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ABSTRACT
The wood frog, Rana sylvatica, survives whole-body freezing and thawing each win-
ter. The extensive adaptations required at the biochemical level are facilitated by
alterations to signaling pathways, including the insulin/Akt and AMPK pathways.
Past studies investigating changing tissue-specific patterns of the second messenger
IP3 in adapted frogs have suggested important roles for protein kinase C (PKC) in
response to stress. In addition to their dependence on second messengers, phos-
phorylation of three PKC sites by upstream kinases (most notably PDK1) is needed
for full PKC activation, according to widely-accepted models. The present study
uses phospho-specific immunoblotting to investigate phosphorylation states of
PKC—as they relate to distinct tissues, PKC isozymes, and phosphorylation sites—
in control and frozen frogs. In contrast to past studies where second messengers
of PKC increased during the freezing process, phosphorylation of PKC tended to
generally decline in most tissues of frozen frogs. All PKC isozymes and specific
phosphorylation sites detected by immunoblotting decreased in phosphorylation
levels in hind leg skeletal muscle and hearts of frozen frogs. Most PKC isozymes
and specific phosphorylation sites detected in livers and kidneys also declined; the
only exceptions were the levels of isozymes/phosphorylation sites detected by the
phospho-PKCα/βII (Thr638/641) antibody, which remained unchanged from con-
trol to frozen frogs. Changes in brains of frozen frogs were unique; no decreases were
observed in the phosphorylation levels of any of the PKC isozymes and/or specific
phosphorylation sites detected by immunoblotting. Rather, increases were observed
for the levels of isozymes/phosphorylation sites detected by the phospho-PKCα/βII
(Thr638/641), phospho-PKCδ (Thr505), and phospho-PKCθ (Thr538) antibodies;
all other isozymes/phosphorylation sites detected in brain remained unchanged from
control to frozen frogs. The results of this study indicate a potential important role
for PKC in cerebral protection during wood frog freezing. Our findings also call
for a reassessment of the previously-inferred importance of PKC in other tissues,
particularly in liver; a more thorough investigation is required to determine whether
PKC activity in this physiological situation is indeed dependent on phosphorylation,
or whether it deviates from the generally-accepted model and can be “overridden” by
exceedingly high levels of second messengers, as has been demonstrated with certain
PKC isozymes (e.g., PKCδ).
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INTRODUCTION
For animals living in boreal climates, cold temperatures, particularly sustained periods of

subzero temperatures for months at a time, present a challenge to survival. For many of

these animals, the solution is migration or retreating to warmer zones until temperatures

in their boreal homes rise once again. For other animals, however, migration of this scope

is not possible, and unique arrays of adaptive mechanisms are utilized to endure the

prolonged cold. One such animal is the wood frog, Rana sylvatica (reviewed in Storey

& Storey, 1996). Each winter, this anuran endures whole-body freezing; approximately

65–70% of extracellular and extra-organ water freezes in the form of nucleated ice,

via the actions of ice-nucleating proteins or ice-structuring proteins. During this time,

cerebral and cardiovascular activities are undetectable by conventional means. Intracellular

freezing and any resulting irreparable damage to cellular contents is prevented by natural

cryoprotection; liver glycogen stores undergo extensive hydrolysis (causing a decrease in

liver mass by approximately 45%), and glucose is exported and systemically distributed,

accumulating in some tissues at levels up to 40–60 times higher than euglycemic levels

(Storey & Storey, 1985; Costanzo, Lee & Lortz, 1993). Such a broad reorganization requires

numerous modulations at several levels of the signaling and metabolic hierarchy of glucose

metabolism, including: (1) phosphorylation and sustained activation of liver glycogen

phosphorylase (Crerar, David & Storey, 1988; Mommsen & Storey, 1992); (2) adaptations to

plasma membranes in order to facilitate glucose transport and distribution (King, Rosholt

& Storey, 1993); (3) tissue-specific adjustment of anabolic and catabolic signaling pathways

(e.g., the insulin/Akt pathway, and the adenosine monophosphate-activated protein kinase

or AMPK pathway) to optimize glucose production, distribution, uptake, and utilization

as a cryoprotectant (Rider et al., 2006; Dieni, Bouffard & Storey, 2012; Zhang & Storey, 2013;

do Amaral, Lee & Costanzo, 2013), and; (4) suppression of metabolic pathways that would

otherwise divert glucose away from cryoprotection (e.g., pentose phosphate pathway,

glycolysis; Dieni & Storey, 2010; Dieni & Storey, 2011), among others. Following the return

of warmer temperatures and the arrival of spring, frogs thaw and resume their natural life

cycle with no apparent debilitating results of the freeze-thaw process.

Given the scope of these necessary adaptations it is likely, and has in fact already been

demonstrated, that altered signaling comprises a major facet of the mechanisms behind

the biochemical outcomes facilitating survival. In addition to those signaling enzymes

already referenced (i.e., Akt, AMPK, glycogen synthase kinase-3 or GSK3, protein kinase A

or PKA), additional kinases and phosphatases have been shown to play a role in wood

frog freeze-tolerance. For instance, mitogen activated protein kinases (MAPKs) are

activated in various tissues and are suggested as having a role in regulating metabolic or

gene expression responses that would facilitate survival in the freezing and/or thawing

processes (Greenway & Storey, 2000). Past studies have also suggested a potential role for

Dieni and Storey (2014), PeerJ, DOI 10.7717/peerj.558 2/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.558


protein kinase C (PKC) in freezing, anoxia, and dehydration, based on patterns of inositol

1,4,5-trisphosphate (IP3), a second messenger associated with cytosolic calcium increases

and a co-product of diacylglycerol (DAG; Holden & Storey, 1996; Holden & Storey, 1997).

Increases in cytosolic calcium and DAG both lead to PKC activation.

PKC in fact consists of a family of 15 serine/threonine-protein kinase isozymes

in humans, divided into subfamilies with specific second messenger requirements

and upstream regulators (Mellor & Parker, 1998); in genome-sequenced amphibians

(i.e., Xenopus), the NCBI gene database contains entries for sequences identified as

PKCα, PKCβ, PKCγ , PKCδ, PKCε, PKCζ , PKCη, PKCθ , PKCι, PKD/PKCµ. Our lab has

previously demonstrated in vivo roles for PKC in various forms of animal stress physiology,

including: (1) reptilian anaerobiosis (Mehrani & Storey, 1996); (2) mammalian hibernation

(Mehrani & Storey, 1997), and; (3) fish exercise and bioenergetics (Brooks & Storey, 1998).

Meanwhile, in vitro stimulation of endogenous PKC has been shown to significantly

affect the kinetic properties of glucose-6-phosphate dehydrogenase (G6PDH; Dieni &

Storey, 2010), and hexokinase (Dieni & Storey, 2011) from wood frog tissue extracts.

Given the potential importance of PKC in wood frog freeze-tolerance, the present study

further explores the regulation of this family of kinases in vivo, using phospho-specific

immunoblotting to establish tissue-specific phosphorylation states of the PKC isozymes in

control and frozen frogs.

MATERIALS AND METHODS
Animals
Conditions for animal care, experimentation, and euthanasia were approved by the

Carleton University Animal Care Committee (B09-22) in accordance with guidelines

set down by the Canadian Council on Animal Care. Male wood frogs were captured from

spring breeding ponds in the Ottawa, Ontario area. Animals were washed in a tetracycline

bath, and placed in plastic containers with damp sphagnum moss at 5 ◦C for two weeks

prior to experimentation. Control frogs were sampled from this condition. For freezing

exposure, frogs were placed in closed plastic containers with damp paper toweling on the

bottom, and put in an incubator set at −3 ◦C. A 45 min cooling period was allowed during

which body temperature of the frogs cooled to below −0.5 ◦C and nucleation was triggered

due to skin contact with ice crystals formed on the paper toweling (Storey & Storey, 1985).

Subsequently, timing of a 24 h freeze exposure began. All frogs were sacrificed by pithing,

followed by rapid dissection, and flash-freezing of tissue samples in liquid nitrogen. Tissues

were then stored at −80 ◦C until use.

Tissue extract preparation for SDS-PAGE and immunoblotting
Soluble protein extracts were prepared from tissues that had been previously stored at

−80 ◦C. Briefly, samples of frozen tissues were weighed and then quickly homogenized

using a Polytron PT1000 homogenizer (Brinkmann Instruments, Rexdale, ON, Canada) at

50% of full power in a 1:5 w:v ratio with ice-cold buffer A (20 mM Hepes, 200 mM NaCl,

0.1 mM EDTA, 10 mM NaF, 1 mM Na3VO4, and 10 mM ß-glycerophosphate). Protease

Dieni and Storey (2014), PeerJ, DOI 10.7717/peerj.558 3/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.558


and phosphatase inhibitors were added just prior to homogenization: 1:1,000 v:v protease

inhibitor cocktail (P8340; Sigma, St. Louis, MO, USA), 1:1,000 v:v phosphatase inhibitor

cocktail 1 (P2850; Sigma, St. Louis, MO, USA), and a few crystals of phenylmethylsulfonyl

fluoride (PMSF). Samples were centrifuged at 10,000 × g for 15 min at 4 ◦C and then

supernatants were removed and held on ice.

Soluble protein concentration was quantified by the Bradford assay (Bradford, 1976)

using the Bio-Rad Protein Assay Dye Reagent Concentrate (500-0006; Bio-Rad, Hercules,

CA, USA), according to the manufacturer’s instructions, and a Dynatech MR5000

microplate reader (DYNEX Technologies Inc., Chantilly, VA) set at 595 nm. Samples were

then adjusted to equal soluble protein concentrations by the addition of small volumes

of buffer A; this compensates for differences in the wet:dry ratio of tissues from control

versus frozen frogs. Aliquots were mixed 1:1 v:v with SDS-PAGE sample buffer containing:

100 mM Tris-HCl (pH 6.8), 4% w:v sodium dodecyl sulfate (SDS), 20% v:v glycerol, 5%

v:v 2-mercaptoethanol and 0.2% w:v bromophenol blue. Following boiling for 5 min,

samples were cold-snapped on ice, and stored at −20 ◦C until use.

SDS-PAGE and polyvinylidene difluoride membrane transfer
Aliquots of thawed samples containing 20 µg of protein were loaded into wells of

SDS-polyacrylamide gels (8% resolving gel, 5% stacking gel, made from a 30% acrylamide

and bis-acrylamide solution, 37.5:1; 161-0158; Bio-Rad, Hercules, CA, USA), along

with Kaleidoscope prestained markers (161-0324; Bio-Rad, Hercules, CA, USA) as a

guide for the approximate molecular weight of PKC isozymes. On a typical 12-laned

gel, 5 independently-prepared protein extracts from control frogs, and 5 independently-

prepared protein extracts from frozen frogs, were loaded in parallel (along with prestained

markers); thus, for any given PKC isozyme or specific phosphorylation site being probed,

all immunoreactive bands from both control and experimental animals detected at the

chemiluminescence stage will have been treated identically through all electrophoretic,

transfer, immunoblotting, and chemiluminescence/exposure steps. Samples were

electrophoresed at 180 V in a Mini-PROTEAN III apparatus (Bio-Rad, Hercules, CA, USA)

using 1x running buffer (5x running buffer contained 15.1 g Tris-base, 94 g glycine, and

5 g SDS per litre, pH 8.3). Proteins were then wet-transferred to polyvinylidene difluoride

(PVDF) membrane (Millipore, Bedford, MA, USA) using a current of 300 mA for 1.5 h at

4 ◦C in a Bio-Rad Mini Trans-Blot Cell apparatus (Bio-Rad, Hercules, CA, USA). Transfer

buffer contained 25 mM Tris-base pH 8.8, 192 mM glycine, and 20% v:v methanol, chilled

to 4 ◦C.

Immunoblotting of PVDF membranes and analysis
Primary antibodies (Cell Signalling Technology, Danvers, MA, USA) were the following:

phospho-PKC (pan) (βII Ser660) antibody (9371), which detects all of PKCα, βI, βII, δ,

ε and η isoforms only when phosphorylated at a carboxy-terminal residue homologous

to Ser660 of PKCβII; phospho-PKCδ/θ (Ser643/676) antibody (9376), which detects

both PKCδ when phosphorylated at Ser643 and PKCθ when phosphorylated at Ser676;

phospho-PKCα/βII (Thr638/641) antibody (9375); phospho-PKCδ (Thr505) antibody
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(9374; this antibody has since become unavailable after this work was carried out);

phospho-PKCθ (Thr538) antibody (9377); phospho-PKCζ/λ (Thr410/403) antibody

(9378); PKD/PKCµ antibody (2052); phospho-PKD/PKCµ (Ser916) antibody (2051);

phospho-PKD/PKCµ (Ser744/748) antibody (2054). All primary IgG antibodies were

raised in rabbit. These were purchased together as the Phospho-PKC Antibody Sampler

Kit (9921; this kit has since become unavailable after this work was carried out). Stock

primary antibodies were diluted between 1:5,000 and 1:10,000 in Tris-buffered saline

supplemented with Tween-20 (TBST; 20 mM Tris pH 7.5, 150 mM NaCl, 0.05% v:v

Tween-20). Secondary antibody used was the anti-rabbit IgG, HRP-linked antibody (7074;

also supplied within the Phospho-PKC Antibody Sampler Kit). Stock secondary antibodies

were diluted 1:2,000 in TBST. We opted to use these antibodies, focusing on phospho-PKC

and not unphosphorylated forms of PKC, for two main reasons. Firstly, given that these

antibodies were specifically distributed as an assembled kit (at that time), we were hesitant

to introduce additional antibodies that had possibly been developed, raised, and purified

differently (potentially even from different commercial sources) from those provided in

the kit. Secondly, as will be further detailed in the Discussion section, the scope of this

study followed the widely-accepted model that only phosphorylated PKC is catalytically

active; we therefore were especially interested in phospho-specific forms, so as to relate

our previous forays into PKC second messengers (Holden & Storey, 1996; Holden & Storey,

1997) to resulting effects on PKC phosphorylation states in frozen frogs.

After transfer was complete, PVDF membranes were typically cut using a razor blade,

so as to allow parallel immunoblotting of several different frog proteins (these were

unrelated to the current study) using multiple antibodies but with a single starting

tissue extract and PVDF membrane (Silva & McMahon, 2014). This practice permits

efficient utilization of tissue and protein extract resources, particularly when the model

organism under study is small and tissues are limiting; the male wood frog typically has

a body mass of 4–7 g, and in dehydration studies (one example of the Rana sylvatica

stress–tolerance studies conducted by our group) frogs will only be sacrificed and dissected

once they have lost ∼40% of their total body water (Abboud & Storey, 2013). These PVDF

membrane sections were quickly equilibrated in TBST and then blocked with 5% w:v

nonfat milk dissolved in TBST for 15 min at room temperature. The blot was rinsed

with TBST and then incubated with primary antibody in TBST on a shaking platform

overnight at 4 ◦C. Blots were washed twice with TBST and incubated with secondary

antibody for 1.5 h at room temperature. Immunoreactive bands, on blots consisting of

protein transfers from 5 independently-prepared protein extracts from control frogs and

5 independently-prepared extracts from frozen frogs, were visualized using enhanced

chemiluminescence (ECL; RPN2108, GE Healthcare Life Sciences, Baie d’Urfé, QC,

Canada) following the manufacturer’s protocol. The luminol and oxidizing reagents

were mixed 1:1 v:v on the membrane for 1 min and the ECL signal was detected using a

ChemiGenius (SynGene, Frederick, MD, USA).

Total protein was then visualized on the PVDF membrane by staining for 30 min

with Coomassie blue staining solution (0.25% w:v Coomassie Brilliant Blue R, 50% v:v
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methanol, 7.5% v:v acetic acid) followed by destaining with destain solution (25% v:v

methanol, 10% v:v acetic acid). Three Coomassie-stained bands that did not differ in

intensity between active and frozen conditions were used to normalize the corresponding

intensity of the immunoreactive band in each lane to correct for any unequal protein

loading, as described previously (Dieni, Bouffard & Storey, 2012). Our group typically opts

to follow this method of protein normalization, instead of probing for “conventional”

loading controls such as actin or tubulin, for all our stress-physiology and adaptation

studies (Abboud & Storey, 2013; Lama, Bell & Storey, 2013; Rouble et al., 2013); this is

an increasingly-common practice in other groups (Goldberg et al., 2013; Bahar et al.,

2014; Da’dara et al., 2014), particularly in instances where levels of housekeeping proteins

themselves are suspected of changing due to pharmacological, pathophysiological, or

physiological stress (Li et al., 2011; Eaton et al., 2013; Parrondo et al., 2013).

Intensities of ECL-visualized and Coomassie-stained bands were quantified using the

associated Gene Tools program (v. 3.00.02). Data were analyzed by one-way ANOVA

followed by Tukey’s test; a statistically-significant difference was accepted with values of

p < 0.05 or smaller.

RESULTS AND DISCUSSION
Overall scope of phospho-PKC levels and changes in freezing
The widely-accepted model for activation of PKC isozymes has been reviewed (Mellor

& Parker, 1998; Parker & Murray-Rust, 2004; Gomperts, Kramer & Tatham, 2009) and

follows here. PKCs are biosynthesized as catalytically inactive, and must first bind to

the intracellular face of the plasma membrane in order to be unfolded, and rendered

competent. A number of upstream signals can activate phospholipases, hydrolysing

inositol phospholipids to various combinations of diacylglycerols and IP3; IP3 will in

turn trigger calcium efflux from the endoplasmic reticulum, which then propagates further

calcium influx from the extracellular environment. Conventional PKC isozymes (cPKC; α,

β, γ ) bind to the membrane via two specific bridging interactions: C1 domains that bind to

DAG and C2 domains that bind to calcium-phospholipid complexes. Once bound, cPKCs

unfold such that their hydrophobic motifs interact with and activate 3-phosphoinositide

dependent protein kinase-1 (PDK1), and the PKC pseudosubstrate motif is withdrawn

from its catalytic core. PDK1, currently the single conclusive upstream kinase responsible

for phosphorylation of the PKC activation loop (Le Good et al., 1998; Ron & Kazanietz,

1999), phosphorylates this loop and triggers two successive autophosphorylations, one

on the PKC turn motif, and one on the hydrophobic motif. Only once at this stage,

phosphorylated at three sites and bound to both DAG and calcium, have cPKCs typically

been recognized as fully-active. Depletion of DAG and calcium will induce cPKC refolding

and inactivation; however, as long as the aforementioned sites remain phosphorylated,

cPKCs can be instantly reactivated upon reintroduction of DAG and calcium. Thus,

for cPKCs, all three criteria of DAG, calcium, and upstream phosphorylation are often

necessary for full activity; this is complicated for novel PKC isozymes (nPKC; δ, ε, η,

θ) and atypical PKC isozymes (aPKC; ζ , λ, µ). nPKCs are calcium-independent, but
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still rely on DAG for activity; aPKCs rely on neither calcium nor DAG, or any other

phospholipids, though they possess other unique domains such as the phox-bem1

domain, which suggests that protein–protein interactions with cytosolic partners may be

necessary for activity (Gomperts, Kramer & Tatham, 2009). In both these PKC subfamilies

however, phosphorylation is typically a prerequisite for catalytic competence. It should be

noted, however, that while there is nearly three decades’ worth of literature investigating

phosphorylation as a prerequisite for what we refer to here as “catalytic activity” (Parekh,

Ziegler & Parker, 2000; Wang et al., 2012; Parker et al., 2014), this model is coming under

increasing scrutiny (Wu-Zhang & Newton, 2013), and some studies have even pointed to

PKC phosphorylation as leading to degradation rather than activation (Brand et al., 2010).

The scope of our discussion will focus primarily on the widely-accepted model presented

earlier, whereby PKC phosphorylation leads to “activation” whereby an increase in catalytic

activity has typically been observed.

Extracts of hind leg skeletal muscle, liver, heart, kidney, and brain from control and

frozen frogs were probed with all 9 primary antibodies of the Phospho-PKC Antibody

Sampler kit; however, not all antibodies revealed the presence of immunoreactive bands in

each tissue extract (e.g., only 2 out of the 9 primary antibodies revealed bands in muscle

homogenates). In each case where antibodies detected bands, only a single and distinct

band appeared in the area of our cut PVDF membrane section; immunoreactive bands

were confirmed to be PKC isozymes by comparing their approximate molecular weights

to those listed on the manufacturer’s datasheet provided (http://www.cellsignal.com/

pdf/9921.pdf). A summary of changes between control and frozen frogs is presented

in Table 1. In the case of each individual antibody, 5 immunoreactive bands from

independently-prepared control frog protein extracts, and 5 from independently-prepared

frozen frog protein extracts, were quantified from the same immunoblot under the same

exposure conditions, and for the purposes of clarity 2 bands from each physiological state

(i.e., control vs. frozen) were presented in Figs. 1–5. In general, levels of phosphorylated

PKC isozymes (and non-phosphorylated PKD/PKCµ) tended to globally decrease during

wood frog freezing in hind leg skeletal muscle, liver, kidney, and heart; the only tissue in

which increases in phospho-PKC were observed was the brain.

PDK1 itself, and its targets, have been shown to change in phosphorylation state during

wood frog freezing. For instance, levels of phospho-Thr308-Akt (a phosphorylation

site of PDK1) decrease in muscle and heart during freezing, suggesting decreased

action of PDK1 in these tissues. By contrast, levels of both phospho-Ser241-PDK1 and

phospho-Thr308-Akt increase in liver, suggesting increased PDK1 action in livers of

frozen frogs (Zhang & Storey, 2013). For optimal clarity, specific changes in PKC isozymes

will be further described and discussed on a tissue-by-tissue basis, and compared to

previously-established changes in PDK1 or its targets, or previously-assessed targets

downstream of PKC isozymes.
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Figure 1 Changes in phosphorylation levels of PKC isozymes in frog hind leg skeletal muscle during
freezing. (A) Relative levels were determined from immunoblots of n = 5 independently-prepared tissue
homogenates from pooled tissues of either control frogs, or frogs frozen for 24 h. 2 representative bands
out of the 5 total bands for both control and frozen frogs are included in this figure. (B) Densitometry
of immunoreactive bands as quantified by the Gene Tools program. Closed (black) bars represent data
from control frogs, whereas open (white) bars represent data from frozen frogs. Statistically significant
differences, determined by one-way ANOVA followed by Tukey’s test, are as follows: *, p < 0.005;
**, p < 0.001.
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Figure 2 Changes in phosphorylation levels of PKC isozymes in frog liver during freezing. (A) Relative
levels were determined from immunoblots of n = 5 independently-prepared tissue homogenates from
pooled tissues of either control frogs, or frogs frozen for 24 h. 2 representative bands out of the 5 total
bands for both control and frozen frogs are included in this figure. (B) Densitometry of immunoreac-
tive bands as quantified by the Gene Tools program. Closed (black) bars represent data from control
frogs, whereas open (white) bars represent data from frozen frogs. Statistically significant differences,
determined by one-way ANOVA followed by Tukey’s test, are as follows: *, p < 0.05; **, p < 0.005;
***, p < 0.001. † represents quantifications where immunoreactive bands were not detectable in liver
extracts of frozen frogs.
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Figure 3 Changes in phosphorylation levels of PKC isozymes in frog kidney during freezing. (A) Rel-
ative levels were determined from immunoblots of n = 5 independently-prepared tissue homogenates
from pooled tissues of either control frogs, or frogs frozen for 24 h. 2 representative bands out of
the 5 total bands for both control and frozen frogs are included in this figure. (B) Densitometry of
immunoreactive bands as quantified by the Gene Tools program. Closed (black) bars represent data
from control frogs, whereas open (white) bars represent data from frozen frogs. Statistically signifi-
cant differences, determined by one-way ANOVA followed by Tukey’s test, are as follows: *, p < 0.05;
**, p < 0.005; ***, p < 0.001.
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Figure 4 Changes in phosphorylation levels of PKC isozymes in frog heart during freezing. (A) Rel-
ative levels were determined from immunoblots of n = 5 independently-prepared tissue homogenates
from pooled tissues of either control frogs, or frogs frozen for 24 h. 2 representative bands out of
the 5 total bands for both control and frozen frogs are included in this figure. (B) Densitometry of
immunoreactive bands as quantified by the Gene Tools program. Closed (black) bars represent data
from control frogs, whereas open (white) bars represent data from frozen frogs. Statistically signifi-
cant differences, determined by one-way ANOVA followed by Tukey’s test, are as follows: *, p < 0.05;
**, p < 0.01; ***, p < 0.005. † represents quantifications where immunoreactive bands were not detectable
in heart extracts of frozen frogs.
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Figure 5 Changes in phosphorylation levels of PKC isozymes in frog brain during freezing. (A) Rel-
ative levels were determined from immunoblots of n = 5 independently-prepared tissue homogenates
from pooled tissues of either control frogs, or frogs frozen for 24 h. 2 representative bands out of the 5
total bands for both control and frozen frogs are included in this figure. (continued on next page...)
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Figure 5 (...continued)

(B) Densitometry of immunoreactive bands as quantified by the Gene Tools program. Closed (black)
bars represent data from control frogs, whereas open (white) bars represent data from frozen frogs.
Statistically significant differences, determined by one-way ANOVA followed by Tukey’s test, are as
follows: *, p < 0.01. † represents quantifications where immunoreactive bands were not detectable in
brain extracts of control frogs.

Table 1 Summary of changes in phosphorylation levels of PKC isozymes (or non-phosphorylated
PKD/PKCµ) during wood frog freezing. Relative levels were determined from immunoblots of n = 5
independently-prepared tissue homogenates from pooled tissues of control or frozen frogs. Quantifiable
decreases (−) or increases (+) are presented numerically. An equal sign (=) indicates no significant
change. In some instances, bands were detectable in control frogs but were undetectable or too faint
to be accurately quantified in frozen frogs (−−), or vice-versa (++). ND indicates that bands for that
isozyme or phosphorylation site were not detected in that tissue.

Muscle Liver Kidney Heart Brain

Phospho-PKCα/βII (Thr638/641) −41.8%***
= = −28.6%*

+121.3%**

Phospho-PKCδ (Thr505) ND −− −76.6%**** ND ++

Phospho-PKCδ/θ (Ser643/676) ND −54.8%*
−75.7%***

−− =

Phospho-PKD/PKCµ (Ser744/748) ND −− ND ND =

Phospho-PKD/PKCµ (Ser916) ND −− ND ND ND

PKD/PKCµ ND −76.4%****
−66.7%****

−− =

Phospho-PKC (pan) (βII Ser660) ND −82.7%***
−74.6%*

−38.6%***
=

Phospho-PKCθ (Thr538) −50.4%****
−− ND −35.8%**

++

Phospho-PKCζ/λ (Thr410/403) ND ND −66.8%****
−− ND

Notes.
Statistical significance as determined by one-way ANOVA followed by Tukey’s test is as follows.

* p < 0.05.
** p < 0.01.

*** p < 0.005.
****p < 0.001.

Muscle
Only 2 primary antibodies were immunoreactive to frog muscle extracts: phospho-

PKCα/βII (Thr638/641), and phospho-PKCθ (Thr538). Bands detected by both these

antibodies decreased in intensity in frozen frogs (Fig. 1; Table 1). Thr638/641 is in the

turn motif of PKCα/βII, and is autophosphorylated after initial phosphorylation of

the activation loop by PDK1 (Ron & Kazanietz, 1999). Whether phospho-Thr638/641

is necessary for PKCα/βII activity is debatable; rather, it is more recognized for its

importance in duration of PKC activation, and slowing the rate of PKC activation loop

dephosphorylation (Bornancin & Parker, 1996). Meanwhile, Thr538 is in the activation

loop of PKCθ , and is directly phosphorylated by PDK1; as such, it is unequivocally needed

for PKCθ activity (Liu et al., 2002). Taken together, these results suggest a combination of

lower activity, a shorter duration of activation, and a higher rate of dephosphorylation of

these PKC isozymes in muscle during freezing.

These decreases in the phosphorylation levels of PKC muscle isozymes correlate well

with recently-presented decreases in phospho-Thr308-Akt (a target that, along with PKC,
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is also a direct substrate of PDK1; Zhang & Storey, 2013). By contrast, past studies would

suggest a need for PKC to remain active in muscle; these have shown that in response

to freezing, IP3 levels rose moderately, by 55%, in skeletal muscle (Holden & Storey,

1996; Holden & Storey, 1997). Moreover, calcium binding and uptake into the sarcoplasmic

reticulum were strongly decreased in skeletal muscle of frozen frogs, leading to increased

cytosolic calcium levels (Hemmings & Storey, 2001). However, in yet other studies, muscle

IP3 levels remained constant in frogs subjected to short-term anoxia at 5 ◦C, and then

fell by 40% after 2 days of anoxic exposure. The contrasting past and present findings

of increased IP3 and calcium levels in frozen frogs, yet decreased PKCα/βII and PKCθ

phosphorylation in this same physiological state, along with decreased IP3 levels in frogs

subjected to long-term anoxia, leaves us with a very uncertain role for muscle PKC in the

adaptation to these stresses.

Liver
8 of the 9 primary antibodies were immunoreactive to frog liver extracts; only the

phospho-PKCζ/λ (Thr410/403) antibody failed to reveal any bands. Overall, band

intensities again tended to decrease in frozen frogs (Fig. 2; Table 1). As in muscle, phospho-

Thr538-PKCθ levels decreased, but to such an extent where they were non-quantifiable in

frozen frogs. Similarly, phospho-Thr505-PKCδ levels also decreased to an extent where

they were non-quantifiable. Interestingly, in contrast to Thr538, an activation loop

phosphorylation of PKCθ which is unequivocally needed for activity, Thr505 is also

an activation loop residue of PKCδ, but one which is at best only debatably necessary

for activity, and is autophosphorylated in addition to being phosphorylated by PDK1

(Le Good et al., 1998; Liu et al., 2002; Steinberg, 2004; Liu et al., 2006). Furthermore,

phospho-Thr676/643-PKCδ/θ levels (a turn motif phosphorylation) decreased by over

50%. While the role of this turn motif phosphorylation is inconclusive in PKCδ or

PKCθ (Li et al., 1997; Liu et al., 2002), decreases in turn motif phospho-Thr676/643 will

potentially compound the decreases in activation loop phospho-Thr505/538, further

depressing PKCδ and PKCθ activities.

Additional decreases are observed in non-phosphorylated levels of PKD/PKCµ, of

phospho-Ser744/748-PKD/PKCµ, and of phospho-Ser916-PKD/PKCµ. Ser916 is an

autophosphorylation site that correlates with catalytic activity in PKD/PKCµ (Matthews,

Rozengurt & Cantrell, 1999), whereas Ser744 and possibly Ser748 are activation loop phos-

phorylation sites, also critical to activity (Waldron et al., 2001; Waldron & Rozengurt, 2003).

Interestingly, while PKD/PKCµ was originally classified as a member of the PKC family

(and is still very much considered as such), Ser744/748 is in fact phosphorylated by other

PKC isozymes upstream of PKD/PKCµ, most notably PKCδ (Waldron et al., 2001; Waldron

& Rozengurt, 2003). Given that total and phospho-levels of PKD/PKCµ and upstream

PKCδ all decreased, these suggest that PKD/PKCµ will also be inactive in frozen frogs.

Wood frog liver is quite possibly the best-characterized tissue in terms of proteins

and genes that may have potential relationships with PKC; by virtue of their decreased

phosphorylation, the potential decline of PKCδ, PKCθ , and PKD/PKCµ activities contrast
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with previous findings. One early study demonstrated a progressive rise in IP3 levels over

the course of the freezing process, ultimately rising 11-fold higher than control values

after 24 h of freezing (Holden & Storey, 1996). Based on this finding, important roles

were suggested for PKC, including: (i) overriding of normal cellular metabolic controls;

(ii) enabling “acceptance” of prolonged and extreme reductions in cell volume, along

with accompanying hyperosmolality and elevated ionic strength, and; (iii) maintaining

glycogen phosphorylase in a highly-active state, driving glycogenolysis forward for

the degree of hyperglycemia seen in frozen frogs. A follow-up study, exploring second

messenger changes in frogs subjected to dehydration and anoxia, noted increased IP3 levels

in both dehydrated and anoxic frogs (Holden & Storey, 1997). Because of the response to

both dehydration and anoxia, the importance of PKC in freezing was reaffirmed; indeed,

both dehydration and anoxia result from the freezing of extracellular water in wood frogs.

Upon the discovery of fr47, a novel gene associated with freezing survival, it was noted

that its expression pattern paralleled that of IP3 accumulation, suggesting that PKC

may activate freeze-response genes (McNally, Sturgeon & Storey, 2003). Later, NFκB, a

transcription factor crucial in cellular stress response and survival, was found to have

increased DNA-binding affinity in frozen frogs; its sequestering binding partner, IκB,

was also found to increase in phosphorylation during freezing (Storey, 2008). IκB is a

substrate of the IκB kinase (IKK), which is in turn a substrate of PKC isozymes (Lallena

et al., 1999; Diaz-Meco & Mostat, 2012). Recently, it was shown that Nrf2, a transcription

factor activated during oxidative stress, has increased DNA-binding affinity in frozen

frogs; moreover, transcription of gsta, a gene under Nrf2 control, was elevated in frozen

frogs (Zhang, 2013). It was reiterated in this study that PKC phosphorylates Keap1, a

sequestering binding partner of Nrf2, inducing dissociation and activation of Nrf2 and

the transcription of antioxidant response genes. Lastly, and possibly most conflicting

with the presently-observed decrease in liver phospho-PKC levels, are the rise of both

PDK1 and Akt phosphorylation levels in frozen frogs (Zhang & Storey, 2013). Given these

collective findings, the presently-suggested decline in liver PKC activities is at odds with the

previously-inferred importance of PKC in freezing survival mechanisms.

A possible reconciliation is that although decreases are observed in the phosphorylation

states of PKCδ, PKCµ, and PKCθ , levels detected by the phospho-Thr638/641-PKCα

/βII antibody remain apparently unchanged in frozen frogs. Thr638, a turn motif

phosphorylation site, is not critical to PKCα catalytic function but rather controls the

duration of its activation by regulating the rate of dephosphorylation and inactivation

(Bornancin & Parker, 1996; Li et al., 1997; Ron & Kazanietz, 1999). By contrast, Thr641 is

also a turn motif phosphorylation site but is fundamental to the activity of PKCβI and

PKCβII (Zhang et al., 1993; Ron & Kazanietz, 1999; Leonard et al., 2011). Taken together,

these suggest that some cPKCs will continue to be active and/or remain active for longer

in frozen frogs. It should be noted however, that while levels of phospho-Thr638/641-

PKCα/βII remained unchanged, levels detected by the phospho-PKC (pan) (βII Ser660)

antibody decreased in frozen frogs. This antibody is specific for PKCα, βI, βII, δ, ε and

η when autophosphorylated at a carboxy-terminal residue homologous to Ser660 in the
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hydrophobic motif of PKCβII, following initial phosphorylation of Thr500 by PDK1;

phospho-Ser660 plays important roles in correct folding, as well as the binding of protein

substrate, ATP, and calcium (Zhang et al., 1993; Ron & Kazanietz, 1999; Leonard et al.,

2011). Another possible reconciliation is that while much of the literature supports an

activation model where phosphorylation is necessary for PKC activity, there are exceptions;

as indicated earlier for instance, the active loop phosphorylation at Thr505-PKCδ is not

required for activity (Steinberg, 2004; Liu et al., 2006). As an nPKC, PKCδ, and others

that behave similarly, may therefore be active in presence of elevated DAG regardless of

phosphorylation state.

Kidney
6 antibodies revealed bands in frog kidney extracts. As in liver, levels of phospho-

Thr638/641-PKCα/βII remain unchanged between control and frozen frogs (Fig. 3;

Table 1). However, significant decreases were observed in the levels bands detected

by phospho-Thr505-PKCδ, phospho-Thr676/643-PKCδ/θ , non-phosphorylated

PKD/PKCµ, and phospho-PKC (pan) (βII Ser660) antibodies. Moreover, decreases

were also observed in the intensities of the bands detected by the phospho-PKCζ/λ

(Thr410/403) antibody. Thr410 is an activation loop residue in PKCζ , as is Thr403 in

PKCλ (also known as PKCι in mammals), and these are directly phosphorylated by PDK1

and are critical to activity (Le Good et al., 1998; Le Good & Brindley, 2004). Together, these

results would suggest a decreased overall activity for PKC isozymes in kidney of frozen

frogs. As with muscle and liver, however, kidney IP3 levels were shown to increase in

previous studies (Holden & Storey, 1997). In frogs dehydrated by 40%, IP3 levels rose by

60%; levels remained unchanged in frogs exposed to anoxia (Holden & Storey, 1997) and

in frozen frogs (Holden & Storey, 1996). Again, this presents us with potentially contrasting

results between second messengers, specific stresses, and PKC phosphorylation state;

second messengers responsible for PKC activation increase in kidney (but only in response

to dehydration, and not to anoxia or freezing), while PKC phosphorylation itself does not

increase during freezing.

Heart
6 antibodies revealed bands in frog kidney extracts, and all of these decreased in frozen

frogs (Fig. 4; Table 1). Levels of bands detected by phospho-Thr638/641-PKCα/βII,

phospho-Thr676/643-PKCδ/θ , non-phosphorylated PKD/PKCµ, phospho-PKC (pan)

(βII Ser660), phospho-Thr538-PKCθ , and phospho-Thr410/403-PKCζ/λ antibodies

all decreased significantly; indeed, phospho-Thr676/643-PKCδ/θ , non-phosphorylated

PKD/PKCµ, and phospho-Thr410/403-PKCζ/λ levels all decreased to an extent where

they were no longer detectable in frozen frogs.

With decreases observed in the phosphorylation levels of all PKC isozymes detected in

heart, this would suggest overall decreased PKC activity in this tissue. The decreases in

phosphorylation levels of these PKC isozymes also correlate with decreases in phospho-

Thr308-Akt in frog heart during freezing (Zhang & Storey, 2013). Previous studies showed

no significant changes in IP3 levels in response to freezing (Holden & Storey, 1996), yet
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significant increases were observed after only 1 h of enduring anoxia (Holden & Storey,

1997). Thus, our present results in heart are in agreement with decreased phosphorylation

of other PDK1 targets and unchanged second messenger levels in freezing, but not with

increased second messenger levels in response to anoxia.

Brain
8 antibodies revealed bands in frog brain extracts. Of the five tissues investigated in

the present study, the results obtained in the brain were the most unique; changes

(or lack thereof) in phospho-PKC levels in brain during frog freezing contrasted

strongly with those observed in muscle, liver, heart, and kidney (Fig. 5; Table 1). No

changes were observed in the levels of bands detected by phospho-Thr676/643-PKCδ/θ ,

phospho-Ser744/748-PKD/PKCµ, non-phosphorylated PKD/PKCµ, and phospho-PKC

(pan) (βII Ser660) antibodies; each of these were detectable in both control and frozen

frogs to approximately the same extent. Interestingly, phospho-Thr638/641-PKCα/βII

levels increased by 121.3% in brains of frozen frogs. Moreover, phospho-Thr505-PKCδ and

phospho-Thr538-PKCθ , which were not detectable in control frogs, were detectable (albeit

faintly) in frozen frogs. Overall, whereas phospho-PKC levels generally tended to decline

in other organs of frozen frogs, phospho-PKC levels largely remained unchanged or even

increased in brain.

The increase in brain PKC phosphorylation during freezing is of great interest. Previous

studies have shown that brain IP3 levels rose significantly after 4 h of freezing (Holden &

Storey, 1996), and so this is one frog tissue in which the overall increases in PKC phospho-

rylation state correlate with this rise in IP3. Numerous other adaptive “activations” occur

in frog brains in response to freezing, including: (1) moderately-increased expression of

fr10 (Cai & Storey, 1997) and li16 (Sullivan & Storey, 2012), novel genes with putative

roles in freezing protection; (2) increased levels of c-Fos (Greenway & Storey, 2000),

and; (3) up-regulation of genes for ribosomal proteins, including the acidic ribosomal

phosphoprotein P0 (Wu & Storey, 2005) and the ribosomal large subunit protein 7 (Wu,

De Croos & Storey, 2008). At present, however, we cannot conclusively identify any of

the proteins listed here as being substrates of PKC, nor can we confirm that any of the

upregulated-genes are facilitated by transcription factors downstream of PKC.

Conceivably, the phosphorylation and activation of PKC (along with other proteins)

in brain, contrasted against the decreased or unchanged phosphorylation of PKC in

other tissues, suggests a unique and vital role for brain PKC during freezing. Indeed, the

importance of PKC in cerebral protection has been demonstrated well-beyond the niche of

wood frog freezing (Sun et al., 2013; Thompson et al., 2013). Future efforts will be required

to establish the catalytic competence of PKC isozymes in frozen frog brains, to identify the

targets being phosphorylated by PKC, and to determine their most likely role in frog cere-

bral/neuroprotection during freezing based on our current understanding of other models.

CONCLUSION
The present study investigated the phosphorylation state of conventional, novel, and atyp-

ical PKC isozymes in five tissues of freeze-tolerant frogs, as well as non-phosphorylated
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PKCµ/PKD. Broadly, phospho-PKC levels and non-phosphorylated PKCµ/PKD decreased

in muscle, livers, kidneys, and hearts of frozen frogs; the only exception was protein

detected by the phospho-Thr638/641-PKCα/βII (turn motif), which showed no change in

livers or kidneys between the control and frozen states. This isozyme alone would partially

support the findings of past studies, where IP3 was shown to dramatically increase in livers

of frozen frogs and thus an important role was suggested for PKC in the freezing process;

however, even the steady phosphorylation state of Thr638/641-PKCα/βII is seemingly

contradicted by the decreased phosphorylation of Ser660-PKC (pan) (hydrophobic

motif) in both livers and kidneys of frozen frogs. A particularly interesting finding in

this study is PKC would seem to play an important role in the brains of frozen frogs, as the

phospho-levels of all isozymes detected remain either remain unchanged or even increase

in the frozen state.

The results of this study succeed in answering some questions of past studies pertaining

to the state of PKC in freeze-tolerance, but raise many others and indeed pose some

contradictions. Whereas our lab has previously asserted that based on second messenger

patterns, PKC would play an important role (particularly in liver and muscle), our present

findings would seem to instead suggest a diminished role for PKC in most tissues, based

on our current understanding of PKC isozymes and their generally-accepted activation

model. This in itself, however, can be debated by pointing to studies which demonstrate

that activation loop phosphorylation is, in fact, not needed for PKC activity (e.g., PKCδ).

To clarify the role of PKC in wood frog freezing, it is now evident that catalytic assays

are necessary in order to unequivocally establish the actual activities of each of these

isozymes in the control and frozen states. Moreover, there is an additional difficulty in

contextualizing the role of PKC due to the fact that very few downstream targets of PKC

have been assessed in wood frogs. Those that were discussed in this report are either only

speculative (e.g., transcription factors that might control expression of li16, fr10 and

fr47), or are several degrees removed from being direct PKC substrates and/or are under

the control of multiple kinases (e.g., NFκB/IκB via IKK, Nrf2 for which Keap1 can be

modified via several pathways, etc.) There is a clear need to assess the phosphorylation

state of direct PKC substrates (e.g., the MARCKS family) in order to better determine the

activity and role of PKC in freeze-tolerance.

ACKNOWLEDGEMENTS
The authors wish to thank Janet M. Storey for her expertise with all live-animal work, and

her tireless contributions to manuscript revision.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by a discovery grant to KBS from the Natural Sciences and

Engineering Research Council of Canada (OPG 6793), and the Canada Research Chairs

program (Canada Research Chair in Molecular Physiology). CAD held an Ontario

Graduate Scholarship in Science and Technology (OGSST) and a Fluorosense Inc.

Dieni and Storey (2014), PeerJ, DOI 10.7717/peerj.558 18/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.558


Scholarship from Carleton University. The funders had no role in study design, data

collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Natural Sciences and Engineering Research Council of Canada: OPG 6793.

Canada Research Chair in Molecular Physiology.

Carleton University.

Competing Interests
Kenneth B. Storey is an Academic Editor for PeerJ.

Author Contributions
• Christopher A. Dieni performed the experiments, analyzed the data, wrote the paper,

prepared figures and/or tables.

• Kenneth B. Storey conceived and designed the experiments, contributed

reagents/materials/analysis tools, reviewed drafts of the paper.

Ethics
The following information was supplied relating to ethical approvals (i.e., approving body

and any reference numbers):

Conditions for animal care, experimentation, and euthanasia were approved by the

Carleton University Animal Care Committee (B09-22) in accordance with guidelines set

down by the Canadian Council on Animal Care.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.558#supplemental-information.

REFERENCES
Abboud J, Storey KB. 2013. Novel control of lactate dehydrogenase from the freeze tolerant wood

frog: role of posttranslational modifications. PeerJ 1:e12 DOI 10.7717/peerj.12.

Bahar O, Pruitt R, Luu DD, Schwessinger B, Daudi A, Liu F, Ruan R, Fontaine-Bodin L,
Koebnik R, Ronald P. 2014. The Xanthomonas Ax21 protein is processed by the general
secretory system and is secreted in association with outer membrane vesicles. PeerJ 2:e242
DOI 10.7717/peerj.242.

Bornancin F, Parker PJ. 1996. Phosphorylation of threonine 638 critically controls the
dephosphorylation and inactivation of protein kinase Cα. Current Biology 6:1114–1123
DOI 10.1016/S0960-9822(02)70678-7.

Bradford MM. 1976. Rapid and sensitive method for the quantitation of microgram quantities
of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
DOI 10.1016/0003-2697(76)90527-3.

Dieni and Storey (2014), PeerJ, DOI 10.7717/peerj.558 19/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.558#supplemental-information
http://dx.doi.org/10.7717/peerj.12
http://dx.doi.org/10.7717/peerj.242
http://dx.doi.org/10.1016/S0960-9822(02)70678-7
http://dx.doi.org/10.1016/0003-2697(76)90527-3
http://dx.doi.org/10.7717/peerj.558


Brand C, Horovitz-Fried M, Inbar A, Tamar-Brutman-Barazani, Brodie C, Sampson SR.
2010. Insulin stimulation of PKCδ triggers its rapid degradation via the ubiquitin-
proteasome pathway. Biochimica et Biophysica ACTA/General Subjects 1803:1265–1275
DOI 10.1016/j.bbamcr.2010.07.006.

Brooks SP, Storey KB. 1998. Protein kinase C from rainbow trout brain: identification
and characterization of three isozymes. Biochemistry and Molecular Biology International
44:259–267.

Cai Q, Storey KB. 1997. Upregulation of a novel gene by freezing exposure in the freeze-tolerant
wood frog (Rana sylvatica). Gene 198:305–312 DOI 10.1016/S0378-1119(97)00332-6.

Costanzo JP, Lee RE, Lortz PH. 1993. Glucose concentration regulates freeze tolerance in the
wood frog Rana sylvatica. Journal of Experimental Biology 181:245–255.

Crerar MM, David ES, Storey KB. 1988. Electrophoretic analysis of liver glycogen phosphorylase
activation in the freeze-tolerant wood frog. Biochimica et Biophysica Acta (BBA) - Molecular Cell
Research 971:72–84 DOI 10.1016/0167-4889(88)90163-2.

Da’dara AA, Bhardwaj R, Ali YBM, Skelly PJ. 2014. Schistosome tegumental ecto-apyrase
(SmATPDase1) degrades exogenous pro-inflammatory and pro-thrombotic nucleotides. PeerJ
2:e316 DOI 10.7717/peerj.316.

Diaz-Meco MT, Mostat J. 2012. The atypical PKCs in inflammation: NF-κB and beyond.
Immunological Reviews 246:154–167 DOI 10.1111/j.1600-065X.2012.01093.x.

Dieni CA, Bouffard MC, Storey KB. 2012. Glycogen synthase kinase-3: cryoprotection and
glycogen metabolism in the freeze-tolerant wood frog. Journal of Experimental Biology
215:543–551 DOI 10.1242/jeb.065961.

Dieni CA, Storey KB. 2010. Regulation of glucose-6-phosphate dehydrogenase by reversible
phosphorylation in liver of a freeze tolerant frog. Journal of Comparative Physiology B
180:1133–1142 DOI 10.1007/s00360-010-0487-5.

Dieni CA, Storey KB. 2011. Regulation of hexokinase by reversible phosphorylation in skeletal
muscle of a freeze-tolerant frog. Comparative Biochemistry and Physiology Part B: Biochemistry
and Molecular Biology 159:236–243 DOI 10.1016/j.cbpb.2011.05.003.

do Amaral MC, Lee Jr RE, Costanzo JP. 2013. Enzymatic regulation of glycogenolysis in a
subarctic population of the wood frog: implications for extreme freeze tolerance. PLoS ONE
8:e79169 DOI 10.1371/journal.pone.0079169.

Eaton SL, Roche SL, Llavero Hurtado M, Oldknow KJ, Farquharson C, Gillingwater TH,
Wishart TM. 2013. Total protein analysis as a reliable loading control for quantitative
fluorescent western blotting. PLoS ONE 8:e72457 DOI 10.1371/journal.pone.0072457.

Goldberg AA, Titorenko VI, Beach A, Sanderson JT. 2013. Bile acids induce apoptosis
selectively in androgen-dependent and -independent prostate cancer cells. PeerJ 1:e122
DOI 10.7717/peerj.122.

Gomperts BD, Kramer IM, Tatham PER. 2009. Phosphorylation and dephosphorylation: protein
kinases A and C. In: Signal transduction. London: Academic Press, 243–272.

Greenway SC, Storey KB. 2000. Activation of mitogen-activated protein kinases during natural
freezing and thawing in the wood frog. Molecular and Cellular Biochemistry 209:29–37
DOI 10.1023/A:1007077522680.

Hemmings SJ, Storey KB. 2001. Characterization of sarcolemma and sarcoplasmic reticulum
isolated from skeletal muscle of the freeze tolerant wood frog, Rana sylvatica: the β2-adrenergic
receptor and calcium transport systems in control, frozen and thawed states. Cell Biochemistry
and Function 19:143–152 DOI 10.1002/cbf.910.

Dieni and Storey (2014), PeerJ, DOI 10.7717/peerj.558 20/23

https://peerj.com
http://dx.doi.org/10.1016/j.bbamcr.2010.07.006
http://dx.doi.org/10.1016/S0378-1119(97)00332-6
http://dx.doi.org/10.1016/0167-4889(88)90163-2
http://dx.doi.org/10.7717/peerj.316
http://dx.doi.org/10.1111/j.1600-065X.2012.01093.x
http://dx.doi.org/10.1242/jeb.065961
http://dx.doi.org/10.1007/s00360-010-0487-5
http://dx.doi.org/10.1016/j.cbpb.2011.05.003
http://dx.doi.org/10.1371/journal.pone.0079169
http://dx.doi.org/10.1371/journal.pone.0072457
http://dx.doi.org/10.7717/peerj.122
http://dx.doi.org/10.1023/A:1007077522680
http://dx.doi.org/10.1002/cbf.910
http://dx.doi.org/10.7717/peerj.558


Holden CP, Storey KB. 1996. Signal transduction, second messenger, and protein kinase responses
during freezing exposures in wood frogs. American Journal of Physiology 271:R1205–R1211.

Holden CP, Storey KB. 1997. Second messenger and cAMP-dependent protein kinase responses
to dehydration and anoxia stresses in frogs. Journal of Comparative Physiology B 167:305–312
DOI 10.1007/s003600050078.

King PA, Rosholt MN, Storey KB. 1993. Adaptations of plasma membrane glucose transport
facilitate cryoprotectant distribution in freeze-tolerant frogs. American Journal of Physiology
265:R1036–R1042.

Lallena MJ, Diaz-Meco MT, Bren G, Payá CV, Moscat J. 1999. Activation of IκB kinase by protein
kinase C isoforms. Molecular and Cellular Biology 19:2180–2188.

Lama JL, Bell RAV, Storey KB. 2013. Glucose-6-phosphate dehydrogenase regulation in the
hepatopancreas of the anoxia-tolerant marine mollusc, Littorina littorea. PeerJ 1:e21
DOI 10.7717/peerj.21.

Le Good JA, Brindley DN. 2004. Molecular mechanisms regulating protein kinase Cζ turnover
and cellular transformation. Biochemical Journal 378:83–92 DOI 10.1042/BJ20031194.

Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ. 1998. Protein kinase C
isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science
281:2042–2045 DOI 10.1126/science.281.5385.2042.
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