion othonopterus) is an ideal species to examine the 

109 performance of multiple growth models in a vulnerable marine fish. Endemic to the northern 

110 Gulf of California, Mexico (Robertson and Allen, 2008), it is currently listed as vulnerable under 

111 the International Union for the Conservation of Nature (IUCN) Redlist (Chao et al., 2016). Gulf 

112 Corvina have experienced persistent overfishing on their spawning aggregations for the past two 

113 decades, which have resulted in growing concern for the fishery’s stability and longevity 

114 (Erisman et al., 2012; Ruelas-Peña et al., 2013; Erisman et al., 2014; Ortiz et al., 2016). The life 

115 history of this species has been well documented and provides an ideal foundation for future 

116 analysis of individual and population growth (Román-Rodriguez, 2000; Gherard et al., 2013. 

117 With a documented maximum size of 1013 mm total length (TL) and a documented maximum 

118 age of 9 years, Gulf Corvina is a fast growing, short lived species which reaches sexual maturity 

119 at 2 years of age (Gherard et al., 2013). However, the combination of highly efficient, size-

120 selective gear and persistent overfishing have severely truncated the age structure of the 

121 population (Erisman et al., 2014; Ortiz et al., 2016). The mean age of capture of Gulf Corvina is 

122 5 years (ca. 700 mm TL), and few individuals older than age 7 or younger than age 4 have been 

123 observed in the fishery (Gherard et al., 2013; Erisman et al., 2014; Ortiz et al., 2016).

124 Past studies of Gulf Corvina growth, which have relied solely on fishery-dependent data 

125 with incomplete sampling of all size and age classes, have produced different results due to 

126 differences in model selection approach. Based on the congruence of the model with the growth 

127 pattern of many species of the genus Cynoscion and other sciaenid fishes (Rutherford et al., 

128 1982; Lowerre-Barbieri et al., 1995; Rodriguez and Hammann, 1997), Gherard et al. (2013) took 

129 a conservative, single model approach and fit the von Bertalanffy growth model to Gulf Corvina 

130 age-length data. Conversely, Aragón-Noriega (2014) chose a statistically-driven approach and fit 
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131 several models to multiple datasets, concluding that Gulf Corvina grew in a biphasic pattern with 

132 slow growth in the beginning of life, rapid growth after age two, and slow growth after age four. 

133 Notably, Aragón-Noriega’s (2014) estimates for the L∞ parameter varied greatly, from 735.0 to 

134 1126.6 mm, depending on which dataset was used. Given this variability, absence of biphasic 

135 growth patterns in similar sciaenids, and the distance from the maximum observed length of Gulf 

136 Corvina (1013 mm; Gherard et al., 2013), Aragón-Noriega’s (2014) estimates may be 

137 biologically unrealistic. Mendivil-Mendoza et al. (2017) took a similar approach and found a 

138 similarly wide range of L∞ values (666.7 – 1306.0 mm). However, despite fitting models to 

139 similar data and selecting the same model as Aragón-Noriega (2014), Mendivil-Mendoza et al. 

140 (2017) did not describe the biphasic growth pattern recorded by Aragón-Noriega (2014). The 

141 existence of discrepancies between the previous Gulf Corvina growth studies and the importance 

142 of the age-length relationship to the stock assessment of the fishery merit further investigation on 

143 the growth pattern of the species.

144 Here, we model the growth of Gulf Corvina and draw conclusions about data needs and 

145 fisheries assessments. Our specific objectives were to: (1) assess how representation of size and 

146 age classes affected growth parameter estimates and (2) compare the performance of multiple 

147 growth models for describing age-at-length data for Gulf Corvina. Through generating a more 

148 complete dataset than previous studies and testing for biases in our data with simple indicators, 

149 we addressed these objectives. Moreover, using the results of simulations with a per-recruit 

150 model, we discussed the implications of misrepresenting growth in highly-exploited, vulnerable 

151 marine fishes.

152 Materials and Methods

153 Data collection
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154 Seven hundred and forty-nine Gulf Corvina were sampled from 2009 through 2013 at the 

155 three locations in the upper Gulf of California: El Golfo de Santa Clara (Sonora), San Felipe 

156 (Baja California), and El Zanjón (Baja California). Information on total length (TL) was 

157 recorded to the nearest mm for each fish collected, and the sagittal otoliths were removed, dried 

158 whole and stored until further use. Five hundred and thirty of these samples were collected from 

159 the commercial Gulf Corvina fishery and from bycatch from the shrimp fishery. These data were 

160 used by Gherard et al. (2013). In order to increase representation of size and age classes that 

161 were scarce in the dataset used by Gherard (2013), we collected 219 additional samples in 2012-

162 2013 from the bycatch of other fisheries (e.g., shrimp), fishery-independent sampling of small 

163 individuals (<30 cm TL), and the commercial Gulf Corvina fishery. All fish were deceased at the 

164 time of collection from fishers. The research protocol was approved under UCSD IACUC ID no. 

165 S13240 and data were collected under CONANP permit no. CNANP-00-007.

166 Otolith preparation and ageing protocols were followed according to the methods 

167 developed by Gherard et al. (2013) for Gulf Corvina. Whole sagittal otoliths were first mounted 

168 on wood blocks with a cyanoacrylate adhesive and a 0.5 mm dorsal-ventral cross-section was cut 

169 through the otolith focus using a double-bladed Buehler Isomet 1000 precision saw (Allen et al., 

170 1995). Sub-sections were then mounted on a glass slide using thermoplastic glue and submerged 

171 in a glass petri dish with water and a black background. Transmitted light under a Zeiss Stemi 

172 2000-C microscope with a Zeiss Axiocam 105 color camera at 6.25x total magnification was 

173 used to count the alternating opaque and translucent growth zones that define an annulus (Figure 

174 1). For the purposes of this study, an annulus was defined as one full opaque and translucent 

175 zone of growth (Cailliet et al., 1996), which was validated for Gulf Corvina by previous studies 

176 (Rowell et al., 2005; Román-Rodriguez, 2000; Gherard et al., 2013) Each otolith was aged by 
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177 two independent readers from digital images of cross-sections, as direct observation through the 

178 scope did not distort band pattern and did not affect age estimates. Samples were excluded from 

179 analysis when discrepancies between readers occurred.

180 Model fitting and assessment of fit

181  Growth modelling

182 A suite of growth models was fit to age data determined from otoliths as described, and 

183 length data obtained in the field. Model parameters were estimated using non-linear least squares 

184 regression with the Levenberg-Marquardt algorithm, and confidence limits were placed around 

185 parameter estimates in R studio (using the R packages FSA, minpack.lm, and nlstools). 

186 The specialized von Bertalanffy growth model (von Bertalanffy, 1938) is given by:

187 Eq. 1: 𝐿(𝑡) = 𝐿∞[1 ‒ 𝑒 ‒ 𝐾(𝑡 ‒ 𝑡
0

)
]

188 where L(t) is size (in mm TL) at age t, L∞ is the maximum average length (in mm TL), K is the 

189 growth rate coefficient (in year−1), and t0 is the theoretical age at which length is zero (in years).

190 The Gompertz growth model (Gompertz, 1825) is given by: 

191 Eq. 2: 𝐿(𝑡) = 𝐿∞𝑒( ‒ (
1𝐾)𝑒 ‒ 𝐾(𝑡 ‒ 𝑡

0
)
)

192 where the parameters are the same as described for Eq. 1.

193 The logistic model (Ricker, 1975) is given by:

194 Eq. 3: 𝐿(𝑡) = 𝐿∞[1 + 𝑒 ‒ 𝐾(𝑡 ‒ 𝑡
0

)
]

‒ 1
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195 where the parameters are the same as described for Eqs. 1 and 2.

196 The Schnute model where a and b are not equal to zero (Schnute, 1981) is given by:

197 Eq. 4: 𝐿(𝑡) = [𝐿1
𝑏

+ (𝐿2
𝑏 ‒ 𝐿1

𝑏
)

1 ‒ 𝑒 ‒ 𝑎(𝑡 ‒ Ƭ
1

)

1 ‒ 𝑒 ‒ 𝑎(Ƭ
2

‒ Ƭ
1

)]1/𝑏
198 where Ƭ1 is the first specified age, Ƭ2 is the second specified age, L1 is size at age Ƭ1, L2 is size at 

199 age Ƭ2, a is the constant relative rate of relative growth (in year-1), and b is the incremental 

200 relative rate of relative growth (dimensionless),

201 Finally, the Schnute-Richards model (Schnute and Richards, 1990) is given by:

202 Eq. 5: 𝐿(𝑡) = 𝐿∞ (1 + 𝛼𝑒 ‒ 𝑎𝑡𝑐
)1/𝑏

203 where  and are dimensionless parameters, and  has the unit of year-b.𝛼, 𝑏, 𝑐 𝑎
204 Statistical measures of fit

205 Model fit was assessed with the bias-corrected Akaike Information Criterion (AICc) 

206 (Shono, 2000; Burnham and Anderson, 2004), and Bayesian Information Criterion (Schwarz, 

207 1978) in R Studio (using the R package AICcmodavg). 

208 The formula for AICc is given by:

209 Eq. 6: 𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)𝑛 ‒ 𝑘 ‒ 1

210 where:

211 Eq. 7: 𝐴𝐼𝐶 =‒  2 log (𝐿) + 2𝑘
212 and n is the number of observations, k is the number of model parameters, and L is the likelihood.

213 The formula for BIC is given by:
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214 Eq. 8:  𝐵𝐼𝐶 = 2ln (𝐿) + 𝑘 log (𝑛)
215 where parameter definitions are the same as described for Eq. 7.

216 The smallest AICc and BIC values indicate the best model. The difference between the 

217 two criteria is that AICc is designed to select the model that describes reality the best while 

218 treating no models as true, which is consistent with an information theory approach, whereas 

219 BIC is designed to select the true model. Practically, BIC penalizes for the number of parameters 

220 more heavily than AICc. AICc was used instead of AIC as it is bias-corrected at small n values 

221 or high k:n ratios; AICc converges to AIC at large n values (Burnham and Anderson, 2004). 

222 AICc and BIC values were calculated to show the absolute difference between model fits. Next, 

223 AICc weights were calculated for model averaging of parameter estimates; the AIC weighting 

224 formula is given by:

225 Eq. 9: 𝑤𝑖 =
𝑒( ‒ 0.5∆𝑖)∑5𝑘 = 1

𝑒( ‒ 0.5∆𝑘)

226 where parameter definitions are the same as described for Eqs. 7 and 8.

227 Simple indicators of biased data

228 Simulation of an ideal sampling outcome

229 To test for the influence of sampled population structure on growth model output, different 

230 amounts of simulated data were added to raw data so that each age observed (1-8) had 200 total 

231 observations. Data were simulated from a normal distribution with the same mean and standard 

232 deviation as the raw data at each age class. This simulation was not intended to generate the true 

233 population structure of Gulf Corvina in the Gulf of California, but rather to generate an equal 

234 number of samples in each age and size class. This simulation did not explicitly account for 
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235 selectivity or limits in sampling effort, but filled in gaps left by these factors and others that 

236 prevented more equal representation of each size and age class in the raw data. Models were fit 

237 to the new dataset and goodness of fit was assessed in the same manner as was described above.

238 Froese and Binohlan’s empirical relationship

239 Froese and Binohlan’s (2000) empirical relationship between the longest fish in the data 

240 set (Lmax) and L∞ was used to specifically test for the influence of the lack of large and old fish in 

241 the raw dataset, which is likely due to heavy exploitation. If large and old fish are insufficiently 

242 represented in the dataset, it stands to reason that the L∞ predicted by this relationship will be 

243 greater than the modelled L∞. This relationship is given by:

244 Eq. 10:  𝑙𝑜𝑔𝐿∞ = 0.044 + 0.9841 ∗ log (𝐿𝑚𝑎𝑥)

245

246 Literature review

247 A brief literature review of sciaenid growth modelling was conducted to assess how the 

248 results of this study compared with other studies on fishes closely related to the Gulf Corvina 

249 (e.g., other species in the genus Cynoscion). In conjunction with Froese and Binohlan’s empirical 

250 relationship and the simple simulation of an ideal sampling scenario, this brief literature review 

251 was intended to check if the samples used in this study produced a biologically plausible growth 

252 pattern when growth was modelled. 

253 Simulations with a per-recruit model

254 To be able to discuss the implications of misrepresenting growth in Gulf Corvina, we ran 

255 simulations with a per-recruit model detailed in Appendix S1. In brief, this per-recruit model 
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256 estimates the female spawning-stock-biomass-per-recruit (SSBR; a proxy of reproductive 

257 capacity) and yield-per-recruit (YPR; exploitable biomass) of Gulf Corvina in relation to the 

258 annual exploitation rates of the old adults (≥ 5 year-old individuals) of the species ( ). In this 𝐸𝑂𝐴
259 per-recruit model, Gulf Corvina is assumed to grow according to one of five alternative growth 

260 models: (1) the von Bertalanffy model developed in Gherard et al. (2013), referred to as the 

261 “Gherard model”; (2) the von Bertalanffy model fit to raw data in the present study; (3) the von 

262 Bertalanffy model fit to raw data bolstered by simulation values in this study; (4) the Schnute-

263 Richards model fit to raw data in the present study; and (5) the Schnute-Richards model fit to 

264 raw data bolstered by simulation values in this study. The current  was estimated to be 0.825 𝐸𝑂𝐴
265 year-1 (Appendix S1). We first ran simulations with the per-recruit model to determine the 

266 maximum value of the YPR of Gulf Corvina (YPRmax) and the natural SSBR of Gulf Corvina 

267 (NSSBR), i.e., its SSBR in the absence of fishing (Appendix S1). Then, we estimated the current 

268 fraction of NSSBR (current FNSSBR, i.e., the ratio of current SSBR to NSSBR) and the current 

269 YPR over YPRmax of Gulf Corvina, when each of the five abovementioned growth models is 

270 used to represent the growth in length of Gulf Corvina.  

271 Results

272 Length and age structure

273 A bimodal distribution was observed in the length and age structure of the fish used in 

274 this study (Figures 2 and 3). The first mode of the distribution represents Gulf Corvina caught as 

275 bycatch, whereas the second represents Gulf Corvina caught in the targeted fishery. Lengths 

276 ranged from 141-1013 mm TL, and ages ranged from 1-8 years. 

277 Model fitting and assessment of fit for models fit to raw data
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278 Growth patterns and parameter estimates for models fit to raw data

279 The Gompertz, logistic, and von Bertalanffy models yielded asymptotic growth patterns, 

280 while the Schnute-Richards model described biphasic growth and the Schnute model described 

281 near-linear growth after 1.5 years of life (Figure 4). Modelled length at age was most similar 

282 among models at intermediate ages, where samples were most abundant (Figure 4). Conversely, 

283 modelled length at age was most variable at young and old ages, where samples were most 

284 scarce (Figure 4). Estimates of L∞ ranged from 730.91 mm (Schnute-Richards model) to 916.05 

285 mm (von Bertalanffy model). All parameter estimates are summarized in Table 1, while 

286 confidence intervals around parameter estimates are reported in Appendix S2.

287 Measures of statistical fit for models fit to raw data

288 AICc and BIC values indicated that the Schnute-Richards model described the raw data 

289 best, followed by the logistic, Gompertz, von Bertalanffy, and Schnute models (Table 2). The 

290 AIC weighting formula gave full support to the Schnute-Richards model, so no model averaging 

291 of parameters was necessary. 

292 Simple indicators of biased data

293 Growth patterns and parameter estimates for models fit to raw data bolstered by 

294 simulated values

295 The Schnute-Richards, Gompertz, logistic and von Bertalanffy growth models yielded 

296 asymptotic growth patterns, while the Schnute model described near-linear growth after 1.5 years 

297 of age (Figure 5). Modelled length at age was similar at intermediate ages among all growth 

298 models except for the Schnute one, but differed slightly at young and old ages (Figure 5). 
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299 Estimates of L∞ ranged from 834.34 mm (logistic model) to 951.30 mm (von Bertalanffy model) 

300 (Table 3). All parameter estimates for each growth model are summarized in Table 3. 

301 Measures of statistical fit for models fit to raw data bolstered by simulated values

302 The von Bertalanffy growth model described the raw data bolstered by simulated values 

303 best according to AICc and BIC values (Table 4). However, it was only marginally better than 

304 the Schnute-Richards and Gompertz models based on AICc. Thus, the von Bertalanffy growth 

305 model received 53% of AICc weighting to the Schnute-Richards’ 33%, and Gompertz’ 15%. The 

306 logistic model fit the data better than the Schnute model, but neither models received any support 

307 from AICc weighting. Model averaging L∞ based on AICc weights resulted in an estimated L∞ of 

308 945 mm, an estimate 6 mm shorter than the that predicted by the von Bertalanffy model. In 

309 contrast to AICc values, BIC values indicated that the Gompertz model fit the data better than 

310 the Schnute-Richards model. Both Gompertz and Schnute-Richards models fit the data better 

311 than the logistic and Schnute models according to BIC values, as was indicated by AICc values. 

312 Froese and Binohlan’s empirical relationship

313 Froese and Binohlan’s empirical relationship between Lmax and L∞ predicted a L∞ of 1006 

314 mm from a maximum observed length of 1013 mm. This estimate is larger than all estimates of 

315 L∞ derived from growth models fit to raw data (Table 1) and raw data bolstered by simulated 

316 values (Table 3). 

317 Literature review 

318 Results from our review of 24 sciaenid growth studies and citations are summarized in Table 

319 5. Age and body length relationships in sciaenids were represented by the von Bertalanffy 

320 growth model in 20 of 24 (83%) of the studies we reviewed, as reported in Atlantic Croaker 
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321 (Micropogonias undulatus), Black Drum (Pogonias chromis), Red Drum (Scianops ocellatus), 

322 Southern Kingfish (Menticirrhus americanus), Spotted Seatrout (Cynoscion nebulosus), 

323 Weakfish (Cynoscion regalis), and Whitemouth Croaker (Micropogonias furnieri). Notably, 

324 growth of the Totoaba (Totoaba macdonaldi), a sciaenid closely related to Gulf Corvina and also 

325 found in the Gulf of California, was modelled by the von Bertalanffy growth model. Growth of 

326 the Gulf Corvina was modelled using the von Bertalanffy growth model in two previous studies. 

327 Other growth models have been used to describe age and body length relationships in 

328 sciaenids in 5 of 24 (21%) the studies we reviewed. The Gompertz model was used to model 

329 growth in female Spotted Seatrout. A linear model was used to model growth in male Spotted 

330 Seatrout, although it was noted that the linear growth pattern may have been due to lack of 

331 sampling of large and old individuals. Multi-model approaches similar to this study were 

332 employed three times (13%). One study on the Gulf Corvina selected the von Bertalanffy growth 

333 model for two datasets, and the Schnute-Richards model for two other datasets. As such, this 

334 study was counted in as one of the 20 studies that used the von Bertalanffy growth model to 

335 model sciaenid growth, and as one of the five studies that employed other growth models. The 

336 most recent age and growth study on Gulf Corvina selected the Schnute-Richards model, but did 

337 not describe a biphasic growth pattern. The other study that employed multiple models fit them 

338 to Spotted Seatrout age-length data and found the most statistical support for the three-parameter 

339 logistic model.

340 Model selection

341 Synthesis of the above considerations and assessments led to the selection of the von 

342 Bertalanffy growth model as the best model to represent Gulf Corvina growth. Of models fit in 

343 this study, the von Bertalanffy growth model had the 4th best statistical fit to raw data (AICc = 
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344 8813.66, Δ AICc = 53.84, AICc weight = 0; BIC = 8832.08, Δ BIC = 44.66; Table 2) and the 

345 best statistical fit to raw data bolstered by simulated values (AICc = 18678.72, Δ AICc = 0. AICc 

346 weight = 0.53; BIC = 18700.20, Δ BIC = 0; Table 4). Of models fit in this study, the von 

347 Bertalanffy growth model produced an L∞ closest to the L∞ predicted by Froese and Binohlan’s 

348 empirical relationship of 1006 mm (raw data: 916.05 mm; raw data bolstered by simulated 

349 values: 951.30 mm; Tables 1 and 3). Further, the von Bertalanffy growth model was used to 

350 represent sciaenid growth in 83% of studies reviewed. 

351 Simulations with a per-recruit model

352 The current value of the exploitation rate of old adults of Gulf Corvina EOA that we 

353 estimated is ca. twice larger than the value of EOA at which the YPR of Gulf Corvina reaches a 

354 maximum, regardless of the growth model employed for simulations with the per-recruit model 

355 (Appendix S1). However, the current FNSSBR of Gulf Corvina predicted when using the 

356 Schnute-Richards growth model fit to raw data only (0.60) is noticeably greater than the current 

357 FNSSBR of Gulf Corvina predicted when using all the other growth models (0.42-0.53) (Figure 

358 6A). The value of fraction of natural SSBR that causes population collapse typically is in the 

359 range of 0.1-0.6 and lower for short-lived fish species such as Gulf Corvina (Myers et al., 1999; 

360 Grüss et al., 2014). Thus, the per-recruit model employing Schnute-Richards growth model 

361 predicts the Gulf Corvina stock to be in a much healthier state than the per-recruit models 

362 employing other growth models. The current YPR over YPRmax of Gulf Corvina predicted when 

363 using the Schnute-Richards growth model fit to raw data only (0.80) is also greater than the 

364 current YPR over YPRmax of Gulf Corvina predicted when using all the other growth models 

365 (0.70-0.74) (Figure 6B).

366 Discussion
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367 This study illustrates the pitfalls of using statistical considerations alone when selecting a 

368 growth model for a vulnerable and highly-exploited species, due to the high likelihood of a 

369 biased distribution of samples. The combination of highly efficient, size-selective gear and high 

370 fishing effort have altered the age structure of the Gulf Corvina population (Ortiz et al., 2016), 

371 making sufficient representation of each size and age class difficult (Erisman et al., 2014). The 

372 influence of the lack of large and old fish in the dataset used for this study is clear, as Froese and 

373 Binohlan’s (2000) empirical relationship predicted an L∞ that was 89.95 – 275.09 mm greater 

374 than the L∞ predicted by growth modeled fit to raw data. This predicted L∞ from Froese and 

375 Binohlan’s (2000) empirical relationship of 1006 mm was identical to the L∞ estimated by 

376 Gherard et al. (2013) with the von Bertalanffy growth model. Growth patterns (Figures 4 and 5) 

377 and parameter estimates (Tables 1 and 3) were far less variable for models fit to data where 

378 sample size was equal at age, compared to models fit to raw data alone.

379 Unfortunately, heavy exploitation of Gulf Corvina makes the use of biased data in age 

380 and growth studies an unavoidable reality. Length data collected from the continuous monitoring 

381 of the fishery (Erisman et al., 2015; Ortiz et al., 2016) indicate that Gulf Corvina may be able to 

382 grow longer than their maximum reported length of 1013 mm and live longer than their 

383 maximum reported age of 9 years, but heavy exploitation (exploitation rate of 0.825 year-1 for 

384 Gulf Corvina five years-old and older; Erisman et al. 2014) prevents them from doing so. Thus, 

385 despite our best efforts, we were unable to sufficiently represent large and old fish in our dataset. 

386 Further, while we made a concerted effort to sample small individuals, our data set would have 

387 been improved if we were able to collect more. This led to our decision to employ our simulation 

388 exercise to understand how the biases in our data affected our results. Similarly biased data have 

389 been the only data available for age and growth studies with Gulf Corvina, and previous studies 
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390 have taken markedly different approaches to dealing with its limitations. Gherard et al. (2013) 

391 chose to use the inflexible and widely comparable von Bertalanffy growth model while 

392 acknowledging the data’s limitations and caveating results accordingly. Alternatively, Aragón-

393 Noriega (2014) and Mendivil-Mendoza (2017) employed a multi-model approach that leaned 

394 exclusively on statistics. Their statistical procedures led to the selection of the flexible Schnute-

395 Richards model to describe Gulf Corvina growth. Despite reporting different growth patterns 

396 depending on which dataset was used, Aragón-Noriega (2014) did not acknowledge the 

397 limitations of fishery-dependent data and concluded that Gulf Corvina grew in a biphasic pattern. 

398  The same suite of models employed by Aragón-Noriega (2014) and Mendivil-Mendoza 

399 et al. (2017) were fit to our data, and statistical measures of fit similarly supported the Schnute-

400 Richards model as the best model for Gulf Corvina. Further, a biphasic growth pattern was 

401 described by the model, as it did in Aragón-Noriega’s (2014) study. However, our review of 24 

402 sciaenid growth studies indicated that only two (8%) studies used the Schnute-Richards model to 

403 describe sciaenid growth (Aragon-Noriega, 2014; Mendivil-Mendoza et al., 2017), of which only 

404 one described biphasic growth (Aragón-Noriega, 2014). The biological implausibility of this 

405 growth pattern was further supported by the distance between Froese and Binohlan’s predicted 

406 L∞ and the L∞ estimated by the Schnute-Richards model (1006 vs. 730.91 mm, i.e., a 275.09 mm 

407 difference). Finally, simulating an ideal sampling scenario where each age class was equally 

408 represented revealed that this biphasic growth pattern was due to bimodal distribution of samples 

409 and a lack of large, old fish. Both the parameter estimates and growth pattern changed 

410 substantially when simulated data was added to raw data so that sample size was equal for each 

411 age (Figure 5 and Table 3). The Schnute-Richards model is flexible by design, and is, therefore, 

412 not suited for use with datasets that do not sufficiently represent each size and age class. Thus, 
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413 by integrating the results of our statistical measures of fit, literature review, and simple indicators 

414 of biased data, we selected the von Bertalanffy growth model as the best model to represent Gulf 

415 Corvina growth. 

416 The results of our study reinforce the well-established, but often forgotten, principle that 

417 each size and age class must be sufficiently represented for growth modelling to produce 

418 biologically reasonable results (Cailliet et al., 1986; Cailliet and Tanaka, 1990; Francis and 

419 Francis, 1992; Cailliet and Goldman, 2004). Ensuring sufficient representation may be difficult 

420 for highly-exploited fishes, as exploitation alters the population structure of fishes by 

421 preferentially selecting for large and old fish individuals (Berkeley et al., 2004; Mason, 1998). 

422 Similar challenges are faced when studying growth for vulnerable fishes or in data-poor 

423 fisheries, where there may not be resources available for extensive fishery-independent sampling 

424 or fish are scarce in general. Despite difficulty, ensuring sufficient representation of each size 

425 and age class should be a priority. The distinction between sampling to sufficiently represent 

426 each size and age class and sampling to represent population structure is an important one to 

427 make, as sampling to represent population structure should not be a goal of age and growth 

428 studies due to the bias created by the natural scarcity of large and old fish. As such, the simple 

429 simulation of an ideal sampling scenario with an equal number of samples at each age was not 

430 intended to represent the population structure of Gulf Corvina or to reflect the relative 

431 probability of obtaining samples of particular size and age classes in the real world. 

432 Life-history parameters such as those estimated in growth models are influential in 

433 assessments for vulnerable and data-poor species (Fournier et al., 1990; Dulvy et al., 2004; 

434 Froese, 2004; Honey et al., 2010; Hordyk et al., 2016). These types of assessments rely on age-

435 length data to determine vulnerability and overfishing, and problems emerge when all size and 
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436 age classes are not sufficiently represented. The average maximum length (L∞) is underestimated 

437 and the growth rate (K) is overestimated when large and old fish are absent. Accordingly, a short 

438 generation time and lower levels of mortality are estimated, conferring more resilience to 

439 exploitation that the population possesses (Campana, 2001; Goldman et al., 2012; Harry, 2017). 

440 This idea was demonstrated with simulations with a per-recruit model, where the per recruit 

441 model using the Schnute-Richards growth model fit to raw data (which had the lowest L∞ in the 

442 present study) predicted Gulf Corvina reproductive capacity to be in a much healthier state than 

443 the per recruit models using other growth models (Fig. 6A).  This false resiliency makes fishery 

444 management measures less effective (Campana, 2001; Cailliet and Andrews, 2008; Goldman et 

445 al., 2012), and may be present in Gulf Corvina assessments, as length and age truncation in the 

446 catch has increased progressively since biological monitoring of the fishery began in 1997 

447 (Erisman et al., 2014). Given this length and age truncation, published growth models reported 

448 for this species may not be representing biology but rather the influence of exploitation. 

449 Our results have implications for estimating growth within a stock assessment. Piner 

450 (2016) documented an increase in precision in parameter estimates, ability to account for 

451 selectivity, and ability to incorporate multiple data sources when growth was estimated within a 

452 stock assessment. However, the influence of sample distribution on model output should be 

453 carefully examined if this approach is to be taken. So-called haphazard sampling strategies that 

454 ensure that all age and size classes are represented (e.g. Wells et al., 2013) make growth 

455 estimation within a stock assessment model more difficult, though are necessary if the density of 

456 samples at a particular age is driving model fit or preventing accurate estimation of L∞. Precision 

457 may be improved, but care must be taken to ensure that precision is being improved around 

458 biological reality.
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459 We found that Gulf Corvina exhibit a high degree of variation in length-at-age, a pattern 

460 that is common among coastal fishes in the Gulf of California and other regions of the eastern 

461 Pacific characterized by significant annual variations in precipitation, ocean temperatures, and 

462 productivity in response to climate forcing that are known to influence growth rates in marine 

463 fishes (e.g., El Niño Southern Oscillation, ENSO;  (Wells et al., 2006; Williams et al., 2007; 

464 Black, 2009). Specifically, growth rate is higher in Gulf Corvina during El Niño years, mainly in 

465 association with increased sea surface temperatures in the region (Reed, 2017). ENSO has been 

466 shown to affect fish growth in other areas, such as the waters of New Caledonia (Lehodey and 

467 Grandperrin, 1996), New Zealand (Gillanders et al., 2012), and north-western Australia (Ong et 

468 al., 2016, 2015). As the present study was conducted over multiple years, it is reasonable to 

469 assume that variations in ENSO over the study period (i.e., a succession of El Niño/La Niña 

470 events) could have affected the fish harvested for this study, explaining the observed variation in 

471 length-at-age. These effects may affect estimates of growth derived with growth models, but in 

472 order to identify these effects with confidence, complete sampling must be conducted with this 

473 purpose in mind. Another explanation for length-at-age variation could be measurement error 

474 (Neilson, 1992; Campana, 2001). Most of the fish in this study were harvested during their 

475 spawning season, which is around the time when they form new annuli. Therefore, it would be 

476 reasonable to conservatively assume that the precision of this study is more or less one year of 

477 age. However, we have high confidence in our reading of these otoliths, as annuli are clearly 

478 seen with minimal preparation (Figure 1) and we excluded any samples for which there was a 

479 disagreement between readers.

480 Assessing the biological feasibility of growth model output, here accomplished with the 

481 use of simple indicators of biased data and literature review, is crucial for age and growth 
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482 studies. Statistical measures of fit alone may not lead to the selection of a model that represents 

483 biological reality (Wang et al., 1995; Cailliet et al., 2006; Araya and Cubillos, 2006). By 

484 integrating measures of statistical fit with results from the simple indicators and literature review, 

485 we concluded that the von Bertalanffy growth model best described the growth of Gulf Corvina 

486 and was most appropriate for the quality of available data. Though the Schnute-Richards model 

487 had the best statistical fit, it was not biologically reasonable, comparable between studies, or 

488 robust to biased data. Simple indicators such as those described in this paper should be used to 

489 reveal biases in data, and the use of flexible growth models such as the Schnute-Richards model 

490 to represent the growth of Gulf Corvina and similarly exploited fishes should be halted if biases 

491 are not accounted for. 

492 Conclusions

493 Sample distribution influences growth model output, especially for flexible, statistically-driven 

494 models. Data used in growth modelling studies should be thoroughly examined for bias, as 

495 statistical measures of fit are insufficient for selecting a model that reflects biological reality. 

496 Reflecting biological reality in growth models is critical for vulnerable fish and in data-poor 

497 fisheries, where age-length data are integral to assessing vulnerability and overfishing.  In this 

498 case, the von Bertalanffy growth model represented biological reality best among the models 

499 tested. We warn against the production and use of growth models without recognizing biases in 

500 data given the serious implications for stock assessments and the management of vulnerable fish 

501 populations and data-poor fisheries. 
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Figure 1

Transverse section of a sagittal otolith from a five-year old Gulf Corvina

Annuli are numbered and marked by white rectangles. Transmitted light under a Zeiss Stemi

2000-C microscope with a Zeiss Axiocam 105 color camera at 6.25x total magnification was

used to count the alternating opaque and translucent growth zones that define an annulus.
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Figure 2

Length frequency of Gulf Corvina from raw data represented in 10 mm bins

A bimodal distribution is observed, with the first consisting of Gulf Corvina caught as bycatch,

and the second largely consisting of fish from the directed fishery. Few fish larger than 750

mm are present in this dataset.
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Figure 3

Age frequency of Gulf Corvina from raw data

A bimodal distribution is observed, with the first consisting of Gulf Corvina caught as bycatch,

and the second largely consisting of fish from the directed fishery. Few fish older than age 6

are present in this dataset.
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Figure 4

Growth models fit to raw age-length data for Gulf Corvina

The Gompertz, Logistic, and von Bertalanffy models yield asymptotic growth patterns.

However, the Schnute-Richards model describes bi-phasic growth, and the Schnute model

describes near-linear growth after the first 1.5 years of life. Differences in modelled size at

age are most pronounced at the beginning and end of life, where samples are most scarce.
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Figure 5

Growth models fit to raw Gulf Corvina age-length data bolstered by simulated values

All models except for the Schnute describe asymptotic growth, and only show slight

differences in modelled size at age. Differences in modelled size at age are most pronounced

at the beginning and end of life.
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Figure 6

Consequences of using different growth models on (A) the current female SSBR over

natural SSBR and (B) current YPR over YPRmax of Gulf Corvina (Cynoscion othonopterus)

SSBR = spawning-stock-biomass-per-recruit. YPR = yield-per-recruit. Gherard model = von

Bertalanffy model developed in Gherard et al. (2013). VB model = von Bertalanffy model fit

to raw data in the present study. VB bolstered model = von Bertalanffy model fit to raw data

bolstered by simulation values in this study. S-R model = Schnute-Richards model fit to raw

data in the present study. S-R bolstered model = Schnute-Richards model fit to raw data

bolstered by simulation values in this study.
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Table 1(on next page)

Parameter estimates for growth models fit to raw age-length data for Gulf Corvina

Estimates of L∞ are variable, but not as variable as those reported in previous multi-model

studies of Gulf Corvina growth (Aragón-Noriega, 2014; Mendivil-Mendoza, 2017). Confidence

intervals around parameter estimates may be found in the supplemental information.
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1

Model name                  Model equation when fit to raw data

von Bertalanffy 𝐿(𝑡) = 916.05[1 ‒ 𝑒 ‒ 0.28(𝑡 ‒ ( ‒ 0.17))]
Gompertz 𝐿(𝑡) = 820.64𝑒( ‒ ( 1

0.51
)𝑒 ‒ 0.51(𝑡 ‒ 1.29))

Logistic 𝐿(𝑡) = 778.88[1 + 𝑒 ‒ 0.76(𝑡 ‒ 1.92)] ‒ 1
Schnute 𝐿(𝑡) = [141 ‒ 0.33+ (1013 ‒ 0.33 ‒ 141 ‒ 0.33)1 ‒ 𝑒 ‒ 3.36(𝑡 ‒ 1)1 ‒ 𝑒 ‒ 3.36(8 ‒ 1)]1/ ‒ 0.33
Schnute-Richards 𝐿(𝑡) = 730.91(1 + ( ‒ 0.003)𝑒 ‒ (0.12)𝑡2.18)1/0.003
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Table 2(on next page)

Statistical measures of fit for growth models fit to raw age-length data for Gulf Corvina

The Schnute-Richards model fits the data best according to AICc and BIC values, but is only marginally

better than the logistic, Gompertz, and von Bertalanffy models.  Note: K indicates the number of parameters

in each model.

*3 parameters were estimated by nonlinear least squares, but 4 additional parameters were manually

inputted (maximum and minimum ages and lengths) for the Schnute model.
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Model        K AICc      Δ AICc AICc 

weight

BIC    Δ BIC

Schnute-Richards 6 8759.82 0.00 1 8787.42 0.00

Logistic 4 8773.62 13.80 0 8792.04 4.62

Gompertz 4 8789.69 29.87 0 8808.11 20.69

von Bertalanffy 4 8813.66 53.84 0 8832.08 44.66

Schnute 3* 9148.78 388.96 0 9162.61 375.19

1
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Table 3(on next page)

Parameter estimates for growth models fit to raw Gulf Corvina age-length data

bolstered by simulated values

Compared to parameter estimates for models fit to raw data alone, estimates of L∞ are less

variable and generally increase. These estimates are closer to the L∞ of 1006 predicted by

Froese and Binohlan’s (2000) empirical relationship between L∞ and the longest fish in a

dataset
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1

Model                  Model fit to data bolstered by simulated values

von Bertalanffy 𝐿(𝑡) = 951.30[1 ‒ 𝑒 ‒ 0.25(𝑡 ‒ ( ‒ 0.33))]
Gompertz 𝐿(𝑡) = 870.48𝑒( ‒ ( 1

0.62
)𝑒 ‒ 0.62(𝑡 ‒ 1.34))

Logistic 𝐿(𝑡) = 834.34[1 + 𝑒 ‒ 0.62(𝑡 ‒ 2.10)] ‒ 1
Schnute 𝐿(𝑡) = [141 ‒ 0.78+ (1013 ‒ 0.78 ‒ 141 ‒ 0.78)1 ‒ 𝑒 ‒ 6.06(𝑡 ‒ 1)1 ‒ 𝑒 ‒ 6.06(8 ‒ 1)]1/ ‒ 0.78
Schnute-Richards 𝐿(𝑡) = 938.80(1 + ( ‒ 0.0046)𝑒 ‒ (0.67)𝑡0.72)1/0.0019
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Table 4(on next page)

Statistical measures of fit for growth models fit to raw Gulf Corvina age-length data

bolstered by simulated values

The von Bertalanffy growth model describes the data best according to AICc and BIC values. However, AICc

weighting indicates that the Schnute- Richards and Gompertz models have nearly equivalent fits. Note: K

indicates the number of parameters in each model.

*3 parameters were estimated by nonlinear least squares, but 4 additional parameters were manually

inputted (maximum and minimum ages and lengths) for the Schnute model.
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Model        K AICc  Δ AICc AICc 

weight

BIC Δ BIC

von Bertalanffy 4 18678.72 0.00 0.53 18700.20 0.00

Schnute-Richards 6 18679.65 0.94 0.33 18711.87 11.67

Gompertz 4 18681.29 2.57 0.15 18702.77 2.57

Logistic 4 18702.60 23.89 0 18724.09 23.89

Schnute 3* 19891.72 1213.01 0 19907.84 1207.64

1
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Table 5(on next page)

Models used to describe growth in sciaenid fishes similar to and including the Gulf

Corvina

A review of 24 sciaenid growth studies indicates that sciaenid growth is most commonly

modelled by the von Bertalanffy growth model (20 studies; 83 % of studies reviewed).
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1

Growth model selected  Genus and species References

Gompertz Cynoscion nebulosus Murphy and Taylor, 1994 (females only)

Linear Cynoscion nebulosus Murphy and Taylor, 1994 (males only); Nieland et al., 2001

Logistic Cynoscion nebulosus Dippold et al., 2016

Schnute-Richards Cynoscion othonopterus Aragón-Noriega, 2014 (selected for two datasets); Mendivil-Mendoza, 2017

von Bertalanffy Cynoscion nebulosus

Cynoscion othonopterus

Cynoscion regalis

Menticirrhus americanus

Micropogonias funieri

Micropogonias undulates

Pogonias chromis

Sciaenops ocellatus

Totoaba macdonaldi
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