
BioWorkbench: a high-performance
framework for managing and analyzing
bioinformatics experiments
Maria Luiza Mondelli1, Thiago Magalhães1, Guilherme Loss1,
Michael Wilde2, Ian Foster2, Marta Mattoso3, Daniel Katz4,
Helio Barbosa1,5, Ana Tereza R. de Vasconcelos1, Kary Ocaña1

and Luiz M.R. Gadelha Jr1

1 National Laboratory for Scientific Computing, Petrópolis, Rio de Janeiro, Brazil
2 Computation Institute, Argonne National Laboratory/University of Chicago, Chicago, IL, USA
3 Computer and Systems Engineering Program, COPPE, Federal University of Rio de Janeiro,
Rio de Janeiro, Rio de Janeiro, Brazil

4 National Center for Supercomputing Applications, University of Illinois, Urbana, IL, USA
5 Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil

ABSTRACT
Advances in sequencing techniques have led to exponential growth in biological data,
demanding the development of large-scale bioinformatics experiments. Because
these experiments are computation- and data-intensive, they require
high-performance computing techniques and can benefit from specialized
technologies such as ScientificWorkflowManagement Systems and databases. In this
work, we present BioWorkbench, a framework for managing and analyzing
bioinformatics experiments. This framework automatically collects provenance data,
including both performance data from workflow execution and data from the
scientific domain of the workflow application. Provenance data can be analyzed
through a web application that abstracts a set of queries to the provenance database,
simplifying access to provenance information. We evaluate BioWorkbench using
three case studies: SwiftPhylo, a phylogenetic tree assembly workflow; SwiftGECKO,
a comparative genomics workflow; and RASflow, a RASopathy analysis workflow.
We analyze each workflow from both computational and scientific domain
perspectives, by using queries to a provenance and annotation database. Some of
these queries are available as a pre-built feature of the BioWorkbench web
application. Through the provenance data, we show that the framework is scalable
and achieves high-performance, reducing up to 98% of the case studies execution
time. We also show how the application of machine learning techniques can
enrich the analysis process.

Subjects Bioinformatics, Data Mining and Machine Learning, Data Science
Keywords Bioinformatics, Scientific workflows, Provenance, Profiling, Data analytics

INTRODUCTION
Genome sequencing methodologies have led to a significant increase in the amount of
data to be processed and analyzed by Bioinformatics experiments. Consequently, this led
to an increase in the demand for their scalable execution. Most bioinformatics studies

How to cite this articleMondelli et al. (2018), BioWorkbench: a high-performance framework for managing and analyzing bioinformatics
experiments. PeerJ 6:e5551; DOI 10.7717/peerj.5551

Submitted 15 January 2018
Accepted 7 August 2018
Published 29 August 2018

Corresponding author
Luiz M.R. Gadelha Jr,
lgadelha@lncc.br

Academic editor
Adam Witney

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj.5551

Copyright
2018 Mondelli et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.5551
mailto:lgadelha@�lncc.�br
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.5551
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/

aim to extract information from DNA sequences and can be classified as in silico
experiments. In silico comprise mathematical and computational models that simulate
real-world situations; they depend on the use of computational resources and specialized
technologies for their execution. Simulations often require the composition of several
applications, or activities, which have dependencies and manipulate large amounts of data.
These aspects make it difficult to manage and control in silico experiments. Due to the
complexity of simulation-based scientific experiments, it is necessary to use approaches
that support their design, execution, and analysis, such as scientific workflows
(Deelman et al., 2009). A scientific workflow is an abstraction that formalizes the composition
of several activities through data set production and consumption. Each activity
corresponds to a computational application, and the dependencies between them represent
the execution data flow, in which the output of one activity is input to another.

Scientific Workflow Management Systems (SWfMS) can be used to manage the various
steps of the life-cycle of a scientific workflow, i.e., design, execution, and analysis.
SWfMS can be deployed in high-throughput computing (HTC) environments, such as
clusters, clouds, or computational grids. They can also capture and store provenance
information. Provenance records the process of deriving data from the execution of a
workflow. For this reason, provenance describes the history of a given experiment,
ensuring its reliability, reproducibility, and reuse (Freire et al., 2008). Provenance may
also contain computational and scientific domain data, making it an important resource
for the analysis of the computational behavior of an experiment and its scientific results.
By combining computational and domain data, it is possible, for example, to make
optimizations in the experiment as well as predictions for execution time and the amount
of storage that it will require.

In this work, we present BioWorkbench: a framework that couples scientific workflow
management and provenance data analytics for managing bioinformatics experiments in
high-performance computing (HPC) environments. BioWorkbench integrates a set of
tools that cover the process of modeling a bioinformatics experiment, including a
provenance data analytics interface, transparently to the user. For managing scientific
workflows, we use SWfMS Swift (Wilde et al., 2011), because of the support that the
system provides for executing workflows in different HTC environments transparently
and also due to its scalability (Wilde et al., 2009). Provenance data related to workflow
performance and resulting data associated with the application area of the experiment
are automatically collected by the framework. As part of the framework, we have developed
a web application where workflow results are presented in a data analytics interface,
from the abstraction of a set of queries to the provenance database, supporting the process
of analysis by the scientists. We also demonstrate that it is possible to use machine
learning techniques to extract relations from provenance data that are not readily detected,
as well as to predict and classify the execution time of workflows. In this way,
BioWorkbench consolidates various activities related to scientific workflow execution
analysis in a single tool.

We evaluated the BioWorkbench using three case studies: SwiftPhylo, a phylogenetic
tree assembly workflow; SwiftGECKO, a comparative genomics workflow; and RASflow,

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 2/29

http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

a RASopathy analysis workflow. Each case study has its own characteristics. However, the
three allowed the evaluation of aspects related to performance gains and provenance
management covered by our framework. We show results where we obtained a reduction
of up to 98.9% in the total execution time, in the case of SwiftPhylo, decreasing from
∼13.35 h to ∼8 min. Also, we demonstrate that with the provenance collected through the
framework, we can provide useful results to the user who does not need to inspect files
manually to extract this information.

RELATED WORK
In general, our proposal addresses aspects related to the modeling of bioinformatics
workflows, their parallel execution in HPC environments, as well as provenance data
analytics, including predictions on computational resource usage. Here, we compare
BioWorkbench to related solutions from these different points of view.

There are a variety of SWfMS for modeling and executing workflows in different
application areas. Some of them allow execution in HPC environments. Among them,
we highlight Pegasus (Deelman et al., 2015), which enables the specification of workflows
through the XML format. The provenance is managed and recorded through the
Wings/Pegasus framework (Kim et al., 2008) using the Ontology Web Language from
W3C, and contains application-level and execution-level data that can be queried using the
SPARQL language. Askalon (Nadeem et al., 2007) allows the definition of the workflow
through a graphical interface, using Unified Modeling Language (UML) diagrams or the
XML format. Workflow performance monitoring information is used by a service that
supports planning the execution of activities. Taverna (Wolstencroft et al., 2013) is a
SWfMS widely used by the bioinformatics community, where workflow activities usually
comprise web services. Taverna has implicit iterations and parallelism, and its workflows
can be further optimized to simplify complex parts using the DistillFlow optimization
(Cohen-Boulakia et al., 2014). Provenance is collected and stored in a database and can also
be exposed as W3C PROV in a portable Research Object (Belhajjame et al., 2015). Also,
workflows can be shared through the myExperiment (Goble et al., 2010) platform. With a
focus on cloud environments, SciCumulus (Silva, Oliveira & Mattoso, 2014) is a SWfMS
based on relational algebra for workflow definition that uses a provenance database,
which follows the PROV recommendation model from W3C, for configuration and
monitoring of executions. It is distinct in that it allows provenance queries to be made
during the execution of the experiment. Nextflow (Di Tommaso et al., 2017) is a framework
comprised by a domain-specific language for the development of workflows. It is
based on the dataflow programming paradigm and also implements an implicit parallelism
model to execute its processes. Nextflow allows the user to enable the provenance
record, or trace report, at the moment of the workflow execution and there is currently
an effort to standardize this information to Research Object and W3C PROV.
Compared with these solutions, we use the Swift SWfMS because, in addition to
transparently supporting the execution of workflows in different HPC environments,
it has been shown that it has a high potential for scalability (Wilde et al., 2009), and it
supports provenance management (Gadelha et al., 2012). Also, it supports workflow

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 3/29

http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

patterns such as conditional execution and iterations that not supported by similar
systems such as Pegasus (Deelman et al., 2015). It also evaluates the workflow dynamically,
possibly changing task execution sites for efficiency of reliability.

Juve et al. (2013) present Wfprof, a tool for collecting and summarizing performance
metrics of workflow activities. Wfprof was coupled to the Pegasus SWfMS to identify
the complexity level of different workflows and how computational and I/O intensive
they are. In Król et al. (2016), an approach for analyzing the performance of workflows
executed with the Pegasus SWfMS is presented, which also studies the effect of input
parameters on task performance. The PDB (Liew et al., 2011) presents an approach that
collects and stores computational data in a database for planning the execution of workflows
that occur in memory and out-of-core. ParaTrac (Dun, Taura & Yonezawa, 2010) is a
data-intensive workflow profiler with an interface that allows its use by different SWfMS.
ParaTrac uses the Linux taskstats interface to collect memory usage, CPU and runtime
statistics, and the FUSE file system to record the amount of data that is passed between
workflow activities. In Silva et al. (2016), provenance data is integrated into the TAU code
profiling tool, allowing the performance visualization of workflows executed with the
Scicumulus SWfMS. This work aims to carry out the monitoring and profiling for the
detection of anomalies in the execution of large-scale scientific workflows. Visionary
(Oliveira et al., 2017) is a framework for analysis and visualization of provenance data with
the support of ontology and complex networks techniques. However, the work is focused on
the analysis of the provenance graph and does not include domain data or predictive
analysis. Our approach provides profiling analysis of the execution of workflows from the
provenance collected by Swift, in addition to being able to aggregate domain data from
the experiment. By combining these two types of information we can add even more value
and gain insights from the process of analyzing the results of the experiment.

A survey of existing frameworks and tools for bioinformatics workflows is presented in
Leipzig (2017) and Fjukstad & Bongo (2017). Both highlight the need to enable workflow
reproducibility and scalability, aspects that we approach with the development of
BioWorkbench. Also focusing in bioinformatics workflows, the WEP (D’Antonio et al.,
2013) tool enables the modularization of the workflow, allowing the user to execute
the entire experiment or just the necessary activities. In addition, WEP also allows
access to intermediate files and final results through the web interface. It does not provide
detailed computational profiling or parallel and distributed execution features as does
BioWorkbench. ADAM (Massie et al., 2013) is a scalable API for genome processing
workflows that uses Spark (Zaharia et al., 2016), a framework for managing Big data.
Both tools allow for running experiments in HPC environments, but they implement
parallelism at a lower level, within the activities. ADAM requires the API functions to be
implemented according to Spark’s model of computation, using distributed datasets and
applying actions and transformations, such as map and reduce, to these. The bioKepler
(Altintas et al., 2012) is an approach to facilitate the development and execution of
workflows in distributed environments using the Kepler SWfMS. Like BioWorkbench,
bioKepler is motivated by the challenges brought by the advancement of sequencing
techniques. However, the tool uses data-parallel execution patterns that require greater

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 4/29

http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

attention from users when defining the workflow. BioWorkbench allows for the parallel
composition of workflow activities that may be implemented using different models of
computation. Therefore, BioWorkbench is more flexible in incorporating existing and
legacy bioinformatics tools into its workflows.

Related to the reproducibility of workflows, (Kanwal et al., 2017) highlights the
importance of having sufficient provenance information to support the understanding
of data processing and ensuring the consistency of the workflow results. To demonstrate
the challenges that arise in the process of reproducing the results, a variant calling
workflow was implemented using three different SWfMS. They show a set of aspects
associated with each SWfMS that hinder the understanding and reproducibility of
workflows, including lack of documentation and provenance data. For each aspect,
the authors propose recommendations that, together with provenance patterns, could
facilitate reproducibility. Our approach supports some recommendations raised by the
work, such as the availability of workflows and the framework through public repositories.
In addition, through machine learning techniques, we demonstrate that it is also possible
to predict the execution time of workflows based on provenance data from previous
executions. In future work, the use of these techniques may support other
recommendations raised by the authors.

MATERIALS AND METHODS
Design and implementation
BioWorkbench (https://github.com/mmondelli/bioworkbench; Mondelli, 2018a) aims
to support users in the specification process of an experiment, the experiment execution in
HPC resources, the management of consumed and produced data, and the analysis of its
execution results. BioWorkbench uses a SWfMS for definition and execution of
bioinformatics workflows, and a web application for provenance data analytics. Figure 1
shows the layered conceptual architecture of BioWorkbench. It should be noted that this
architecture is available for demonstration in a Docker (Boettiger, 2015) software container
(https://hub.docker.com/r/malumondelli/bioworkbench/) that allows one to reproduce the
computational environment described and used in this work. In this way, BioWorkbench
supports reproducibility at two levels: the computational environment and the data
derivation history (through provenance information). Docker also supports better
maintenance, integration, and distribution of the BioWorkbench framework and its
components. All the software components are clearly defined in a container specification
file, which describes their dependencies and how they are interconnected. The
development process of BioWorkbench is integrated with its respective container,
every modification in BioWorkbench triggers the construction of a new container that
allows for rapidly testing new versions of the framework. In the following subsections,
we detail the features and functionalities of each layer.

Specification and execution layer
This layer uses Swift (Wilde et al., 2011), a SWfMS that allows users to specify
workflows through a high-level scripting language and execute them in different HPC

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 5/29

https://github.com/mmondelli/bioworkbench
https://hub.docker.com/r/malumondelli/bioworkbench/
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

environments. The scripting language follows functional programming principles that
allow, for example, all operations to have a well-defined set of inputs and outputs and
all the variables to be write-once. Through the Swift scripting language, datasets are
declared as variables of primitive types, such as floats, integers, and strings; mapped types,
which associate a variable with persistent files; and collections, which include arrays and
structures. The activities that comprise a workflow are represented as app functions,
responsible for specifying how applications outside Swift should be executed, also
indicating their input and output files or parameters. Compound functions are used to form
more complex data flows and can include calls to app functions, loops, and conditionals.
The activity chaining is defined in the script, by indicating that the output of an app
function is an input to another app function. An example of activity chaining is presented
in Listing 1. In Swift all expressions are evaluated in parallel as soon as their data
dependencies are met. Through the foreach loop instruction, it is possible to process all
elements of an array in parallel. The independence of locality is another essential
feature of Swift and allows the same workflow to run on different computing resources
without the need to change its specification. Therefore, Swift supports the management
and parallel execution of these workflows in HPC environments. This layer is then
responsible for managing, through Swift, the execution of the workflow in the
computational resources to which the user has access and intends to use.

Figure 1 BioWorkbench layered conceptual architecture. Full-size DOI: 10.7717/peerj.5551/fig-1

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 6/29

http://dx.doi.org/10.7717/peerj.5551/fig-1
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

Data layer
The data layer handles the provenance of workflow executions. For this, the layer also
uses Swift because of its capability of tracking provenance of the workflow execution
behavior as well as its activities (Gadelha et al., 2011). All information regarding the
execution of a workflow in Swift, or its provenance, is recorded in a log file. Each of the
activities executed by a workflow also has a log file, called wrapper log. These files contain
information such as the computational aspects of activity executions: the number of
read and write operations to the file system, CPU and memory utilization, and other
details. Also, the log files keep track of the files consumed and produced by each of the
activities, analyzing the data derivation process of the experiment.

To provide access to provenance, Swift has a mechanism that processes these log files,
filters the entries that contain provenance data, and exports this information to a
relational SQL database (SQLite) (Mondelli et al., 2016). The main entities of the Swift
provenance model are presented in Fig. 2. The script_run entity contains the description
of the execution of a workflow; the app_exec entity describes aspects of the activities
associated with a workflow, and resource_usage has the computational information of
the executions of those activities. The file entity has the record of all the files consumed
and generated by the execution of a workflow; staged_in and staged_out entities, in turn,
record the process of deriving data, relating the files to the executions of the activities.

Workflow executions may also produce domain provenance data related to the
application area of the experiment. Domain data comprises the results obtained by the
execution of computational activities of the workflow or parameters used by them.
Usually, these results are stored in files. In bioinformatics, for example, results from a
sequence alignment experiment may consist of rates or scores, indicating to the
scientist the accuracy of the alignment. Thus, domain data is data essential for
bioinformatics analyses. In order to store this type of information along with the
provenance Swift collects by default, the Data Layer can use a set of extractors
developed for collecting domain data, or annotations, from some bioinformatics
applications. Extractors consist of scripts that collect domain data from the files
produced by the activities, and that can support the analysis process by the user.
These annotations can be exported to the provenance database and associated with the
respective workflow or particular activity execution in the form of key-value pairs.

Figure 2 Main entities in the conceptual model of the Swift provenance database.
Full-size DOI: 10.7717/peerj.5551/fig-2

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 7/29

http://dx.doi.org/10.7717/peerj.5551/fig-2
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

The provenance database contains a set of annotation entities, which relate to the
model presented, giving more flexibility to store information that is not explicitly
defined in the schema. More entities can be added to the database allowing for better
management of the results of the workflow execution, depending on the type of annotation
to be stored. In the Results and Discussion section, we describe some of the entities
that have been added to the Swift provenance model in order to provide better domain
data management of a case study. Once the provenance data is stored in the database,
they can be accessed by the Analytics Layer, described in the next subsection, in order to
facilitate access and visualization of the results. Also, we highlight that it is possible to
export the Swift provenance database to the Open Provenance Model (OPM) model and
we provide a script for this purpose in the Docker container. In a future work, one
possibility would be to upgrade this export to the PROV model.

Analytics layer
This layer abstracts a set of database queries from the data layer, facilitating the access
to the provenance of the workflow. The main goal is to provide the user with a more
intuitive way to understand the computational profile of the experiment and to analyze
the domain results. Without the set of query abstractions that we propose in this layer,
the user would have to manipulate both the provenance database and the output files of the
experiment. As part of the query abstraction process, we use R scripts that connect to
the provenance database, perform the queries and extract useful statistics for analysis.
The results of the queries retrieve data that are presented to the user through graphs
and tables in a web interface. This interface was developed using the Shiny library
(https://shiny.rstudio.com/), which allows an analysis implemented in R to be accessed
via web applications interactively. The interface provides a menu so that researchers can
carry out their analyses. This menu, shown in Fig. 3, allows them to select a workflow
execution from the list of executions available for analysis. The charts and tables are
updated according to the chosen options. Computational analyses present graphs such as
the execution time of the activities, the percentage of CPU used by each of them, and the
parallelism level of the workflow. Information about the total time of execution of a
workflow, the number of executed activities, and whether the workflow ended successfully
is also displayed. Domain analyses provide information about the scientific domain of
the workflow. In the RASflow case study, presented in the Results section, this information
includes data on the genetic mutations found in patients.

Machine learning techniques in support of provenance analysis
Provenance data can be a useful resource for a wide variety of machine learning algorithms
for data mining. The application of machine learning algorithms in this context
consists of a set of statistical analyses and heuristic algorithms that enable the
automatic generation of models aiming to describe some data of interest. These models
can produce: (i) predictions, allowing scientists to estimate results or behavior based
on some previous information; and (ii) learning, related to the discovery of implicit
relations that are not always detected by human observations or simple queries.

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 8/29

https://shiny.rstudio.com/
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

From a data set of interest, the models take into account a set of attributes that must be
passed as input to produce an output. If the output can assume values in a continuous
numeric range there is a regression problem and the models are equations that assign
real values to the received instances. However, if the outputs can only assume a previously
defined set of discrete values, there is a classification problem and the models map the
input attributes to classes defined by these discrete values. In bioinformatics workflows,
for example, we can have as input to a machine learning algorithm a set of attributes such
as genome sequence size, statistics on memory usage and processing demand. The output
of this algorithm may be the prediction of the execution time. In comparative
genomics, more specifically, behaviors or relations such as the required computational
time, memory or space for comparing an arbitrary number of genomes can also be
predicted.

In this work we combine provenance data and machine learning by using the free
software Weka (Hall et al., 2009) (version 3.6) to provide a preliminary analysis that
endorses the usability of this methodology to study workflows behavior. Weka provides a
broad set of machine learning and statistical analysis techniques for data mining that
include rule- and tree-based algorithms, such as J48, BFTree, OneR. We devised
BioWorkbench to be a provenance analytics web application. We initially incorporated
simple queries in the web interface that could provide some statistics on workflow
executions and also abstractions for more complicated (non-predictive) queries.
However, we intend to add more intelligent predictive analysis to the web interface.
The analyses described in this section, implemented as scripts in Weka, are a first step
in this direction. They take data directly from the provenance database and perform

Figure 3 BioWorkbench web interface displaying information about a RASopathy analysis workflow (RASflow) execution.
Full-size DOI: 10.7717/peerj.5551/fig-3

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 9/29

http://dx.doi.org/10.7717/peerj.5551/fig-3
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

predictions on computational resource usage. A next step will be to incorporate the
functionality provided by these scripts to the web interface of BioWorkbench. Therefore,
we view the machine learning scripts as a command-line component of our framework.
Also, we highlight that the commands used for the machine learning analyses presented
in this work are available in the BioWorkbench repository and its Docker container.

Thus, we hope to indicate some relevant opportunities that arise from the association
between provenance data and machine learning techniques, both in the specific case of
SwiftGECKO, presented below, and in the scientific workflows field. Also, these
experiments can contribute to the understanding of workflow behavior, being useful, for
instance, in guiding optimization efforts and parameter configurations. It is worth
mentioning that the techniques used in this work were applied using the original
algorithm attributes proposed in the software Weka, except for the minimum number
of tuples classified at a time by the models. This attribute influences the model complexity,
providing a minimum amount of instances that need to be simultaneously classified
by the model for each possible input parameters configuration. The values of this
parameter were changed to reduce the complexity of the models and consequently to
increase their understandability. A more detailed description of the algorithms included
in Weka, together with some statistical information that we did not include in this
work for scope reasons, can be found in papers such as (Arora & Suman, 2012) and
(Sharma & Jain, 2013).

The RASflow workflow, described in the next section, was used in another study on
RASopathies. In this article, we only demonstrate the functionality of the bioinformatics
tool used in that study. The associated research project was examined and approved
by the Fernandes Figueira Institute Ethics Committee at Oswaldo Cruz Foundation,
document number CAAE 52675616.0.0000.5269. All participants signed an informed
consent before enrollment in the study.

RESULTS AND DISCUSSION
We present three case studies to evaluate BioWorkbench: SwiftPhylo, a phylogenetic tree
assembly workflow; SwiftGECKO, a comparative genomics workflow; and RASflow, a
RASopathy analysis workflow. These workflows are analyzed from both computational
and scientific domain points of view using queries to a provenance and annotation
database. Some of these queries are available as a pre-built feature of the BioWorkbench
web interface. The values and statistics presented in this section were extracted from
queries to the Swift provenance database. In the case of SwiftGECKO and RASflow, in
addition to the computational information already collected and stored by Swift,
annotations were also gathered from the scientific domain of the experiment, such as
the size of the sequences used as input for the workflow execution. With this, we show
that it is possible to combine provenance and domain data for more detailed analyses.
Also, in the SwiftGECKO case, we demonstrate that these analyses can benefit from
machine learning techniques for extracting relevant information and predicting
computational resource consumption that are not readily detected by queries and
statistics from the provenance database. These aspects demonstrate the usefulness of

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 10/29

http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

Swift both in supporting the parallel execution of the experiment and in the analysis of
those runs through queries to the provenance database. The executions of each of the
workflows were performed on a shared memory computer, with a single node with
160 cores and 2 TB of RAM. It is worth mentioning that the computational resource is
shared with other users and was not dedicated to these executions. This can be considered
as one of the factors influencing the performance gains. Also, the computational results
are related to the computational resource that we use to execute the experiments.
The workflows can be replicated on other resources in which users have access to, however,
computational results may vary. We were able to reserve part of the machine for the
executions, we had exclusive access to a number of CPUs that corresponded to the number
of threads used in each benchmark. To try to dissipate I/O effects on the benchmarks, due
to processes running in the other CPUs, we performed multiple executions for each
benchmark. We highlight that the workflows were executed directly in the aforementioned
computational resource, not taking into account the Docker structure presented in the
Fig. 1. The Docker container was built for reuse purposes only, to encapsulate the
components that compose the framework.

SwiftPhylo: phylogenetic tree assembly
SwiftPhylo (https://github.com/mmondelli/swift-phylo; Mondelli, 2018d) is based on the
approach proposed in Ocaña et al. (2011). Its goal is to build phylogenetic trees from a
set of multi-FASTA files with biological sequences from various organisms. The
construction of phylogenetic trees allows to study the evolutionary relationship between
organisms, determining the ancestral relationships between known species. Results
obtained through phylogenetic experiments contribute, for example, to the development
of new drugs (Anderson, 2003). SwiftPhylo is composed of six activities, shown in Fig. 4
and described as follows:

1. Sequence numbering: the activity receives multi-FASTA format files as input and uses a
Perl script so that each sequence contained in the file receives is numbered.

2. Multiple sequence alignment (MSA): the activity receives the result of Activity 1 and
produces a MSA as output through the MAFFT (version 7.271) (Katoh et al., 2002)
application.

3. Alignment format conversion: this activity converts the format of the file generated
by the previous activity to the PHYLIP format using the ReadSeq (version 2.1.30)
(Gilbert, 2003) application.

4. Search for the evolutionary model: this activity tests the output files of Activity 3 to
find the best evolutionary model, through the ModelGenerator (version 0.84)
(Keane et al., 2006) application.

5. Filtering: this activity uses a Python script to filter the output file from Activity 4.

6. Construction of phylogenetic trees: this activity receives as input the resulting files of
Activities 3 and 5, and uses the RAxML (version 8.2.4) (Stamatakis, 2006) application to
construct phylogenetic trees.

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 11/29

https://github.com/mmondelli/swift-phylo
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

SwiftPhylo works with a large amount of data and can be run with different parameters.
This means that, in practice, managing its execution without the help of a SWfMS becomes
a cumbersome task for the scientist. Taking into account that the workflow modeling
specifies independent processing for each input file, with the implementation of SwiftPhylo
we have a workflow that allows us to explore the characteristics of Swift’s parallelism.

In the SwiftPhylo implementation process, the computational applications that compose
the workflow were mapped to the Swift data flow model. In this way, the activities are
represented in the Swift script as app functions. The app functions determine how the
execution of a computational activity external to Swift is performed, including its arguments,
parameters, inputs, and outputs. Once this has been done, activity chaining was defined
by indicating that the output of one app function is the input of another. Parallelism has been
implemented in a way that the activity flow can be executed independently for each input,
as shown in the code in Listing 1 through the foreach statement.

Listing 1 SwiftPhylo specification sample.

app (file o) mafft (file i) {

mafft filename(i) stdout=filename(o);

}
foreach f, i in fastaFile {

mafftFile[i] = mafft(fastaFile[i]);

}

SwiftPhylo was executed using a set of 200 multi-FASTA files, with the size of each
file ranging from 2 to 6 KB, resulting in the execution of 1,200 activities. The total
execution time averages and speedup of the workflow are shown in Fig. 5. The difference
between the slowest and the fastest execution for each number of cores varies
between 0.04% (1 core) and 3.38% (160 cores) or the total execution time, which are
too small to represent in figure as error bars. The results show that SwiftPhylo
executed in parallel was ∼92 times faster than its sequential execution, i.e., a ∼13.35 h

Figure 4 SwiftPhylo workflow modeling. Full-size DOI: 10.7717/peerj.5551/fig-4

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 12/29

http://dx.doi.org/10.7717/peerj.5551/fig-4
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

execution time was reduced to ∼8 min. This represents a decrease of 98.9% in the
workflow execution time.

Another important aspect related to the execution of the workflow concerns its level
of parallelism, presented through a Gantt graph in Fig. 6. This type of analysis shows
the order of execution and the duration of each of the activities that comprise theworkflow.

1 10 20 40 80 160

Number of cores

E
xe

cu
tio

n
tim

e
(m

in
)

1
5

10
50

50
0

1
2

5
10

20
50

10
0

20
0

S
pe

ed
up

 (
x)

Speedup

Figure 5 SwiftPhylo execution time and speedup. Full-size DOI: 10.7717/peerj.5551/fig-5

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 2 4 6 8

Execution time (min)

N
u

m
b

er
 o

f
ac

ti
vi

ti
es

Activity name
cleanModelgenerator
fastaNumbered
mafft
modelgenerator
raxml
readseq

Figure 6 SwiftPhylo workflow Gantt chart expressing its parallelism level.
Full-size DOI: 10.7717/peerj.5551/fig-6

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 13/29

http://dx.doi.org/10.7717/peerj.5551/fig-5
http://dx.doi.org/10.7717/peerj.5551/fig-6
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

In the chart, activities are represented by different colors and each activity is displayed as a
horizontal bar that indicates when the activity started and when it ended. The bars are
stacked on the vertical axis in order of execution. Thus, by plotting a vertical line at
some time t of the workflow execution, we find the parallelism at time t as the number
of activities intercepted by the line. We can observe that the modelgenerator activity is the
one that demands the most execution time and can be considered a candidate for
identify parallelism strategies that reduce its duration.

SwiftGECKO: comparative genomics
SwiftGECKO (https://github.com/mmondelli/swift-gecko; Mondelli, 2018c) is an
implementation of the comparative genomics workflow proposed in Torreno & Trelles
(2015) (version 1.2). Comparative genomics studies the relationship between genomes of
different species, allowing a better understanding of the evolutionary process among them
(Alföldi & Lindblad-Toh, 2013). SwiftGECKO aims to identify portions of biological
sequences of various organisms with a high degree of similarity, or high-scoring segment
pairs (HSP), between them. SwiftGECKO is composed by 10 activities distributed in
three modules, which are presented in Fig. 7 and described as follows:

1. Dictionary creation: this corresponds to the creation of dictionaries for each sequence
and includes Activities 1–4 (blue boxes). For the dictionary creation, the user must
indicate the size of the portion of the sequence, or K-mers, that will be used for the
comparison. The dictionary consists of a table that organizes the K-mers and their
respective positions, for each of the sequences.

2. HSP identification: this is composed by Activities 5–9 (green boxes) and performs
the comparison between the sequences, identifying hits used to find HSPs.
Hits consist of positions where the K-mers of the compared sequences are equal.

3. Post-processing: this is Activity 10, where a conversion of the output format of Activity 9
to CSV is done, allowing analysis of the results. The CSV file contains information
such as the size of the sequences, the parameters used in the comparison, and
the number of hits found.

Figure 7 SwiftGECKO workflow modeling. Full-size DOI: 10.7717/peerj.5551/fig-7

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 14/29

https://github.com/mmondelli/swift-gecko
http://dx.doi.org/10.7717/peerj.5551/fig-7
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

SwiftGECKO consumes and produces a significant amount of data. A workflow
execution with 40 complete bacterial genomes totals 1,560 possible comparisons, resulting
in the execution of 8,080 activities. The implementation of SwiftGECKO followed the same
steps mentioned in the SwiftPhylo implementation process. Parallelism was divided into
two foreach stages as shown in Listing 2. In the first one, the activities that belong to
Module 1 are executed; they generate the files that will be consumed by the other activities.
The second step, referring to Modules 2 and 3, manages the activities responsible for
comparing pairs of all genomes given as input.

Listing 2 SwiftPhylo specification sample.

foreach f,i in fasta {

wordsUnsort[i] = words(fasta[i]);

}
foreach f,i in fasta {

foreach g,j in fasta {

hits[i][j] = hits(d2hW[i], d2hW[j], wl);

}
}

SwiftGECKO was executed with a set of 40 files containing bacterial genome sequences,
downloaded from NCBI (https://www.ncbi.nlm.nih.gov/), ranging in size from 1 KB to
8 MB. This set of genomes is available along with the workflow script in the GitHub
repository. The execution time decreased from ∼2.1 h to ∼6 min, representing a reduction
of ∼96.6%. This means that, the workflow was ∼30 times faster when executed in parallel,
using 160 processors. In a more in-depth analysis, we illustrate in Table 1 that the
hits activity is also I/O-intensive. This is a factor that limits the scalability of the workflow.

In addition, as aforementioned, we present predictive models automatically
generated by machine learning methods. We choose the CPU time as the attribute to be
predicted, thus the produced models aim at understanding how some variables influence the
total execution time of the workflow. Besides the CPU time and the total_fasta_size, we
included the following attributes as input parameters for the models: length, word_length,

Table 1 Average duration (s) and the amount of data read and written by each activity of
SwiftGECKO.

Activity Duration (s) GB read GB written

hits 60,058 455.24 111.36

sortHits 4457.3 111.36 111.36

FragHits 3793.3 94.7 0.32

filterHits 2,402 111.36 83.09

csvGenerator 697.8 0.006 0.004

combineFrags 425.8 0.32 0.16

w2hd 425.1 7.05 11.67

sortWords 76.6 7.05 7.05

words 55.9 0.29 7.05

reverseComplement 11.8 0.15 0.14

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 15/29

https://www.ncbi.nlm.nih.gov/
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

similarity, total_genomes, total_reads, and total_written. The workflows were executed
three times with different parameter configurations, and their respective execution times
were recorded in a database containing 156 instances that were used as input to the machine
learning algorithms. Thus, to evaluate the performance of each generated model we used
metrics related to the differences between the predicted and the previously known CPU
times, which were obtained through these previous executions. Whenever possible the
algorithms were evaluated using the methodology known as “cross-validation,” with 10-fold
(Arlot & Celisse, 2010) and, because of this, all the measurements presented here with respect
to the machine learning models also express their generalization potential.

Firstly, the regression algorithms obtained especially promising results. The simple
linear regression algorithm achieved a correlation coefficient of 0.9856 and is represented
in the Eq. (1). The greater the coefficient correlation, the more precise is the
prediction of the algorithm. Some attributes are handled as nominal ones, being able
to assume only a set of discrete values. For example, word_length can be set as 10, 12,
or 16. For continuous attributes there is always a multiplicative constant associated
with the current value of the attribute. However, for nominal cases, a set of possible
values to the attribute are associated with the constant. If the attribute assumes one of
these, then the constant is multiplied by 1. Otherwise, it is multiplied by 0. Thus, the
linear regression model is an equation that receives a set of values as input parameters
and returns a real number that aims to approximate the real execution time of a
workflow represented according to these parameters. The multilayer neural network
algorithm obtained a correlation coefficient equal to 0.9936 but we have not represented
this due to its high complexity. These results demonstrate that it is quite possible to
predict the execution time of the workflow as a whole, on the chosen set of input
parameters. In other words, they indicate the existence of a relation between these
parameters and the execution time. Also, word_length, total_written, and total_genomes
are highlighted by the generated model as the most relevant parameters to predict the
execution time of the workflow.

CPU time ¼ �931:4025 � ðword length in f10; 12gÞþ
�2704:5534 � ðword length ¼ 10Þþ

0 � ðtotal writtenÞþ
�1006:3049 � ðtotal genomes in f20; 30; 40gÞþ
�547:6854 � ðtotal genomes in f30; 40gÞþ
410:1449 � ðtotal genomes ¼ 40Þþ
876:1037

(1)

We divided the domain of possible values for CPU time in five ranges (which are
the classes) {A, B, C, D, E} of equal size, in which A includes the lowest values and E
includes the highest values. This made it possible to apply classification algorithms
using the same data as the previous analysis. Also, in order to produce predictive models,
we excluded data that could provide information obtained after the workflow execution,
and not before. Thus, we excluded the attribute “total_written.” Having a discrete domain,
the information gain ratio values for each attribute are listed in the Table 2. Greater

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 16/29

http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

this value, greater is the amount of information that the respective attribute offer to predict
the execution time of the workflow. Cost matrices were used to avoid the overvaluation of
class A, which holds 88.46% of all tuples. In this case, the tree-based techniques “J48”
(Quinlan, 1993) and “BFTree” (Shi, 2007) obtained the best results, correctly classifying
96.79% and 96.15%, respectively, of all tuples.

The “OneR” algorithm (Holte, 1993) chosen automatically the total_read attribute to
produce a notably simple model, given by the Eq. (2) and that classified correctly 96.79% of
all tuples.

total read :
< 1:768799155948E12 : Class A
< 2:5173879304975E12 : Class B
< 3:4581148731605E12 : Class C
� 3:4581148731605E12 : Class D

(2)

According to the Table 2, the CPU time is most directly influenced by the amount of
data read by the workflow. Together with the third higher information gain ratio value
assigned to the attribute total_fasta_size, we can suggest that the magnitude of the
information to be read is the most influential aspect concerning the execution time.
Despite the I/O routines, the attribute word_length receives the second higher information
gain ratio value, highlighting its relevance.

In fact, in the absence of data about the number of hits, the attribute word_length
assumes the most prominent position to predict the attribute CPU time. For all this, the
value of word_length is also a decisive attribute to predict the execution time of the
workflow as a whole, due to its importance in the behavior of the most costly component of
the workflow.

Reinforcing the relevance of the I/O routines, both Algorithms 1 and 2 employ the
attributes total_read and total_fasta_size in their main conditionals. As in the Eq. (2), the
greater the total_read value, the greater the computational time demanded. Also, the
attributes length and similarity are used to classify a minor number of tuples. However,
they can indicate the influence of the cost associated with the amount of fragments found
(influenced by the attributes length and similarity).

Beyond all this, these experiments demonstrate that, having an appropriated set of input
data, is possible to generate simple models able to efficiently predict the computational
time demanded by the workflow execution, both in terms of continuous or discrete times.

Table 2 Information gain ratio values of the attributes used for the analysis.

Information gain ratio Attribute

1 total_read

0.1842 word_length

0.1611 total_fasta_size

0.1208 total_genomes

0.0421 length

0.0271 similarity

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 17/29

http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

The techniques used to build these models also allows us to infer predictions related to
other attributes, beyond the execution time. For example, we can focus on the amount of
written data by the workflow or the specific domain data stored in the provenance
database. Also, there are a wide variety of machine learning methods that produce
symbolic solutions and allow, in addition to the predictions, knowledge extraction about
different aspects. These aspects include, for example, the structure or the importance
degree of relations among the various variables or between variables and constants.
Therefore, machine learning methods constitute an essential toolkit to be explored in
provenance data analyses concerning SwiftGECKO and other, to provide predictive
models and to reveal implicit knowledge.

Algorithm 2 BFTree predictive model.

1 if total_read � 1.768799155948E12 then

2 return Class A;

3 else

4 if total_fasta_size � 1.314087315E8 then

5 if length=100 then

6 return Class C;

7 else

8 if similarity s 40 then

9 return Class C;

10 else

11 return Class B;

12 else

13 return Class E;

Algorithm 1 J48 predictive model.

1 if total_read � 1020229446482 then

2 return Class A;

3 else

4 if total_fasta_size � 113556442 then

5 if length = 80 then

6 if similarity = 65 then

7 return Class C;

8 else

9 return Class B;

10 else

11 return Class C;

12 else

13 return Class E;

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 18/29

http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

RASflow: RASopathy analysis
Genetic diseases, such as RASopathies, occur due to changes in the nucleotide sequence
of a particular part of the DNA. These changes modify the structure of a protein, which
may cause anatomical and physiological anomalies (Klug, Cummings & Spencer, 1997).
RASopathies comprise a set of syndromes characterized by heterogeneity of clinical
signs and symptoms that limit the prognosis, still in the childhood, of predispositions
to certain tumors or neurocognitive delays. RASopathies are characterized by mutations
in genes that encode proteins of the RAS/MAPK cell signaling pathway, which is part
of the communication system responsible for the coordination of cellular activities and
functions. This type of mutation was found in 20–30% of cancer cases in humans,
setting the RASopathies in the group of syndromes that are predisposed to cancer
(Lapunzina et al., 2014).

A consortium between the Bioinformatics Laboratory of the National Laboratory for
Scientific Computing (LABINFO/LNCC) and the Center for Medical Genetics of the
Fernandes Figueiras Institute at Fiocruz (IFF/Fiocruz) established an experiment aimed at
the molecular study of RASopathies, from the sequencing of the exome of a set of patients.
The consortium seeks to investigate genetic aspects of RASopathies by using DNA
sequencing technologies, providing support for the treatment of the disease. For this, a
study that aims to process and analyze the sequences of patients diagnosed with
RASopathies was established. This study comprises the use of a set of bioinformatics
applications and, due to the significant amount of data to be processed, demands HPC.

A scientific workflow, called RASflow (https://github.com/mmondelli/rasflow;Mondelli,
2018b), was implemented to support the large-scale management of a bioinformatic
experiment to analyze diseases associated with RASopathies and allows the identification of
mutations in the exome of patients. Once the exomes of the collected patient samples
are sequenced, the results are stored in a text file in the FASTQ format, which records the
reads and their quality scores. The reads consist of sequence fragments generated by
the sequencer. By using the results obtained through RASflow, a researcher can analyze
and identify whether or not there is pathogenicity in the mutations present in the exome.
RASflow was implemented in Swift, and the workflow model is shown in Fig. 8.

Activity 1 (version 2.1.0) receives a reference human genome and indexes it. The results
are stored in files in the BT2 format, which records the indexes according to the sequence
size. This activity requires large computational time, and its results are used in the
analysis of each patient. Therefore, the workflow checks for the existence of BT2 files in the
filesystem where it is executed. The activity is only performed when the files are not found.

Activity 2 receives the exome sequence of the patient in the FASTQ format as input,
filters the reads with a certain quality, and maintains the result in the same format. The need
to perform Activity 2 depends on the type of sequencer used to sequence the exome of the
patient. If the Illumina sequence was used, for example, it is not necessary to perform this
activity. If the sequencing comes from IonTorrent, the activity is performed in parallel.

Activity 3 receives the result of Activities 1 and 2 to perform the alignment of the exome
and the reference genome sequence, resulting in a SAM format file and a log file with

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 19/29

https://github.com/mmondelli/rasflow
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

alignment statistics. The SAM file, the result of the alignment, is usually large and therefore
difficult to analyze and manipulate. Activities 4–6 are used to compress, sort and index the
SAM file, respectively, generating the BAM and BAI binary files that store the aligned
sequences. The resulting files are used by Activity 7, which filters duplicate reads and
produces a file in BAM format as well.

From this point on, mutations are identified by comparing the exome sequence of
the patient and the reference genome. However, the workflow presents some variability,

bigger30
(bigger30)

bowtie2-build
(bowtie2Build)

bowtie2-align
(bowtie2Align)

samtools view
(sam2bam)

samtools sort
(sortBam)

samtools index
(indexBam)

Markduplicates
(nodup)

UnifiedGenotyper
(snpCall)

RealignerTargetCreator
(createIntervals1)

IndelRealigner
(realigner)

bcftools
(bcftools)

samtools mpileup
(mpileup)

9

8 GATK
10

VariantFiltration
(vcfFilter)

PrintReads
(recalibrator2)

F

7

6

5

4

3

1 2

a

b

c

d

f
snpEff
(snpEff)

11

bgzip
(bgzip) 12

tabix
(tabix) 13

vcf-merge
(vcf-merge) 14

SnpSift
(ExtractFields) 15

Text

BaseRecalibrator
(recalibrator1) e

Figure 8 RASopathy analysis workflow modeling. Full-size DOI: 10.7717/peerj.5551/fig-8

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 20/29

http://dx.doi.org/10.7717/peerj.5551/fig-8
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

and the comparison can be made through two approaches: (i) using samtools (version
0.1.18) (Li, 2011) or (ii) the toolkit provided by GATK (version 3.4-46-gbc02625)
(McKenna et al., 2010). A more detailed analysis of the differences between the two
approaches that take into account biological aspects falls outside the scope of this work.
However, it can be said that the GATK toolkit comprises more sophisticated techniques
and the results obtained tend to be more accurate.

In the workflow variation that uses samtools, the BAM file produced by Activity 7
(version 1.100(1571)) and the reference genome are consumed by Activity 8, which
performs the comparison. The result is used by Activity 9 (version 0.1.17), which converts
the file from a binary format to the VCF format, which is responsible for storing the
genetic variants found. The workflow variation using the GATK approach performs the
set of Activities 10a–10f, indicated in the figure, which also produces a VCF file. The VCF
file resulting from the execution of one of the variations is consumed by Activity 11
(version 3.4i) to predict the effects of the mutations found and to determine the
pathogenicity, resulting in a set of VCFs. Note that Activity 11 is not a combination
of the results of the samtools and GATK approaches. On the contrary, the activity processes
the result of only one of the approaches, chosen by the user at the time of the workflow
execution call. In this work, we also included Activities 12 and 13 (version 0.2.5) to
compress and index the files resulting from Activity 11, respectively. The results are
consumed by Activity 14 (version 0.1.13), responsible for combining this set of files.
Finally, Activity 15 (version 4.2) applies a set of filtering activities based, for example, on the
quality and quantity of occurrences of a given variant, generating a single final VCF file.

A set of scientific domain annotation extractors was developed for gathering and
adding to the provenance database information from the following files: (i) the GFF file,
which describes characteristics of the DNA, RNA, and protein sequences of the genome
used as reference; (ii) the log file resulting from the execution of Activity 3; and (iii) the file
in VCF format, which contains the variations found in the exome. The conceptual
schema of the Swift database has been augmented to enable storage of this information.
The following tables, as shown in Fig. 9, were added: gff and vcf, for storing the
contents of the GFF and VCF files respectively; and the file_annot_numeric table,
which records the contents of the log file in key-value format.

Next, we propose a set of queries to the RASflow provenance database to assist the
scientist in the analysis of the results of the workflow. The queries were defined with one of

Figure 9 Database entities for storing scientific domain annotations in RASflow.
Full-size DOI: 10.7717/peerj.5551/fig-9

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 21/29

http://dx.doi.org/10.7717/peerj.5551/fig-9
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

the researchers responsible for the analysis of RASopathies. They are available for
viewing in the BioWorkbench web interface corresponding to the RASflow experiment.
That is, the scientist does not need to redefine them to obtain the results.

Query 1: “Retrieve the alignment rate of each patient’s exome sequences relative to
the reference genome.” The alignment process allows identifying the similarity between
the patient sequence and the sequence used as a reference. The result was obtained
when the workflow executed Activity 2, which produced a log file that got parsed and
added to the provenance database as domain data. This file records some statistics and
among them the rate of alignment between the two sequences. This type of information is
useful for the scientist, who is responsible for deciding what rate is sufficient for proceeding
with the analysis. The alignment rate is stored in the file_annot_numeric table of the
provenance database and can be retrieved through the query shown in Listing 3. Table 3
displays the result of the query, with the alignment rates for each of the patients used in the
analysis of RASopathies of a given workflow execution.

Listing 3 SQL query to retrieve the alignment rate of each patient’s exome sequences.

SELECT file_id, value

FROM file_annot_numeric

NATURAL JOIN staged_out

WHERE key LIKE ‘overall alignment rate’ AND app_exec_id LIKE

‘%loss_all-run003-410029947%’;

Query 2: “Retrieve the biotype and transcript gene name from the final VCF file.”
This type of result, without BioWorkbench support, was obtained through a manual
scan of the GFF file, used as input in the execution of the workflow, and if the VCF file
generated as the final result. In RASflow, these two files are imported into the gff and

Table 3 Alignment rate resulting from patients analysis in RASflow.

Patient Alignment rate (%)

P1.log 93.95

P2.log 94.52

P3.log 94.41

P4.log 94.48

P5.log 94.62

P6.log 94.58

Table 4 Mutation list with the biotype and the name of the transcribed genes in the final VCF file of a
patient.

Patient Gene Transcript Name Biotype

P1.log ENSE00001768193 ENST00000341065 SAMD11-001 protein_coding

P1.log ENSE00003734555 ENST00000617307 SAMD11-203 protein_coding

P1.log ENSE00003734555 ENST00000618779 SAMD11-206 protein_coding

P1.log ENSE00001864899 ENST00000342066 SAMD11-010 protein_coding

P1.log ENSE00003734555 ENST00000622503 SAMD11-208 protein_coding

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 22/29

http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

vcf tables of the provenance database. To retrieve this information, one can use the
query presented in Listing 4, which performs the join of the vcf and gff tables for a
given workflow execution. The result is displayed in Table 4. Through the BioWorkbench
interface for RASflow, the result is also presented as a table, but iteratively, allowing the
scientist to filter the columns or search for names according to their needs.

Listing 4 SQL query to retrieve the biotype and transcript gene name from the final VCF file of a
patient.

SELECT v.�, g.Name AS nome,

g.biotype AS biotipo

FROM vcf v

NATURAL JOIN file f

NATURAL JOIN staged_out o

NATURAL JOIN app_exec a

LEFT JOIN gff g ON v.trid = g.ID

WHERE a.script_run_id LIKE ‘loss-run006-3737171381’;

To evaluate the performance of the workflow, we used exome sequences of six patients
as input, ranging in size from 8 to 11 GB. It is worth mentioning that a preliminary
version of this workflow was developed in Python. In this work, we chose to develop it
using Swift to take advantage of the parallelism offered by the system. By considering the
variability of the workflow, executions were made for the two possible approaches:
one using the samtools tool and the other using the GATK toolkit. In the approach
using samtools, a reduction of ∼77% of the execution time of the analyses was obtained,
representing a gain of ∼4 times in the execution with Swift compared to the sequential
execution in Python. The approach using GATK had a reduction of ∼80% in execution
time, for a gain of ∼5 times. The parallelism strategy of RASflow explored the simultaneous
analysis of patients. In other words, each patient is analyzed sequentially and the
parallelism is related to the number of patients used as input for the workflow execution.
Thus, the total time of execution of the workflow is associated with the execution time of
the most time-consuming patient analysis. Due to restrictions of the computational
resource that we used, this performance analysis considers a single run for each approach
using both Swift and the original Python version of the workflow.

Because it has been executed with a small set of patients, the workflow has a large
run-time variability. However, genetic variant analysis can be applied to other diseases.
For diseases such as cancer, for example, the volume of sequenced genomes is much larger
and therefore, there is an opportunity to obtain higher performance gain through the
approach used in RASflow. Also, we highlight the data used for the executions could not be
made available because it is real patient data. However, we provide a sample of input data
that can be used to run RASflow (Mondelli, 2018e).

CONCLUSION AND FUTURE WORK
Large-scale bioinformatics experiments involve the execution of a flow of computational
applications and demand HPC. The execution management of these experiments,
as well as the analysis of results, requires a lot of effort by the scientist. In this work,

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 23/29

http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

we demonstrate that the use of scientific workflow technologies coupled with provenance
data analytics can support this management, allowing for the specification of experiments,
parallel execution in HPC environments, and gathering provenance information.

To benefit from the use of scientific workflow technologies and support the whole
process of scientific experimentation, we have developed the BioWorkbench framework.
It was designed to use the Swift SWfMS for the specification and execution of
bioinformatics experiments, and a web application for provenance data analytics.
In this way, through BioWorkbench the user has access to a tool that integrates various
features ranging from the high-performance execution of the workflow to profiling,
prediction, and domain data analysis. We can observe that BioWorkbench enables a
better scientific data management since the user does not have to directly manipulate the
provenance database and the resulting files from the experiment execution. Another
important aspect concerns the reproducibility of the experiment, which is facilitated by
the provenance and the reproduction of the computational environment through a
Docker container.

We used three case studies that model bioinformatic experiments as workflows:
SwiftPhylo, SwiftGECKO, and RASflow. In addition, to the performance gains achieved
by using Swift in BioWorkbench, we have demonstrated how the provenance allows the
identification of bottlenecks and possible optimization opportunities in the execution of
workflows. Also, we conclude that users can benefit from the application of machine
learning techniques in provenance analysis to, for example, predict and classify
workflow execution time. It is noteworthy that, during the development of this work,
SwiftGECKO was integrated into the Bioinfo-Portal scientific portal (Mondelli et al., 2016).
Through the portal, users can execute the workflow through a web interface in a
transparent way, using geographically distributed computational resources managed by
the Brazilian National System for HPC (SINAPAD).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was partially supported by Brazilian funding agencies CNPq, CAPES, and
FAPERJ. There was no additional external funding received for this study. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Brazilian funding agencies CNPq, CAPES, and FAPERJ.

Competing Interests
Ian Foster, Marta Mattoso and Daniel Katz are Academic Editors for PeerJ. Michael
Wilde has an employment and ownership interest in the commercial firm Parallel
Works Inc.

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 24/29

http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

Author Contributions
� Maria LuizaMondelli conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures
and/or tables, authored or reviewed drafts of the paper, approved the final draft.

� Thiago Magalhães performed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, prepared figures and/or tables, authored or
reviewed drafts of the paper, approved the final draft.

� Guilherme Loss performed the experiments, analyzed the data, contributed reagents/
materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.

� Michael Wilde performed the experiments, analyzed the data, contributed reagents/
materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.

� Ian Foster contributed reagents/materials/analysis tools, authored or reviewed drafts of
the paper, approved the final draft.

� Marta Mattoso contributed reagents/materials/analysis tools, authored or reviewed
drafts of the paper, approved the final draft.

� Daniel Katz contributed reagents/materials/analysis tools, authored or reviewed drafts
of the paper, approved the final draft.

� Helio Barbosa performed the experiments, analyzed the data, contributed reagents/
materials/analysis tools, prepared figures and/or tables, authored or reviewed drafts of
the paper, approved the final draft.

� Ana Tereza R. de Vasconcelos conceived and designed the experiments, performed the
experiments, analyzed the data, contributed reagents/materials/analysis tools,
prepared figures and/or tables, authored or reviewed drafts of the paper, approved the
final draft.

� Kary Ocaña conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

� Luiz M.R. Gadelha Jr conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

This study was examined and approved by the Fernandes Figueira Institute Ethics
Committee at Oswaldo Cruz Foundation, document number CAAE
52675616.0.0000.5269.

Data Availability
The following information was supplied regarding data availability:

BioWorkbench Docker container: https://hub.docker.com/r/malumondelli/bioworkbench/.
BioWorkbench source code: https://github.com/mmondelli/bioworkbench (DOI: 10.

5281/zenodo.1243912).

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 25/29

https://hub.docker.com/r/malumondelli/bioworkbench/
https://github.com/mmondelli/bioworkbench
https://dx.doi.org/10.5281/zenodo.1243912
https://dx.doi.org/10.5281/zenodo.1243912
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

SwiftPhylo workflow: https://github.com/mmondelli/swift-phylo
(DOI: 10.5281/zenodo.1241164).

SwiftGECKO workflow: https://github.com/mmondelli/swift-gecko
(DOI: 10.5281/zenodo.1241166).

RASflowworkflow: https://github.com/mmondelli/rasflow (DOI: 10.5281/zenodo.1243176).

REFERENCES
Alföldi J, Lindblad-Toh K. 2013. Comparative genomics as a tool to understand evolution and

disease. Genome Research 23(7):1063–1068 DOI 10.1101/gr.157503.113.

Altintas I, Wang J, Crawl D, Li W. 2012. Challenges and approaches for distributed
workflow-driven analysis of large-scale biological data: vision paper. In: Proceedings of the 2012
Joint EDBT/ICDT Workshops. New York: ACM, 73–78.

Anderson AC. 2003. The process of structure-based drug design. Chemistry and Biology
10(9):787–797 DOI 10.1016/j.chembiol.2003.09.002.

Arlot S, Celisse A. 2010. A survey of cross-validation procedures for model selection.
Statistics Surveys 4:40–79 DOI 10.1214/09-ss054.

Arora R, Suman S. 2012. Comparative analysis of classification algorithms on different
datasets using weka. International Journal of Computer Applications 54(13):21–25
DOI 10.5120/8626-2492.

Belhajjame K, Zhao J, Garijo D, Gamble M, Hettne K, Palma R, Mina E, Corcho O,
Gómez-Pérez JM, Bechhofer S, Klyne G, Goble C. 2015. Using a suite of ontologies for
preserving workflow-centric research objects. Web Semantics: Science, Services and Agents on
the World Wide Web 32:16–42 DOI 10.1016/j.websem.2015.01.003.

Boettiger C. 2015. An introduction to docker for reproducible research. ACM SIGOPS
Operating Systems Review 49(1):71–79 DOI 10.1145/2723872.2723882.

Cohen-Boulakia S, Chen J, Missier P, Goble C, Williams AR, Froidevaux C. 2014.
Distilling structure in taverna scientific workflows: a refactoring approach. BMC Bioinformatics
15(Suppl 1):S12 DOI 10.1186/1471-2105-15-s1-s12.

D’Antonio M, De Meo PD, Paoletti D, Elmi B, Pallocca M, Sanna N, Picardi E, Pesole G,
Castrignanò T. 2013. Wep: a high-performance analysis pipeline for whole-exome data.
BMC Bioinformatics 14(Suppl 7):S11 DOI 10.1186/1471-2105-14-s7-s11.

Deelman E, Gannon D, Shields M, Taylor I. 2009. Workflows and e-science: an overview of
workflow system features and capabilities. Future Generation Computer Systems 25(5):528–540
DOI 10.1016/j.future.2008.06.012.

Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, Maechling PJ, Mayani R, Chen W,
Ferreira Da Silva R, Livny M, Wenger K. 2015. Pegasus, a workflow management system
for science automation. Future Generation Computer Systems 46:17–35
DOI 10.1016/j.future.2014.10.008.

Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. 2017.
Nextflow enables reproducible computational workflows. Nature Biotechnology 35(4):316–319
DOI 10.1038/nbt.3820.

DunN, Taura K, Yonezawa A. 2010. Paratrac: a fine-grained profiler for data-intensive workflows.
In: Proceedings of the 19th ACM International Symposium on High Performance Distributed
Computing—HPDC’10. New York: ACM Press, 37–48.

Fjukstad B, Bongo LA. 2017. A review of scalable bioinformatics pipelines. Data Science and
Engineering 2(3):245–251 DOI 10.1007/s41019-017-0047-z.

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 26/29

https://github.com/mmondelli/swift-phylo
https://dx.doi.org/10.5281/zenodo.1241164
https://github.com/mmondelli/swift-gecko
https://dx.doi.org/10.5281/zenodo.1241166
https://github.com/mmondelli/rasflow
https://dx.doi.org/10.5281/zenodo.1243176
http://dx.doi.org/10.1101/gr.157503.113
http://dx.doi.org/10.1016/j.chembiol.2003.09.002
http://dx.doi.org/10.1214/09-ss054
http://dx.doi.org/10.5120/8626-2492
http://dx.doi.org/10.1016/j.websem.2015.01.003
http://dx.doi.org/10.1145/2723872.2723882
http://dx.doi.org/10.1186/1471-2105-15-s1-s12
http://dx.doi.org/10.1186/1471-2105-14-s7-s11
http://dx.doi.org/10.1016/j.future.2008.06.012
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1038/nbt.3820
http://dx.doi.org/10.1007/s41019-017-0047-z
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

Freire J, Koop D, Santos E, Silva Cl. 2008. Provenance for computational tasks: a survey.
Computing in Science and Engineering 10(3):11–21 DOI 10.1109/mcse.2008.79.

Gadelha LMR, Wilde M, Mattoso M, Foster I. 2011. Exploring provenance in high performance
scientific computing. In: Proceedings of the First Annual Workshop on High Performance
Computing meets Databases—HPCDB’11. New York: ACM Press, 17–20.

Gadelha LMR, Wilde M, Mattoso M, Foster I. 2012. Mtcprov: a practical provenance query
framework for many-task scientific computing. Distributed and Parallel Databases
30(5–6):351–370 DOI 10.1007/s10619-012-7104-4.

Gilbert D. 2003. Sequence file format conversion with command-line readseq. Current Protocols in
Bioinformatics 00(1):A.1E.1–A.1E.4 DOI 10.1002/0471250953.bia01es00.

Goble CA, Bhagat J, Aleksejevs S, Cruickshank D, Michaelides D, Newman D, Borkum M,
Bechhofer S, Roos M, Li P, De Roure D. 2010.Myexperiment: a repository and social network
for the sharing of bioinformatics workflows. Nucleic Acids Research 38(suppl_2):W677–W682
DOI 10.1093/nar/gkq429.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. 2009. The weka data
mining software: an update. ACM SIGKDD Explorations Newsletter 11(1):10–18
DOI 10.1145/1656274.1656278.

Holte RC. 1993. Very simple classification rules perform well on most commonly used datasets.
Machine learning 11(1):63–90 DOI 10.1023/A:1022631118932.

Juve G, Chervenak A, Deelman E, Bharathi S, Mehta G, Vahi K. 2013. Characterizing and
profiling scientific workflows. Future Generation Computer Systems 29(3):682–692
DOI 10.1016/j.future.2012.08.015.

Kanwal S, Khan FZ, Lonie A, Sinnott RO. 2017. Investigating reproducibility and tracking
provenance—a genomic workflow case study. BMC Bioinformatics 18(1):337
DOI 10.1186/s12859-017-1747-0.

Katoh K, Misawa K, Kuma K-I, Miyata T. 2002. Mafft: a novel method for rapid multiple
sequence alignment based on fast fourier transform. Nucleic Acids Research 30(14):3059–3066
DOI 10.1093/nar/gkf436.

Keane TM, Creevey CJ, Pentony MM, Naughton TJ, Mclnerney JO. 2006. Assessment of
methods for amino acid matrix selection and their use on empirical data shows that ad hoc
assumptions for choice of matrix are not justified. BMC Evolutionary Biology 6(1):29
DOI 10.1186/1471-2148-6-29.

Kim J, Deelman E, Gil Y,Mehta G, Ratnakar V. 2008. Provenance trails in the wings/pegasus system.
Concurrency and Computation: Practice and Experience 20(5):587–597 DOI 10.1002/cpe.1228.

Klug WS, Cummings MR, Spencer CA. 1997. Concepts of Genetics. Number QH430 K58 2003
Englewood Cliffs: Prentice Hall.

Król D, Da Silva RF, Deelman E, Lynch VE. 2016. Workflow performance profiles: development
and analysis. In: Euro-Par Workshops. Cham: Springer, 108–120.

Lapunzina P, López RO, Rodrguez-Laguna L, Garca-Miguel P, Martnez AR, Martnez-Glez V.
2014. Impact of ngs in the medical sciences: genetic syndromes with an increased risk of
developing cancer as an example of the use of new technologies. Genetics and Molecular Biology
37(1):241–249 DOI 10.1590/s1415-47572014000200010.

Leipzig J. 2017. A review of bioinformatic pipeline frameworks. Briefings in Bioinformatics
18(3):530–536 DOI 10.1093/bib/bbw020.

Li H. 2011. A statistical framework for snp calling, mutation discovery, association mapping
and population genetical parameter estimation from sequencing data. Bioinformatics
27(21):2987–2993 DOI 10.1093/bioinformatics/btr509.

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 27/29

http://dx.doi.org/10.1109/mcse.2008.79
http://dx.doi.org/10.1007/s10619-012-7104-4
http://dx.doi.org/10.1002/0471250953.bia01es00
http://dx.doi.org/10.1093/nar/gkq429
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1023/A:1022631118932
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1186/s12859-017-1747-0
http://dx.doi.org/10.1093/nar/gkf436
http://dx.doi.org/10.1186/1471-2148-6-29
http://dx.doi.org/10.1002/cpe.1228
http://dx.doi.org/10.1590/s1415-47572014000200010
http://dx.doi.org/10.1093/bib/bbw020
http://dx.doi.org/10.1093/bioinformatics/btr509
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

Liew CS, Atkinson MP, Ostrowski R, Cole M, Van Hemert JI, Han L. 2011. Performance
database: capturing data for optimizing distributed streaming workflows. Philosophical
Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences
369(1949):3268–3284 DOI 10.1098/rsta.2011.0134.

Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD, Patterson DA. 2013.
Adam: Genomics formats and processing patterns for cloud scale computing. Technical Report,
No. UCB/EECS-2013. Berkeley: University of California, 207.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,
Altshuler D, Gabriel S, Daly M, DePristo M. 2010. The genome analysis toolkit: a mapreduce
framework for analyzing next-generation DNA sequencing data. Genome Research
20(9):1297–1303 DOI 10.1101/gr.107524.110.

Mondelli ML. 2018a.mmondelli/bioworkbench: release-1.0.4. Zenodo.DOI 10.5281/zenodo.1306254.

Mondelli ML. 2018b. mmondelli/rasflow: release-1.0.1.

Mondelli ML. 2018c. mmondelli/swift-gecko: release-1.0.1. Zenodo. DOI 10.5281/zenodo.1303316.

Mondelli ML. 2018d. mmondelli/swift-phylo: release-1.0.1. Zenodo. DOI 10.5281/zenodo.1303319.

Mondelli MLB. 2018e. Sample of input data for rasflow. Zenodo. DOI 10.5281/zenodo.1304274.

Mondelli ML, De Souza MT, Ocaña K, De Vasconcelos ATR, Gadelha LMR Jr. 2016.
HPSW-Prof: a provenance-based framework for profiling high performance scientific
workflows. In: Proceedings of Satellite Events of the 31st Brazilian Symposium on Databases.
Porto Alegre, Brazil: SBC, 117–122.

Nadeem F, Nerieri F, Podlipnig S, Qin J, Siddiqui M, Truong H-L, Villazon A. 2007. Askalon: a
development and grid workflows.Workflows for e-Science. Cham, Switzerland: Springer, 450–471.

Ocaña KA, Oliveira DD, Ogasawara E, Davila AM, Lima AA, Mattoso M. 2011. Sciphy:
a cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes.
In: Advances in Bioinformatics and Computational Biology—Proceedings of the 6th Brazilian
Symposium on Bioinformatics. Berlin, Heidelberg: Springer, 66–70.

Oliveira W, Ambrósio LM, Braga R, Ströele V, David JM, Campos F. 2017. A framework for
provenance analysis and visualization. Procedia Computer Science 108:1592–1601
DOI 10.1016/j.procs.2017.05.216.

Quinlan JR. 1993. C4. 5: programming for machine learning. Morgan Kauffmann 38:48.

Sharma TC, Jain M. 2013. Weka approach for comparative study of classification algorithm.
International Journal of Advanced Research in Computer and Communication Engineering
2(4):1925–1931.

Shi H. 2007. Best-first decision tree learning. PhD thesis, The University of Waikato.

Silva V, Neves L, Souza R, Coutinho A, De Oliveira D, Mattoso M. 2016. Integrating
domain-data steering with code-profiling tools to debug data-intensive workflows.
In: Proceedings of the 11th Workshop on Workflows in Support of Large-Scale Science.
CEUR-WS.org, 59–63. Available at http://ceur-ws.org/Vol-1800/short2.pdf.

Silva V, Oliveira D, Mattoso M. 2014. Scicumulus 2.0: Um sistema de gerência de workflows
cientficos para nuvens orientado a fluxo de dados. In: Sessão de Demos do XXIX Simpósio
Brasileiro de Banco de Dados. Porto Alegre, Brazil: SBC.

Stamatakis A. 2006. Raxml-vi-hpc: maximum likelihood-based phylogenetic analyses with
thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690
DOI 10.1093/bioinformatics/btl446.

Torreno O, Trelles O. 2015. Breaking the computational barriers of pairwise genome comparison.
BMC Bioinformatics 16(1):250 DOI 10.1186/s12859-015-0679-9.

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 28/29

http://dx.doi.org/10.1098/rsta.2011.0134
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.5281/zenodo.1306254
http://dx.doi.org/10.5281/zenodo.1303316
http://dx.doi.org/10.5281/zenodo.1303319
http://dx.doi.org/10.5281/zenodo.1304274
http://dx.doi.org/10.1016/j.procs.2017.05.216
http://ceur-ws.org/Vol-1800/short2.pdf
http://dx.doi.org/10.1093/bioinformatics/btl446
http://dx.doi.org/10.1186/s12859-015-0679-9
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

Wilde M, Foster I, Iskra K, Beckman P, Zhang Z, Espinosa A, Hategan M, Clifford B, Raicu I.
2009. Parallel scripting for applications at the petascale and beyond. Computer 42(11):50–60
DOI 10.1109/mc.2009.365.

Wilde M, Hategan M, Wozniak JM, Clifford B, Katz DS, Foster I. 2011. Swift: a language
for distributed parallel scripting. Parallel Computing 37(9):633–652
DOI 10.1016/j.parco.2011.05.005.

Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, Soiland-Reyes S,
Dunlop I, Nenadic A, Fisher P, Bhagat J, Belhajjame K, Bacall F, Hardisty A, Nieva De La
Hidalga A, Balcazar Vargas MP, Sufi S, Goble C. 2013. The taverna workflow suite: designing
and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids
Research 41(W1):W557–W561 DOI 10.1093/nar/gkt328.

Zaharia M, Franklin MJ, Ghodsi A, Gonzalez J, Shenker S, Stoica I, Xin RS, Wendell P, Das T,
Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S. 2016. Apache spark: a unified
engine for big data processing. Communications of the ACM 59(11):56–65
DOI 10.1145/2934664.

Mondelli et al. (2018), PeerJ, DOI 10.7717/peerj.5551 29/29

http://dx.doi.org/10.1109/mc.2009.365
http://dx.doi.org/10.1016/j.parco.2011.05.005
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1145/2934664
http://dx.doi.org/10.7717/peerj.5551
https://peerj.com/

	BioWorkbench: a high-performance framework for managing and analyzing bioinformatics experiments
	Introduction
	Related Work
	Materials and Methods
	Results and Discussion
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

