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ABSTRACT
Random forest and similar Machine Learning techniques are already used to generate
spatial predictions, but spatial location of points (geography) is often ignored in the
modeling process. Spatial auto-correlation, especially if still existent in the cross-
validation residuals, indicates that the predictions are maybe biased, and this is
suboptimal. This paper presents a random forest for spatial predictions framework
(RFsp)where buffer distances fromobservation points are used as explanatory variables,
thus incorporating geographical proximity effects into the prediction process. The
RFsp framework is illustrated with examples that use textbook datasets and apply
spatial and spatio-temporal prediction to numeric, binary, categorical, multivariate
and spatiotemporal variables. Performance of the RFsp framework is compared with
the state-of-the-art kriging techniques using fivefold cross-validationwith refitting. The
results show that RFsp can obtain equally accurate and unbiased predictions as different
versions of kriging. Advantages of using RFsp over kriging are that it needs no rigid
statistical assumptions about the distribution and stationarity of the target variable, it
is more flexible towards incorporating, combining and extending covariates of different
types, and it possibly yields more informative maps characterizing the prediction error.
RFsp appears to be especially attractive for building multivariate spatial prediction
models that can be used as ‘‘knowledge engines’’ in various geoscience fields. Some
disadvantages of RFsp are the exponentially growing computational intensity with
increase of calibration data and covariates and the high sensitivity of predictions to input
data quality. The key to the success of the RFsp framework might be the training data
quality—especially quality of spatial sampling (to minimize extrapolation problems
and any type of bias in data), and quality of model validation (to ensure that accuracy
is not effected by overfitting). Formany data sets, especially those with lower number of
points and covariates and close-to-linear relationships, model-based geostatistics can
still lead to more accurate predictions than RFsp.
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INTRODUCTION
Kriging and its many variants have been used as the Best Unbiased Linear Prediction
technique for spatial points since the 1960s (Isaaks & Srivastava, 1989; Cressie, 1990;
Goovaerts, 1997). The number of published applications on kriging has steadily increased
since 1980 and the technique is now used in a variety of fields, ranging from physical
geography (Oliver & Webster, 1990), geology and soil science (Goovaerts, 1999; Minasny
& McBratney, 2007), hydrology (Skøien, Merz & Blöschl, 2005), epidemiology (Moore &
Carpenter, 1999; Graham, Atkinson & Danson, 2004), natural hazard monitoring (Dubois,
2005) and climatology (Hudson & Wackernagel, 1994; Hartkamp et al., 1999; Bárdossy &
Pegram, 2013). One of the reasons why kriging has been used so widely is its accessibility
to researchers, especially thanks to the makers of gslib (Deutsch & Journel, 1998), ESRI’s
Geostatistical Analyst (http://www.esri.com), ISATIS (http://www.geovariances.com) and
developers of the gstat (Pebesma, 2004; Bivand et al., 2008), geoR (Diggle & Ribeiro Jr,
2007) and geostatsp (Brown, 2015) packages for R.

Since the start of the 21st century, however, there has been an increasing interest in using
more computationally intensive and primarily data-driven algorithms. These techniques
are also known under the name ‘‘machine learning’’, and are applicable for various data
mining, pattern recognition, regression and classification problems. One of the machine
learning algorithms (MLA) that has recently proven to be efficient for producing spatial
predictions is the random forest algorithm, first described in Breiman (2001), and available
in R through several packages such as randomForest (Liaw &Wiener, 2002) or the
computationally faster alternative ranger (Wright & Ziegler, 2017). Several studies (Prasad,
Iverson & Liaw, 2006; Hengl et al., 2015; Vaysse & Lagacherie, 2015; Nussbaum et al., 2018)
have already shown that random forest is a promising technique for spatial prediction.
Random forest, however, ignores the spatial locations of the observations and hence any
spatial autocorrelation in the data not accounted for by the covariates. Modeling the
relationship with covariates and spatial autocorrelation jointly using machine learning
techniques is relatively novel and not entirely worked out. Using northing and easting as
covariates in a random forest model may not help the prediction process as it leads to
linear boundaries in the resulting map (obvious artifacts) which are directly related to the
configuration of the sampling plan (Behrens et al., in press). A more sensible and robust
use of geographical space is needed.

In this paper we describe a generic framework for spatial and spatiotemporal prediction
that is based on random forest and which we refer to as ‘‘RFsp’’. With this framework we
aim at including information derived from the observation locations and their spatial
distribution into predictive modeling. We test whether RFsp, and potentially other
tree-based machine learning algorithms, can be used as a replacement for geostatistical
interpolation techniques such as ordinary and regression-kriging, i.e., kriging with external
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drift. We explain in detail (using standard data sets) how to extend machine learning to
general spatial prediction, and compare the prediction efficiency of random forest with
that of state-of-the-art kriging methods using fivefold cross-validation with refitting the
model in each subset (in the case of spatiotemporal kriging without refitting).

A complete benchmarking of the prediction efficiency is documented in R code and can
be obtained via the GitHub repository at https://github.com/thengl/GeoMLA. All datasets
used in this paper are either part of an existing R package or can be obtained from the
GitHub repository.

METHODS AND MATERIALS
Spatial prediction
Spatial prediction is concerned with the prediction of the occurence, quantity and/or state
of geographical phenomena, usually based on training data, e.g., ground measurements or
samples y(si),i= 1...n, where si ∈D is a spatial coordinate (e.g., easting and northing),
n is the number of observed locations and D is the geographical domain. Spatial
prediction typically results in gridded maps or, in case of space–time prediction, animated
visualizations of spatiotemporal predictions.

Model-based spatial prediction algorithms commonly aim to minimize the
prediction error variance σ 2(s0) at a prediction location s0 under the constraint of
unbiasedness (Christensen, 2001). Unbiasedness and prediction error variance are defined
in terms of a statistical modelY={Y (s), s∈D} of themeasurements y(si). Inmathematical
terms, the prediction error variance:

σ 2(s0)= E
{(
Ŷ (s0)−Y (s0)

)2} (1)

is to be minimized while satisfying the (unbiasedness) constraint:

E
{
Ŷ (s0)−Y (s0)

}
= 0 (2)

where the predictor Ŷ (s0) of Y (s0) is typically taken as a function of covariates and the
Y (si) which, upon substitution of the observations y(si), yields a (deterministic) prediction
ŷ(s0).

The spatial prediction process is repeated at all nodes of a grid coveringD (or a space–time
domain in case of spatiotemporal prediction) and produces three main outputs:
1. Estimates of the model parameters (e.g., regression coefficients and variogram

parameters), i.e., themodel;
2. Predictions at new locations, i.e., a prediction map;
3. Estimate of uncertainty associated with the predictions, i.e., a prediction error variance

map.
In the case of multiple linear regression (MLR), model assumptions state that at any

location in D the dependent variable is the sum of a linear combination of the covariates
at that location and a zero-mean normally distributed residual. Thus, at the n observation
locations we have:

Y=XT
·β+ε (3)
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where Y is a vector of the target variable at the n observation locations, X is an n× p
matrix of covariates at the same locations and β is a vector of p regression coefficients.
The stochastic residual ε is assumed to be independently and identically distributed. The
paired observations of the target variable and covariates (y and X) are used to estimate the
regression coefficients using, e.g., Ordinary Least Squares (Kutner et al., 2004):

β̂=
(
XT
·X
)−1
·XT
·y (4)

once the coefficients are estimated, these can be used to generate a prediction at s0:

ŷ(s0)= xT0 · β̂ (5)

with associated prediction error variance:

σ 2(s0)= var [ε(s0)] ·
[
1+xT0 ·

(
XT
·X
)−1
·x0
]

(6)

here, x0 is a vector with covariates at the prediction location and var [ε(s0)] is the variance
of the stochastic residual. The latter is usually estimated by the mean squared error (MSE):

MSE=
∑n

i=1(yi− ŷi)
2

n−p
. (7)

The prediction error variance given by Eq. (6) is smallest at prediction points where
the covariate values are in the center of the covariate (‘feature’) space and increases as
predictions are made further away from the center. They are particularly large in case of
extrapolation in feature space (Kutner et al., 2004). Note that the model defined in Eq. (3)
is a non-spatial model because the observation locations and spatial-autocorrelation of the
dependent variable are not taken into account.

Kriging
Kriging is a technique developed specifically to employ knowledge about spatial
autocorrelation in modeling and prediction (Matheron, 1969; Christensen, 2001; Oliver
& Webster, 2014). Most geostatistical models assume that the target variable Y at some
geographic location s can be modeled as the sum of a deterministic mean (µ) and a
stochastic residual (ε) (Goovaerts, 1997; Cressie, 2015):

Y (s)=µ(s)+ε(s). (8)

Assuming a constant trend (µ(s)=µ for all s∈D), the best linear unbiased prediction
(BLUP) of y(s0) is given by the ordinary kriging (OK) prediction (Goovaerts, 1997):

ŷOK(s0)=w(s0)T ·y (9)

where w(s0)T is a vector of kriging weights wi(s0),i= 1,...,n that are obtained by
minimizing the expected squared prediction error under an unbiasedness condition
(i.e., the weights are forced to sum to one).

The associated prediction error variance, i.e., the OK variance, is given by (Webster &
Oliver, 2001 p.183):

σ 2
OK(s0)= var

[
Y (s0)− Ŷ (s0)

]
=C(s0,s0)−w(si)T ·C0−ϕ, (10)
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where C0 is an n-vector of covariances between Y (s0) and the Y (si) and where ϕ is a
Lagrange multiplier.

If the distribution of the target variable is notGaussian, a transformedGaussian approach
(Diggle & Ribeiro Jr, 2007, §3.8) and/or generalized linear geostatistical model approach
(Brown, 2015) is advised. For example, the Box–Cox family of transformations is often
recommended for skewed data (Diggle & Ribeiro Jr, 2007):

YT =

{
(Y η−1)/η0 if η 6= 0

log (Y ) if η= 0,
(11)

where η is the Box–Cox transformation parameter and YT is the transformed target
variable. The prediction and prediction error variance for log-normal simple kriging (µ
known and η= 0) are obtained using (Diggle & Ribeiro Jr, 2007, p.61):

ŷ(s0)= exp
[
ŷT (s0)+0.5 ·σ 2

T (s0)
]

(12)

σ 2(s0)= exp
[
2 · ŷT (s0)+σ 2

T (s0)
]
·
(
exp

[
σ 2
T (s0)

]
−1
)

(13)

where ŷT (s0) and σ 2
T (s0) are the kriging prediction and the kriging variance on the

transformed scale. In other cases back-transformation can be much more difficult and
may require complex approximations. Alternatively, back-transformations can be achieved
using a spatial stochastic simulation approach (Diggle & Ribeiro Jr, 2007, Section 3.10). In
this approach a very large number of realizations of the transformed variable are obtained
using conditional simulation, each realization is back-transformed using the inverse of the
transformation function, and summary statistics (e.g., mean, variance, quantiles) of the
back-transformed realizations are computed.

The advantages of kriging are (Webster & Oliver, 2001; Christensen, 2001; Oliver &
Webster, 2014):

• it takes a comprehensive statistical model as a starting point and derives the optimal
prediction for this assumed model in a theoretically sound way;
• it exploits spatial autocorrelation in the variable of interest;
• it provides a spatially explicit measure of prediction uncertainty.

A natural extension of MLR and OK is to combine the two approaches and allow that
the MLR residual of Eq. (3) is spatially correlated. This boils down to ‘‘Regression Kriging’’
(RK), ‘‘Universal Kriging’’ (UK) and/or ‘‘Kriging with External Drift’’ (KED) (Goldberger,
1962; Goovaerts, 1997; Christensen, 2001; Hengl, Heuvelink & Rossiter, 2007). UK and KED
implementations are available in most geostatistical software packages (e.g., geoR and
gstat) and estimate the trend coefficients and interpolate the residual in an integrated
way (Goovaerts, 1997;Wackernagel, 2013), while in RK the regression and kriging are done
separately. The main steps of RK are:
1. Select and prepare candidate covariates, i.e., maps of environmental and other variables

that are expected to be correlated with the target variable.
2. Fit a multiple linear regression model using common procedures, while avoiding

collinearity and ensuring that the MLR residuals are sufficiently normal. If required

Hengl et al. (2018), PeerJ, DOI 10.7717/peerj.5518 5/49

https://peerj.com
http://dx.doi.org/10.7717/peerj.5518


use different type of GLM (Generalized Linear Model) to account for distribution of
the target variable. If covariates are strongly correlated it may be advisable to convert
these first to principal components.

3. Derive regression residuals at observation locations and fit a (residual) variogram.
4. Apply the MLR model at all prediction locations.
5. Krige the MLR residuals to all prediction locations.
6. Add up the results of steps 4 and 5.
7. Apply a back-transformation if needed.
The RK algorithm has been very successful over the past decades and is still the

mainstream geostatistical technique for generating spatial predictions (Li & Heap, 2011).
However, there are several limitations of ordinary and/or regression-kriging:
1. Kriging assumes that the residuals are normally distributed. This can often be

resolved with a transformation and back-transformation, but not always. Model-based
geostatistics has, at the moment, only limited solutions for zero-inflated, Poisson,
binomial and other distributions that cannot easily be transformed to normality.

2. Kriging assumes that the residuals are stationary, meaning that these must have a
constant mean (e.g., zero), constant variance. Often, isotropy is also assumed, meaning
that the spatial autocorrelation only depends on distance, but this can be relaxed by a
coordinate transformation.

3. Kriging also assumes that the variogram is known without error, i.e., it ignores
variogram estimation errors (Christensen, 2001, pages 286–287). This can be avoided by
taking a Bayesian geostatistical approach, but this complicates the analysis considerably
(Diggle & Ribeiro Jr, 2007).

4. Most versions of kriging assume that the relation between dependent and covariates is
linear, although some flexibility is offered by including transformed covariates.

5. In case of numerous possibly correlated covariates, it is very tedious to find a plausible
trend model (see, e.g.,Nussbaum et al. (2018)). Interactions among covariates are often
difficult to accommodate, and usually lead to an explosion of the number of model
parameters.

6. Kriging can, in the end, be computationally demanding, especially if the number of
observations and/or the number of prediction locations is large.

Random forest
Random forest (RF) (Breiman, 2001; Prasad, Iverson & Liaw, 2006; Biau & Scornet, 2016)
is an extension of bagged trees. It has been primarily used for classification problems
and several benchmarking studies have proven that it is one of the best machine learning
techniques currently available (Cutler et al., 2007; Boulesteix et al., 2012; Olson et al., 2017).

In essence, RF is a data-driven statistical method. The mathematical formulation of
the method is rather simple and instead of putting emphasis on formulating a statistical
model (Fig. 1), emphasis is put on iteratively training the algorithm, using techniques
such as bagging, until a ‘‘strong learner’’ is produced. Predictions in RF are generated as an
ensemble estimate from a number of decision trees based on bootstrap samples (bagging).
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Figure 1 Schematic difference between (A) Kriging with External Drift as implemented in the geoR
package, and (B) random forest for spatial prediction. Being a mainly data-driven algorithm, random
forest requires only limited input from the user, while model-based geostatistics requires that user speci-
fies initial variogram parameters, anisotropy modeling, possibly transformation of the target variable and
covariates and choice of a link function.

Full-size DOI: 10.7717/peerj.5518/fig-1
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The final predictions are the average of predictions of individual trees (Breiman, 2001;
Prasad, Iverson & Liaw, 2006; Biau & Scornet, 2016):

θ̂B(x)=
1
B
·

B∑
b=1

t ∗b (x), (14)

where b is the individual bootstrap sample, B is the total number of trees, and t ∗b is the
individual learner, i.e., the individual decision tree:

t ∗b (x)= t (x;z∗b1,...,z
∗

bK ), (15)

where z∗bk(k= 1...K ) is the k-th training sample with pairs of values for the target variable
(y) and covariates (x): z∗bi= (xk,yk).

RF, as implemented in the ranger package, has several parameters that can be fine-tuned.
The most important parameters are (Probst & Boulesteix, 2017):

• mtry—number of variables to possibly split at in each node.
• min.node.size—minimal terminal node size.
• sample.fraction—fraction of observations to sample in each tree.
• num.trees—number of trees.

The number of trees in RF does not really need to be fine-tuned, it is recommended to
set it to a computationally feasible large number (Lopes, 2015; Probst & Boulesteix, 2017).

Uncertainty of predictions in random forest
The uncertainty of the predictions of random forest for regression-type problems can be
estimated using several approaches:

• The Jackknife-after-Bootstrap method (see e.g.,Wager, Hastie & Efron (2014)).
• The U-statistics approach ofMentch & Hooker (2016).
• TheMonte Carlo simulations (both target variable and covariates) approach ofCoulston
et al. (2016).
• The Quantile Regression Forests (QRF) method (Meinshausen, 2006).

The approaches by Wager, Hastie & Efron (2014) and Mentch & Hooker (2016) estimate
standard errors of the expected values of predictions, used to construct confidence intervals,
while the approaches of Coulston et al. (2016) andMeinshausen (2006) estimate prediction
intervals. Our primary interest in this article is the approach of Meinshausen (2006) as it
can be used to produce maps of prediction error.

The Quantile Regression Forests (QRF) algorithm estimates the quantiles of the
distribution of the target variable at prediction points. Thus, the 0.025 and 0.975 quantile
may be used to derive the lower and upper limits of a symmetric 95% prediction interval.
It does so by first deriving the random forest prediction algorithm in the usual way. While
this is done with decision trees, as explained above, it ultimately boils down to a weighed
linear combination of the observations:

ŷ(s0)=
n∑

i=1

αi(s0) ·y(si) (16)
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in QRF, this equation is used to estimate the cumulative distribution Fs0 of Y (s0),
conditional to the covariates, simply by replacing the observations y(si) by an indicator
transform:

F̂s0(t )=
n∑

i=1

αi(s0) ·1y(si)≤t (17)

where 1y(si)≤t is the indicator function (i.e., it is 1 if the condition is true and 0 otherwise).
Any quantile q of the distribution can then be derived by iterating towards the threshold t
for which F̂s0(t )= q. Since the entire conditional distribution can be derived in this way,
it is also easy to compute the prediction error variance. For details of the algorithm, and a
proof of the consistency, seeMeinshausen (2006).

Note that in the case of RF and QRF the prediction and associated prediction interval
are derived purely using feature space and bootstrap samples. Geographical space is not
included in the model as in ordinary and regression-kriging.

Random forest for spatial data (RFsp)
RF is in essence a non-spatial approach to spatial prediction in a sense that sampling
locations and general sampling pattern are ignored during the estimation of MLA model
parameters. This can potentially lead to sub-optimal predictions and possibly systematic
over- or under-prediction, especially where the spatial autocorrelation in the target variable
is high and where point patterns show clear sampling bias. To overcome this problem we
propose the following generic ‘‘RFsp’’ system:

Y (s)= f (XG,XR,XP) (18)

where XG are covariates accounting for geographical proximity and spatial relations
between observations (to mimic spatial correlation used in kriging):

XG=
(
dp1,dp2,...,dpN

)
(19)

where dpi is the buffer distance (or any other complex proximity upslope/downslope
distance, as explained in the next section) to the observed location pi from s and N is the
total number of training points. XR are surface reflectance covariates, i.e., usually spectral
bands of remote sensing images, and XP are process-based covariates. For example, the
Landsat infrared band is a surface reflectance covariate, while the topographic wetness
index and soil weathering index are process-based covariates. Geographic covariates are
often smooth and reflect geometric composition of points, reflectance-based covariates
can carry significant amount of noise and tell usually only about the surface of objects, and
process-based covariates require specialized knowledge and rethinking of how to represent
processes. Assuming that the RFsp is fitted only using the XG, the predictions would
resemble OK. If all covariates are used Eq. (18), RFsp would resemble regression-kriging.

Geographical covariates
One of the key principles of geography is that ‘‘everything is related to everything else, but
near things are more related than distant things’’ (Miller, 2004). This principle forms the
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Figure 2 Examples of distance maps to some location in space (yellow dot) based on different deriva-
tion algorithms: (A) simple Euclidean distances, (B) complex speed-based distances based on the gdis-
tance package and Digital ElevationModel (DEM) (Van Etten, 2017), and (C) upslope area derived
based on the DEM in SAGAGIS (Conrad et al., 2015). Case study: Ebergötzen (Böhner, McCloy & Strobl,
2006).

Full-size DOI: 10.7717/peerj.5518/fig-2

basis of geostatistics, which converts this rule into a mathematical model, i.e., through
spatial autocorrelation functions or variograms. The key to making RF applicable to spatial
statistics problems hence lies also in preparing geographical measures of proximity and
connectivity between observations, so that spatial autocorrelation is accounted for. There
are multiple options for quantifying proximity and geographical connection (Fig. 2):
1. Geographical coordinates s1 and s2, i.e., easting and northing.
2. Euclidean distances to reference points in the study area. For example, distance to the

center and edges of the study area and similar (Behrens et al., in press).
3. Euclidean distances to sampling locations, i.e., distances from observation locations.

Here one buffer distance map can be generated per observation point or group of
points. These are also distance measures used in geostatistics.

4. Downslope distances, i.e., distances within a watershed: for each sampling point one
can derive upslope/downslope distances to the ridges and hydrological network and/or
downslope or upslope areas (Gruber & Peckham, 2009). This requires, on top of using
a Digital Elevation Model, a hydrological analysis of the terrain.

5. Resistance distances or weighted buffer distances, i.e., distances of the cumulative effort
derived using terrain ruggedness and/or natural obstacles.
The package gdistance, for example, provides a framework to derive complex distances

based on terrain complexity (Van Etten, 2017). Here additional input to compute complex
distances are the Digital Elevation Model (DEM) and DEM-derivatives, such as slope
(Fig. 2B). SAGA GIS (Conrad et al., 2015) offers a wide diversity of DEM derivatives that
can be derived per location of interest.

In this paper we only use Eucledean buffer distances (to all sampling points) to improve
RFsp predictions, but our code could be adopted to include other families of geographical
covariates (as shown in Fig. 2). Note also that RF tolerates high number of covariates and
multicolinearity (Biau & Scornet, 2016), hence multiple types of geographical covariates
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Figure 3 Schematic examples of standard mapping performance criteria used for evaluation of spatial
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iogram of the target variable and the cross-validation residuals. MSE, Mean Squared residual Error. In
principle, all plots and statistics reported in this paper are based on the results of n–fold cross-validation.

Full-size DOI: 10.7717/peerj.5518/fig-3

(Euclidean buffer distances, upslope and downslope areas) can be used at the same time.
Compare with the approach of Behrens et al. (in press) which only uses a combination of
coordinates and the corner + center distances.

Model performance criteria
When comparing performance of RFsp vs. OK and RK, we use the following performance
criteria (Fig. 3):
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1. Average RMSE based on cross-validation (CV), model R-square based on CV residuals
and Concordance Correlation Coefficient—this quantifies the average accuracy of
predictions i.e., amount of variation explained.

2. Average ME based on CV—this quantifies average bias in predictions.
3. Spatial autocorrelation in CV residuals—this quantifies local spatial bias in predictions.
4. Standard deviation of z-scores—this quantifies the reliability of estimated prediction

error variances.
The RMSE and ME are derived as:

RMSE=

√√√√ 1
m

m∑
j=1

(ŷ(sj)−y(sj))2 (20)

ME=
1
m

m∑
j=1

(ŷ(sj)−y(sj)) (21)

where ŷ(sj) is the predicted value of y at cross-validation location sj , and m is the total
number of cross-validation points. The amount of variation explained by the model is
derived as:

R2
=

[
1−

SSE
SST

]
% (22)

where SSE is the sum of squared errors at cross-validation points and SST is the total sum
of squares. A coefficient of determination close to 1 indicates a perfect model, i.e., 100% of
variation has been explained by the model.

In addition to R-square, we also derive Lin’s Concordance Correlation Coefficient
(CCC) (Steichen & Cox, 2002):

ρc =
2 ·ρ ·σŷ ·σy

σ 2
ŷ +σ

2
y + (µŷ−µy)2

(23)

where ŷ are the predicted values and y are actual values at cross-validation points, µŷ and
µy are predicted and observed means and ρ is the correlation coefficient between predicted
and observed values. CCC correctly quantifies how far the observed data deviate from the
line of perfect concordance (1:1 line in Fig. 3A). It is usually equal to or somewhat lower
than R–square, depending on the amount of bias in predictions.

The error of estimating the variance of prediction errors can likewise be quantified via
the z-score (Bivand et al., 2008):

zscore(sj)=
ŷ(sj)−y(sj)
σ (sj)

(24)

the z-score are expected to have a mean equal to 0 and variance equal to 1. If the z-
score variance is substantially smaller than 1 then the model overestimates the actual
prediction uncertainty. If the z-score variance is substantially greater than 1 then the
model underestimates the prediction uncertainty.
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Note that, in the case of QRF, the method does not produce σ (sj) but quantiles of the
conditional distribution. As indicated before, the variance could be computed from the
quantiles. However, since this would require computation of all quantiles at a sufficiently
high discretization level, prediction error standard deviation σ (sj) can also be estimated
from the lower and upper limits of a 68.27% prediction interval:

σQRF (sj)≈
ŷq=0.841(sj)− ŷq=0.159(sj)

2
. (25)

This formula assumes that the prediction errors are symmetrical at each new prediction
location, which might not always be the case.

RESULTS
Meuse data set (regression, 2D, no covariates)
In the first example, we compare the performance of a state-of-the-art model-based
geostatistical model, based on the implementation in the geoR package (Diggle & Ribeiro
Jr, 2007), with the RFsp model as implemented in the ranger package (Wright & Ziegler,
2017). For this we consider the Meuse data set available in the sp package:

> library(sp)
> demo(meuse, echo=FALSE)

We focus on mapping zinc (Zn) concentrations using ordinary kriging (OK) and RFsp.
The assumption is that concentration of metals in soil is controlled by river flooding and
carrying upstream sediments. To produce model and predictions using OK we use the
package geoR. First, we fit the variogram model using the likfit function:

> library(geoR)

--------------------------------------------------------------
Analysis of Geostatistical Data
For an Introduction to geoR go to http://www.leg.ufpr.br/geoR
geoR version 1.7-5.2 (built on 2016-05-02) is now loaded

--------------------------------------------------------------

> zinc.geo <- as.geodata(meuse["zinc"])
> ini.v <- c(var(log1p(zinc.geo$data)),500)
> zinc.vgm <- likfit(zinc.geo, lambda=0, ini=ini.v, cov.model=
"exponential")

kappa not used for the exponential correlation function
---------------------------------------------------------------
likfit: likelihood maximisation using the function optim.
likfit: Use control() to pass additional

arguments for the maximisation function.
For further details see documentation for optim.

likfit: It is highly advisable to run this function several
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times with different initial values for the parameters.
likfit: WARNING: This step can be time demanding!
---------------------------------------------------------------
likfit: end of numerical maximisation.

where lambda=0 indicates transformation by natural logarithm (positively skewed
response). Once we have estimated the variogram model, we can generate predictions,
i.e., the prediction map using Eq. (12):

> locs <- meuse.grid@coords
> zinc.ok <- krige.conv(zinc.geo, locations=locs, krige=krige.control
(obj.m=zinc.vgm))

krige.conv: model with constant mean
krige.conv: performing the Box--Cox data transformation
krige.conv: back-transforming the predicted mean and variance
krige.conv: Kriging performed using global neighbourhood

note here that geoR back-transforms the values automatically Eq. (12) preventing the user
from having to find the correct unbiased back-transformation (Diggle & Ribeiro Jr, 2007),
which is a recommended approach for less experienced users.

We compare the results of OK with geoR vs. RFsp. Since no other covariates are
available, we use only geographical (buffer) distances to observation points. We first derive
buffer distances for each individual point, using the buffer function in the raster package
(Hijmans & Van Etten, 2017):

> grid.dist0 <- GSIF::buffer.dist(meuse["zinc"], meuse.grid[1],
as.factor
(1:nrow(meuse)))

which derives a gridded map for each observation point. The spatial prediction model is
defined as:

> dn0 <- paste(names(grid.dist0), collapse="+")
> fm0 <- as.formula(paste("zinc ~ ", dn0))

i.e., in the formula zinc ∼ layer.1 + layer.2 + ... + layer.155 which means
that the target variable is a function of 155 covariates. Next, we overlay points and covariates
to create a regression matrix, so that we can tune and fit a ranger model, and generate
predictions:

> library(geoR)
> ov.zinc <- over(meuse["zinc"], grid.dist0)
> rm.zinc <- cbind(meuse@data["zinc"], ov.zinc)
> m.zinc <- ranger(fm0, rm.zinc, quantreg=TRUE, num.trees=150)
> m.zinc
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Ranger result
Type: Regression
Number of trees: 150
Sample size: 155
Number of independent variables: 155
Mtry: 98
Target node size: 4
Variable importance mode: none
OOB prediction error (MSE): 64129.11
R squared (OOB): 0.5240641

> zinc.rfd <- predict(m.zinc, grid.dist0@data)
quantreg=TRUE allows to derive the lower and upper quantiles i.e. standard error of the
predictions Eq. (25). The out-of-bag validation R squared (OOB), indicates that the
buffer distances explain about 52% of the variation in the response.

Given the different approaches, the overall pattern of the spatial predictions (maps) by
OK and RFsp are surprisingly similar (Fig. 4). RFsp seems to smooth the spatial pattern
more than OK, which is possibly a result of the averaging of trees in random forest. Still,
overall correlation between OK and RFsp maps is high (r = 0.97). Compared to OK, RFsp
generates a more contrasting map of standard errors with clear hotspots. Note in Fig. 4, for
example, how the single isolated outlier in the lower right corner is depicted by the RFsp
prediction error map. Also, note that using only coordinates as predictors results in blocky
artifacts (Fig. 4C) and we do not recommended using them for mapping purposes.

The CV results show that OK is more accurate than RFsp: R-square based on fivefold
cross-validation is about 0.60 (CCC= 0.76) for OK and about 0.41 (CCC= 0.55) for RFsp.
Further analysis shows that in both cases there is no remaining spatial autocorrelation in the
residuals (Fig. 5B). Hence, bothmethods have fully accounted for the spatial structure in the
data. Both RFsp and OK seem to under-estimate the actual prediction error (σ (z)= 1.48
vs. σ (z)= 1.28); in this case OK yields slightly more accurate estimates of prediction error
standard deviations.

Extension of RFsp with additional covariates means just adding further rasters to
the buffer distances. For example, for the Meuse data set we may add global surface
water occurrence (Pekel et al., 2016) and the LiDAR-based digital elevation model (DEM,
http://ahn.nl) as potential covariates explaining zinc concentration (it is assumed that the
main source of zinc in this case is the river that occasionally floods the area):

> meuse.grid$SWO <- readGDAL("Meuse_GlobalSurfaceWater_occurrence.
tif")$
band1[meuse.grid@grid.index]
> meuse.grid$AHN <- readGDAL("ahn.asc")$band1[meuse.grid@grid.index]
> grids.spc <- GSIF::spc(meuse.grid, as.formula("~ SWO + AHN +
ffreq + dist"))

Converting ffreq to indicators...
Converting covariates to principal components...
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Figure 4 Comparison of predictions based on OK as implemented in the geoR package (A) and
random forest (B) for zinc concentrations of the Meuse dataset: predicted concentrations in log-scale
(A–C), standard deviation of the prediction errors for OK and RFmethods (D–F; for RF based on the
ranger package) and correlation plots based on the fivefold cross-validation for OK and RFsp (G–H).
RF with coordinates as covariates is only shown to demonstrate artifacts.

Full-size DOI: 10.7717/peerj.5518/fig-4
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Figure 5 Summary results of cross-validation for the Meuse (zinc) and SIC 1997 (rainfall) data sets
(A) and variogrammodels for CV residuals (B–C). Comparison of accuracy plots for the Meuse data set
(D–E). See also Fig. 3 for explanation of plots.

Full-size DOI: 10.7717/peerj.5518/fig-5
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next, we fit the model using both thematic covariates and buffer distances:

> fm1 <- as.formula(paste("zinc ~ ", dn0, " + ", paste(names
(grids.spc@predicted), collapse = "+")))
> ov.zinc1 <- over(meuse["zinc"], grids.spc@predicted)
> rm.zinc1 <- cbind(meuse@data["zinc"], ov.zinc, ov.zinc1)
> m1.zinc <- ranger(fm1, rm.zinc1, mtry=130)
m1.zinc

Ranger result

Type: Regression
Number of trees: 500
Sample size: 155
Number of independent variables: 161
Mtry: 130
Target node size: 2
Variable importance mode: impurity
OOB prediction error (MSE): 48124.16
R squared (OOB): 0.6428452

RFsp including additional covariates results in somewhat smaller MSE than RFsp
with buffer distances only. There is indeed a small difference in spatial patterns between
RFsp spatial predictions derived using buffer distances only (Fig. 4) and all covariates
(Fig. 6): some covariates, especially flooding frequency class and distance to the river, help
with predicting zinc concentrations. Nevertheless, it seems that buffer distances are most
important for mapping zinc i.e., more important than surface water occurrence, flood
frequency, distance to river and elevation for producing the final predictions. This is also
confirmed by the variable importance table below:

> xl <- as.list(ranger::importance(m1.zinc))
> print(t(data.frame(xl[order(unlist(xl), decreasing=TRUE)[1:10]])))

[,1]
PC1 2171942.4
layer.54 835541.1
PC3 545576.9
layer.53 468480.8
PC2 428862.0
layer.118 424518.0
PC4 385037.8
layer.55 368511.7
layer.155 340373.8
layer.56 330771.0

which shows that, for example, points 54 and 53 are the two most influential observations,
even more important than covariates (PC2–PC4) for predicting zinc concentration.
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Figure 6 Comparison of predictions produced using random forest and covariates only (A), and ran-
dom forest with covariates and buffer distances combined (B). Compare with Fig. 4.

Full-size DOI: 10.7717/peerj.5518/fig-6

Swiss rainfall dataset data set (regression, 2D, with covariates)
Another interesting dataset for comparison of RFsp with linear geostatistical modeling is
the Swiss rainfall dataset used in the Spatial Interpolation Comparison (SIC 1997) exercise,
described in detail in Dubois, Malczewski & De Cort (2003). This dataset contains 467
measurements of daily rainfall in Switzerland on the 8th of May 1986. Possible covariates
include elevation (DEM) and the long term mean monthly precipitation for May based on
the CHELSA climatic images (Karger et al., 2017) at 1 km.

Using geoR, we can fit an RK model:

> sic97.sp = readRDS("./RF_vs_kriging/data/rainfall/sic97.rds")
> swiss1km = readRDS("./RF_vs_kriging/data/rainfall/swiss1km.rds")
> ov2 = over(y=swiss1km, x=sic97.sp)
> sel.d = which(!is.na(ov2$DEM))
> sic97.geo <- as.geodata(sic97.sp[sel.d,"rainfall"])
> sic97.geo$covariate = ov2[sel.d,c("CHELSA_rainfall","DEM")]
> sic.t = ~ CHELSA_rainfall + DEM
> rain.vgm <- likfit(sic97.geo, trend = sic.t, ini=c(var(log1p(sic97.
geo$data)),8000),

fix.psiA = FALSE, fix.psiR = FALSE)

---------------------------------------------------------------
likfit: likelihood maximisation using the function optim.
likfit: Use control() to pass additional

arguments for the maximisation function.
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For further details see documentation for optim.
likfit: It is highly advisable to run this function several

times with different initial values for the parameters.
likfit: WARNING: This step can be time demanding!
---------------------------------------------------------------
likfit: end of numerical maximisation.

> rain.vgm

likfit: estimated model parameters:
beta0 beta1 beta2 tausq sigmasq
phi psiA psiR

" 166.7679" " 0.5368" " -0.0430" " 277.3047" "5338.1627"
"8000.0022" " 0.7796" " 5.6204"
Practical Range with cor=0.05 for asymptotic range: 23965.86

likfit: maximised log-likelihood = -2462

where likfit is the geoR function for fitting residual variograms and which produces a
total of eight model coefficients: three regression coefficients (beta), nugget (tausq), sill
(sigmasq), anisotropy ratio (psiA) and range (psiR). The rainfall data is highly anisotropic
so optimizing variogram modeling through likfit is important (by default, geoR
implements the Restricted Maximum Likelihood approach for estimation of variogram
parameters, which is often considered the most reliable estimate of variogram parameters
Lark, Cullis & Welham (2006)). The trend model:

sic.t = ~ CHELSA_rainfall + DEM
defines covariate variables. The final RK predictions can be generated by using the
krige.conv function:

> locs2 = swiss1km@coords
> KC = krige.control(trend.d = sic.t,

trend.l = ~ swiss1km$CHELSA_rainfall + swiss1km$DEM,
obj.model = rain.vgm)

> rain.uk <- krige.conv(sic97.geo, locations=locs2, krige=KC)

krige.conv: model with mean defined by covariates provided by the user
krige.conv: anisotropy correction performed
krige.conv: Kriging performed using global neighbourhood

The results of spatial prediction using RK and RFsp are shown in Fig. 7. The cross-
validation results show that in this case RFsp is nearly as accurate as RK with a cross-
validation R-square of 0.78 (CCC = 0.89) vs. 0.82 (CCC = 0.91). What is striking from
the Fig. 7D, however, is the high contrast of the RFsp prediction error standard deviation
map, which shows a positive correlation with the values (i.e., errors are higher in areas
where rainfall values are higher), but then also depicts specific areas where it seems
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Figure 7 Comparison of predictions (A–B) and standard errors (C–D) produced using RK and RFsp
for the Swiss rainfall data set (SIC 1997). Correlation plots for RK (E) and RFsp (F) based on fivefold
cross-validation. For more details about the dataset refer to Dubois, Malczewski & De Cort (2003).

Full-size DOI: 10.7717/peerj.5518/fig-7

that the RF continuously produces higher prediction errors. The RK prediction error
standard deviation map is much more homogeneous (Fig. 7C), mainly because of the
stationarity assumption. This indicates that the RF prediction error map is potentially
more informative than the UK error map. It could be used to depict local areas that are
significantly more heterogeneous and complex and that require, either, denser sampling
networks or covariates that better represent local processes in these areas.

The cross-validation results confirm that the prediction error standard deviations
estimated by ranger and RK are both relatively similar to the actual errors. Both RFsp and
RK somewhat under-estimate actual errors (σ (z)= 1.16; also visible from Figs. 7 and 5).
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In this case, fitting of the variogram and generation of predictions in geoR takes only a
few seconds, but generation of buffer distances is more computationally intensive and is
in this case the bottleneck of RFsp.

Ebergötzen data set (binomial and multinomial variables, 2D, with
covariates)
As Random Forest is a generic algorithm, it can also be used to map binomial (occurrence-
type) and multinomial (factor-type) responses. These are considered to be ‘‘classification-
type’’ problems in Machine Learning. Mostly the same algorithms can be applied as to
regression-type problems, hence theR syntax is almost the same. In traditionalmodel-based
geostatistics, factor type variables can potentially be mapped using indicator kriging (Solow,
1986; Hengl et al., 2007), but the process of fitting variograms per class and, especially for
classes with few observations only, is cumbersome and unreliable.

Consider, for example, the Ebergötzen data set which contains 3,670 ground observations
of soil type, and which is one of the standard datasets used in predictive soil mapping
(Böhner, McCloy & Strobl, 2006):

> library(plotKML)
> data(eberg)

We can test predicting the probability of occurrence of soil type ‘‘Parabraunerde’’
(according to the German soil classification; Chromic Luvisols according to the World
Reference Base classification) using a list of covariates and buffer distances:

> eberg$ParabrAunerde <- ifelse(eberg$TAXGRSC=="ParabrAunerde", "TRUE",
"FALSE")
> data(eberg_grid)
> coordinates(eberg) <- ~X+Y
> proj4string(eberg) <- CRS("+init=epsg:31467")
> gridded(eberg_grid) <- ~x+y
> proj4string(eberg_grid) <- CRS("+init=epsg:31467")
> eberg_spc <- spc(eberg_grid, ~ PRMGEO6+DEMSRT6+TWISRT6+TIRAST6)

Converting PRMGEO6 to indicators...
Converting covariates to principal components...

> eberg_grid@data <- cbind(eberg_grid@data, eberg_spc@predicted@data)

For ranger, Parabraunerde is a classification-type of problem with only two classes.
We next prepare the training data by overlaying points and covariates:

> ov.eberg <- over(eberg, eberg_grid)
> sel <- !is.na(ov.eberg$DEMSRT6)
> eberg.dist0 <- GSIF::buffer.dist(eberg[sel,"ParabrAunerde"],
eberg_grid[2], as.factor(1:sum(sel)))
> ov.eberg2 <- over(eberg[sel,"ParabrAunerde"], eberg.dist0)
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> eb.dn0 <- paste(names(eberg.dist0), collapse="+")
> eb.fm1 <- as.formula(paste("ParabrAunerde ~ ", eb.dn0, "+",
paste0("PC", 1:10, collapse = "+")))
> ov.eberg3 <- over(eberg[sel,"ParabrAunerde"], eberg_grid
[paste0("PC", 1:10)])
> rm.eberg2 <- do.call(cbind, list(eberg@data[sel,c("ParabrAunerde",
"TAXGRSC")], ov.eberg2, ov.eberg3))

so that predictions can be made from fitting the following model:

> eb.fm1

ParabrAunerde ~ layer.1 + layer.2 + layer.3 + layer.4 + layer.5 +
...
layer.912 + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 +

PC9 + PC10
where layer.* are buffer distances to each individual point, and PC* are principal
components based on gridded covariates. This will become a hyper-parametric model as
the total number of covariates exceeds the number of observations. The fitted RF model
shows:

> m1.ParabrAunerde <- ranger(eb.fm1, rm.eberg2[complete.cases
(rm.eberg2),],

importance = "impurity", probability = TRUE)
> m1.ParabrAunerde

Ranger result

Type: Probability estimation
Number of trees: 500
Sample size: 829
Number of independent variables: 922
Mtry: 30
Target node size: 10
Variable importance mode: impurity
OOB prediction error: 0.1536716

In this case the Out-of-Bag prediction error indicates a mean squared error of 0.15, which
corresponds to a classification accuracy of > 85%. Note that we specify that we aim at
deriving probabilities of the class of interest by setting probability = TRUE. The output
map (Fig. 8) shows again a hybrid pattern: buffer distances to points have an effect at
some locations, but this varies from area to area. Overall the most important covariates
are PCs 1, 7, 8 and 3. Also note that binomial variable can be modeled with ranger as
classification and/or regression-type (0/1 values) of problem—these are mathematically
equivalent and should results in the same predictions i.e., predicted probabilities should
matches regression predictions.
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Parabraunerde class (RF)
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Figure 8 Predicted distribution for the Parabraunerde occurence probabilities (the Ebergötzen data
set) produced using buffer distances combined with other covariates.Dots indicate observed occurrence
locations (TRUE) for the class, crosses indicate non-occurrence locations (FALSE). Predictions reveal a
hybrid spatial pattern that reflects both geographical proximity (samples) and relationship between soil
class and landscape (covariate or feature space).

Full-size DOI: 10.7717/peerj.5518/fig-8

In a similar way we can also map all other soil types (Fig. 9). The function
GSIF::autopredict wraps all steps described previously into a single function:
> soiltype <- GSIF::autopredict(eberg["TAXGRSC"], eberg_grid,
auto.plot=FALSE)

Generating buffer distances...
Converting PRMGEO6 to indicators...
Converting LNCCOR6 to indicators...
Converting covariates to principal components...
Fitting a random forest model using 'ranger'...
Generating predictions...

In this case buffer distances are derived to each class, which is less computationally intensive
than deriving distances to each individual observation locations because there are typically
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Figure 9 Predicted soil type occurrence probabilities (A–K) for the Ebergötzen data set (German soil
classification system) using buffer distance to each class and a stack of covariates representing parent
material, hydrology and land cover.

Full-size DOI: 10.7717/peerj.5518/fig-9

much fewer classes than observations. Although deriving buffer distances to each individual
observation location provides certainly more detail, in the case of factor-type variables, RF
might benefit well from only the distances to classes.

In summary, spatial prediction of binary and factor-type variables is straightforward
with ranger, and buffer distances can be incorporated in the same way as for continuous-
numerical variables. In geostatistics, handling categorical dependent variables is more
complex, where the GLGM with link functions and/or indicator kriging would need to be
used, among others requiring that variograms are fitted per class.

NRCS data set (weighted regression, 3D)
In many cases training data sets (points) come with variable measurement errors or
have been collected with a sampling bias. If information about the data quality of each
individual observation is known, then it also makes sense to use this information to
produce a more balanced spatial prediction model. The package ranger allows this via the
argument case.weights—observations with larger weights will be selected with higher
probability in the bootstrap, so that the output model will be (correctly) more influenced
by observations with higher weights.

Consider, for example, the soil point data set prepared as a combination of (a) the
National Cooperative Soil Survey (NCSS) Characterization Database, and (b) National
Soil Information System (NASIS) points (Ramcharan et al., 2018). The NCSS soil points
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contain laboratory measurements of soil clay content, while the NASIS points contain only
soil texture classes determined by hand (from which also clay content can be derived),
hence with much higher measurement error:

> carson <- read.csv("./RF_vs_kriging/data/NRCS/carson_CLYPPT.csv")
> carson1km <- readRDS("./RF_vs_kriging/data/NRCS/carson_covs1km.rds")
> coordinates(carson) <- ~ X + Y
> proj4string(carson) = carson1km@proj4string
> carson$DEPTH.f = ifelse(is.na(carson$DEPTH), 20, carson$DEPTH)

The number of NASIS points is much higher (ca. 5×) than that of the NCSS points, but
the NCSS observations are about 3× more accurate. We do not actually know what the
exact measurement errors for each observation so we take a pragmatic approach and set
the weights in the modeling procedure proportional to the quality of data:

> str(carson@data)

'data.frame': 3418 obs. of 8 variables:
$ X.1 : int 1 2 3 4 5 6 8 9 10 11 ...
$ SOURCEID: Factor w/ 3230 levels "00CA693X017jbf",..: 1392
1393 3101 3102 ...
$ pscs : Factor w/ 25 levels "ASHY","ASHY OVER CLAYEY",..: 19 7 16
16 16 16 16 7 20 20 ...
$ CLYPPT : int 20 64 27 27 27 27 27 64 20 20 ...
$ CLYPPT.sd: int 8 16 6 6 6 6 6 16 8 8 ...
$ SOURCEDB: Factor w/ 2 levels "NASIS","NCSS": 1 1 1 1 1 1 1 1 1 1 ...
$ DEPTH : int NA NA NA NA NA NA NA NA NA NA ...
$ DEPTH.f : num 20 20 20 20 20 20 20 20 20 20 ...

where CLYPPT is the estimated clay fraction (m%) of the fine earth, and CLYPPT.sd is the
reported measurement error standard deviation associated to each individual point (in this
case soil horizon). We can build a weighted RF spatial prediction model using:

> rm.carson <- cbind(as.data.frame(carson), over(carson["CLYPPT"],
carson1km))
> fm.clay <- as.formula(paste("CLYPPT ~ DEPTH.f + ", paste(names
(carson1km),
collapse = "+")))
> pars.carson <- list(num.trees=150, mtry=25, case.weights=1/
(rm.carson.s$CLYPPT.sd^2))
> m.clay <- ranger(fm.clay, rm.carson, unlist(pars.carson))

In this case we used 1/1σ 2
y , i.e., inverse measurement variance as case.weights so that

points that were measured in the lab will receive much higher weights.
Figure 10B shows that, in this specific case, the model without weights seems to predict

somewhat higher values, especially in the extrapolation areas. Also the prediction error
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Figure 10 RF predictions (A–B) and prediction error standard deviations (C–D) for clay content with
and without using measurement errors as weights. Study area around Lake Tahoe, California, USA.
Point data sources: National Cooperative Soil Survey (NCSS) Characterization Database and National Soil
Information System (NASIS) (Ramcharan et al., 2018).

Full-size DOI: 10.7717/peerj.5518/fig-10

standard deviations seems to be somewhat smaller (ca. 10%) for the unweighted regression
model. This indicates that using measurement errors in model calibration is important
and one should not avoid specifying this in the model, especially if the training data is
heterogeneous.

The National Geochemical Survey data set, multivariate case
(regression, 2D)
Because RF is a decision tree-based method, this opens a possibility to model multiple
variables within a single model, i.e., by using type of variable as a covariate. This means
that prediction values will show discrete jumps, depending on which variable type is used.
The general form of such model is:

Y (s)= f
{
Ytype,Ctype,XG,XR,XP

}
(26)
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where Ytype is the variable type, i.e., chemical element, Ctype specifies the sampling or
laboratory method used, and X are the covariates from Eq. (18).

Consider for example the National Geochemical Survey database that contains over
70,000 sampling points spread over the USA (Grossman et al., 2004). Here we use a subset
of this dataset with 2,858 points with measurements of Pb, Cu, K and Mg covering the
US states Illinois and Indiana. Some useful covariates to help explain the distribution of
elements in stream sediments and soils have been previously prepared (Hengl, 2009) and
include:

> geochem <- readRDS("./RF_vs_kriging/data/geochem/geochem.rds")
> usa5km <- readRDS("./RF_vs_kriging/data/geochem/usa5km.rds")
> str(usa5km@data)

'data.frame': 16000 obs. of 6 variables:
$ geomap : Factor w/ 17 levels "6","7","8","13",..: 9 9 9 9 9
9 9 9 9 9 ...
$ globedem: num 266 269 279 269 269 271 284 255 253 285 ...
$ dTRI : num 0.007 0.007 0.008 0.008 0.009 ...
$ nlights03: num 6 5 0 5 0 1 5 13 5 5 ...
$ dairp : num 0.035 0.034 0.035 0.036 0.038 ...
$ sdroads : num 0 0 5679 0 0 ...

where geomap is the geological map of the USA, globedem is elevation, dTRI is the density
of industrial pollutants (based on the the pan-American Environmental Atlas of pollutants),
nlights03 is the lights at night image from 2003, dairp is the density of traffic based on
main roads and railroads and sdroads is distance to main roads and railroads.

Since the task is to build a single model using a list of chemical elements, we need to
combine all target variables into a single regression matrix. In R this can be achieved by
using:

> geochem <- spTransform(geochem, CRS(proj4string(usa5km)))
> usa5km.spc <- spc(usa5km, ~geomap+globedem+dTRI+nlights03+dairp+
sdroads)

Converting geomap to indicators...
Converting covariates to principal components...

> ov.geochem <- over(x=geochem, y=usa5km.spc@predicted)
> df.lst <- lapply(c("PB_ICP40","CU_ICP40","K_ICP40","MG_ICP40"),

function(i){cbind(geochem@data[,c(i,"TYPEDESC")],
ov.geochem)})

next, we rename columns that contain the target variable:

> t.vars = c("PB_ICP40","CU_ICP40","K_ICP40","MG_ICP40")
> df.lst = lapply(t.vars, function(i){cbind(geochem@data[,c
(i,"TYPEDESC")], ov.geochem)})
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> names(df.lst) = t.vars
> for(i in t.vars){colnames(df.lst[[i]])[1] = "Y"}
> for(i in t.vars){df.lst[[i]]$TYPE = i}
so that all variables (now called Y) can be combined into a single regression matrix:

> rm.geochem = do.call(rbind, df.lst)
> str(rm.geochem)

'data.frame': 11432 obs. of 25 variables:
$ Y : num 9 10 10 9 16 14 8 15 11 9 ...
$ TYPE : chr "PB_ICP40" "PB_ICP40" "PB_ICP40" "PB_ICP40" ...
...

where the TYPE column carries the information of the type of variable. To this regression
matrix we can fit a RF model of the shape:

> fm.g

Y ~ PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 + PC9 + PC10 +
PC11 + PC12 + PC13 + PC14 + PC15 + PC16 + PC17 + PC18 + PC19 +
PC20 + PC21 + TYPECU_ICP40 + TYPEK_ICP40 + TYPEMG_ICP40 +
TYPEPB_ICP40 + TYPEDESCSOIL + TYPEDESCSTRM.SED.DRY +
TYPEDESCSTRM.SED.WET + TYPEDESCUNKNOWN

where PC* are the principal components derived from covariates, TYPECU_ICP40 is an
indicator variable defining whether the variable is Cu, TYPEK_ICP40 is an indicator variable
for K, TYPEDESCSOIL is an indicator variable for soil sample (362 training points in total),
and TYPEDESCSTRM.SED.WET is an indicator variable for stream sediment sample (2,233
training points in total).

The RF fitted to these data gives:

> rm.geochem.e <- rm.geochem.e[complete.cases(rm.geochem.e),]
> m1.geochem <- ranger(fm.g, rm.geochem.e, importance = "impurity")
> m1.geochem

Ranger result

Type: Regression
Number of trees: 500
Sample size: 11148
Number of independent variables: 29
Mtry: 5
Target node size: 5
Variable importance mode: impurity
OOB prediction error (MSE): 1462.767
R squared (OOB): 0.3975704
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To predict values and generate maps we need to specify (a) type of chemical element,
and (b) type of sampling medium at the new predictions locations:

> new.usa5km = usa5km.spc@predicted@data
> new.usa5km$TYPEDESCSOIL = 0
> new.usa5km$TYPEDESCSTRM.SED.DRY = 0
> new.usa5km$TYPEDESCSTRM.SED.WET = 1
> new.usa5km$TYPEDESCUNKNOWN = 0
> for(i in t.vars){

new.usa5km[,paste0("TYPE",i)] = 1
for(j in t.vars[!t.vars %in% i]){ new.usa5km[,paste0("TYPE",j)]
= 0 }
x <- predict(m1.geochem, new.usa5km)
usa5km@data[,paste0(i,"_rf")] = x$predictions

}

The results of the prediction are shown in Fig. 11. From the produced maps, we can
see that the spatial patterns of the four elements are relatively independent (apart from Pb
and Cu which seem to be highly cross-correlated), even though they are based on a single
RF model. Note that, just by switching the TYPEDES, we could produce predictions for a
variety of combinations of sampling conditions and chemical elements.

A disadvantage of running multivariate models is that the data size increases rapidly and
hence also the computing intensity. For a comparison, the National Geochemical Survey
comprises hundreds of chemical elements hence the total size of training points could easily
exceed several millions. In addition, computation of model diagnostics such as variable
importance becomes difficult as all variables are included in a single model—ranger
indicates an overall R-square of 0.40, but not all chemical elements can be mapped with the
same accuracy. On the other hand, it appears that extension from univariate to multivariate
spatial predictions models is fairly straightforward and can be compared to various co-
kriging techniques used in the traditional geostatistics (Pebesma, 2004). Note also that an
R package already exists—IntegratedMRF (Rahman, Otridge & Pal, 2017)—which takes
multiple output responses, and which could probably be integrated with RFsp.

Daily precipitation Boulder (CO) data set (regression, 2D+T)
In the last example we look at extending 2D regression based on RFsp to spatiotemporal
data, i.e., to a 2D+T case. For this we use a time series of daily precipitation measurements
obtained from https://www.ncdc.noaa.gov for the period of 2014–2017 for the area around
Boulder, Colorado (available via GitHub repository). We can load the data by:

> co_prec = readRDS("./RF_vs_kriging/data/st_prec/boulder_prcp.rds")
> str(co_prec)

'data.frame': 176467 obs. of 16 variables:
$ STATION : Factor w/ 239 levels "US1COBO0004",..: 64 64 64 64 64
64 64 64 64 64 ...
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Figure 11 Predictions (A–D) produced for four chemical elements (wet stream sediments) from the
National Geochemical Survey using a single multivariate RFmodel. The study area covers the US States
Illinois and Indiana. The spatial resolution of predictions is 5 km. Crosses indicate sampling locations.

Full-size DOI: 10.7717/peerj.5518/fig-11

$ NAME : Factor w/ 233 levels "ALLENS PARK 1.5 ESE, CO US",..:
96 96 96 96 96 96 96 96 96 96 ...
$ LATITUDE: num 40.1 40.1 40.1 40.1 40.1 ...
$ LONGITUDE: num -105 -105 -105 -105 -105 ...
$ ELEVATION: num 1567 1567 1567 1567 1567 ...
$ DATE : Factor w/ 1462 levels "2014-11-01","2014-11-02",..: 7 13
21 35 46 67 68 69 70 75 ...
$ PRCP : num 0 0.16 0 0 0 0.01 0.02 0.02 0.02 0.01 ...

> co_locs.sp = co_prec[!duplicated(co_prec$STATION),c("STATION",
"LATITUDE","LONGITUDE")]
> coordinates(co_locs.sp) = ~ LONGITUDE + LATITUDE
> proj4string(co_locs.sp) = CRS("+proj=longlat +datum=WGS84")
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Even though the monitoring network consists of only 225 stations, the total number
of observations exceeds 170,000. To represent ‘distance’ in the time domain, we use two
numeric variables—cumulative days since 1970 and Day of the Year (DOY):

> co_prec$cdate = floor(unclass(as.POSIXct(as.POSIXct(paste
(co_prec$DATE),
format=">
co_prec$doy = as.integer(strftime(as.POSIXct(paste(co_prec$DATE),
format="

variable doy is important to represent seasonality effects while cumulative days are
important to represent long term trends. We can now prepare a spatiotemporal regression
matrix by combining geographical covariates, including time and additional covariates
available for the area:

> co_grids <- readRDS("./RF_vs_kriging/data/st_prec/boulder_grids.
rds")
> names(co_grids)

[1] "elev_1km" "PRISM_prec"

where is elev_1km is the elevation map for the area, and PRISM_prec is the long-
term precipitation map based on the PRISM project (http://www.prism.oregonstate.edu/
normals/). Next, we also add buffer distances and bind all station and covariates data into
a single matrix:

> co_grids <- as(co_grids, "SpatialPixelsDataFrame")
> co_locs.sp <- spTransform(co_locs.sp, co_grids@proj4string)
> sel.co <- over(co_locs.sp, co_grids[1])
> co_locs.sp <- co_locs.sp[!is.na(sel.co$elev_1km),]
> grid.distP <- GSIF::buffer.dist(co_locs.sp["STATION"], co_grids[1],
as.factor(1:nrow(co_locs.sp)))
> ov.lst <- list(co_locs.sp@data, over(co_locs.sp, grid.distP),
over(co_locs.sp, co_grids))
> ov.prec <- do.call(cbind, ov.lst)
> rm.prec <- plyr::join(co_prec, ov.prec)

Joining by: STATION

> rm.prec <- rm.prec[complete.cases(rm.prec[,c("PRCP",
"elev_1km","cdate")]),]

Next, we define a spatiotemporal model as:

> fmP <- as.formula(paste("PRCP ~ cdate + doy + elev_1km +
PRISM_prec +", dnP))

In other words, daily precipitation is modeled as a function of the cumulative day, day
of the year, elevation, long-term annual precipitation pattern and geographical distances
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to stations. Further modeling of the spatiotemporal RFsp is done the same way as with the
previous 2D models:

> m1.prec <- ranger(fmP, rm.prec, importance = "impurity", num.trees =
150, mtry = 180)
> m1.prec

Ranger result

Type: Regression
Number of trees: 150
Sample size: 157870
Number of independent variables: 229
Mtry: 180
Target node size: 5
Variable importance mode: impurity
OOB prediction error (MSE): 0.0052395
R squared (OOB): 0.8511794

> xlP.g <- as.list(m1.prec$variable.importance)
> print(t(data.frame(xlP.g[order(unlist(xlP.g), decreasing=TRUE)
[1:10]])))

[,1]
cdate 93.736193
doy 87.087606
PRISM_prec 2.604196
elev_1km 2.568251
layer.145 2.029082
layer.219 1.718599
layer.195 1.531632
layer.208 1.517833
layer.88 1.510936
layer.90 1.396900

This shows that, distinctly, themost important covariate for predicting daily precipitation
from this study area is: time i.e. cumulative and/or day of the year. The importance of
cdatemight not be miss-understood as a strong trend in the sense that the average amount
of rainfall increases over time or the like. The covariate cdate allows the RFsp model to fit
different spatial patterns for each day underpinning that the observed rainfall is different
from day to day. Note that, because 1–2 covariates dominate the model, it is also important
to keep mtry high (e.g., > p/2 where p is the number of independent variables), because a
standard value for mtry could result in time being systematically missed from selection.

In traditional model-based geostatistics, there are not that many worked-out examples
of spatiotemporal kriging of daily precipitation data (i.e., zero-inflated variable models).
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Figure 12 Empirical, (A) and fitted metric (B, for comparison) and sum-metric (C) spatiotemporal
variogrammodels for daily precipitation data using the spatiotemporal kriging functionality of the
gstat package (Gräler, Pebesma & Heuvelink, 2016).

Full-size DOI: 10.7717/peerj.5518/fig-12

Geostatisticians treat daily precipitation as a censored variable (Bárdossy & Pegram, 2013),
or cluster values e.g., (in geographical space first Militino et al., 2015). Initial geostatistical
model testing for this data set indicates that neither of the covariates used above is linearly
correlated with precipitation (with R-square close to 0), hence we use spatiotemporal
ordinary kriging as a rather naïve estimator providing a geostatistical ‘‘baseline’’. The
results of fitting a spatiotemporal sum-metric model variogram using the gstat package
functionality (Gräler, Pebesma & Heuvelink, 2016):

> empStVgm <- variogramST(PRCP~1, stsdf, tlags = 0:3)
> smmFit <- fit.StVariogram(empStVgm, vgmST("sumMetric",
+ space=vgm(0.015, "Sph", 60, 0.01),
+ time=vgm(0.035, "Sph", 60, 0.001),
+ joint=vgm(0.035, "Sph", 30, 0.001),
+ stAni=1),
+ lower=c(0,0.01,0, 0,0.01,0, 0,0.01,0, 0.05),
+ control=list(parscale=c(1,1e3,1,
1,1e3,1, 1,1e3,1, 1)))

shows the following model coefficients: (1) space —pure nugget of 0.003, (2) time —
spherical model with a partial sill of 0.017, a range of 65.69 hours and a nugget of 0.007,
and (3) joint —a nugget free spherical model with sill 0.009 and a range of 35 km and with
spatiotemporal anisotropy of about 1 km/hour (Fig. 12).

The spatiotemporal kriging predictions can be further produced using the krigeST
function using e.g.:
> predST <- krigeST(PRCP~1, stsdf[,818:833], STF(co_grids, time =
stsdf@time[823:828]),
+ smmFit, nmax = 15, computeVar = TRUE)
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which assumes ordinary spatiotemporal kriging model PRCP ∼ 1 with sum-metric model
smmFit and search radius of 15 most correlated points in space and time. The cross-
validation results (Leave-One-Station-Out) for RFsp approach and krigeST indicate that
there is no significant difference between using RFsp and krigeST function: RMSE is about
0.0694 (CCC= 0.93) for krigeST and about 0.0696 (CCC= 0.93) for RFsp. RFsp relies on
covariates such as PRISM_prec (PRISM-based precipitation) and elev_1km (elevation),
so that their patterns are also visible in the predictions (Figs. 13A–13D), while krigeST is
solely based on the observed precipitation.

Note also from Figs. 13I–13L that some hot spots in the prediction error maps for
RFsp from previous days might propagate to other days, which indicates spatiotemporal
connection between values in the output predictions. Even though both methods results
in comparable prediction accuracy, RFsp seems to be able to reflect more closely influence
of relief and impact of individual stations on predictions, and map prediction errors with
higher contrast.

DISCUSSION
Summary results
We have defined a RFsp framework for spatial and spatiotemporal prediction of sampled
variables as a data-driven modeling approach that uses three groups of covariates inside a
single method:
1. geographical proximity to and composition of the sampling locations,
2. covariates describing past and current physical, chemical and biological processes,
3. spectral reflectances as direct observation of surface or sub-surface characteristics.
We have tested the RFsp framework on real data. Our tests indicate that RFsp often

produces similar predictions as OK and/or RK and does so consistently, i.e., proven through
repeated case studies with diverse distributions and properties of the target variable. In
the case of zinc prediction for the Meuse data set, the accuracy for RFsp is somewhat
smaller than for OK (Fig. 5A). In this case, RFsp with buffer distances as the only covariates
evidently smoothed out predictions more distinctly than kriging. As the data size increases
and as more covariate layers are added, RFsp often leads to satisfactory RMSE and ME
at validation points, while showing no spatial autocorrelation in the cross-validation
residuals (Figs. 5B–5C). This makes RFsp interesting as a generic predictor for spatial
and spatiotemporal data, comparable to state-of-the-art geostatistical techniques already
available in the packages gstat and/or geoR.

While the performance indicators show that the RFsp predictions are nearly as good
as those of OK and RK, it is important to note the advantages of RFsp vs. traditional
regression-kriging:
1. There is no need to define an initial variogram, nor to fit a variogram (except to check

that cross-validation residuals show no spatial autocorrelation). There are no 1st and
2nd order stationarity requirements (Goovaerts, 1997).

2. Trend model building, which is mostly done manually for kriging, is dealt with
automatically in the case of RFsp.

3. There is no need to define a search radius as in the case of kriging.
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Figure 13 Spatiotemporal predictions of daily rainfall in mm for four days in February using the RFsp
and krigeSTmethods: RFsp predictions (A–D), krigeST predictions (E–H), standard deviation of pre-
diction errors for RFsp (I–L), and krigeST (M–P).

Full-size DOI: 10.7717/peerj.5518/fig-13
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4. There is no need to specify a transformation of the target variable or do any back-
transformation. There is no need to deal with all interactions and non-linearities.
Interactions in the covariates are dealt with naturally in a tree-based method and do
not need to be manually included in the linear trend as in kriging.

5. Spatial autocorrelation and correlation with spatial environmental factors is dealt with
at once (single model in comparison with RK where regression and variogram models
are often fitted separately), so that also their interactions can be modeled at once.

6. Variable importance statistics showwhich individual observations andwhich covariates
are most influential. Decomposition of R2 as often used for linear models (Groemping,
2006) neglects model selection and does not straightforwardly apply to kriging.
Hence, in essence, random forest requires much less expert knowledge, which has its

advantages but also disadvantages as the system can appear to be a black-box without a
chance to understand whether artifacts in the output maps are result of the artifacts in
input data or model limitations. Other obvious advantages of using random forests are:

• Information overlap (multicollinearity) and over-parameterization, caused by using too
many covariates, is not a problem for RFsp. In the first example we used 155 covariates
to model with 155 points, and this did not lead to biased estimation because RF has
built-in protections against overfitting. RF can be used to fit models with large number
of covariates, even more covariates than observations can be used.
• Sub-setting of covariates is mostly not necessary; in the case ofmodel-based geostatistics,
over-parameterization and/or overlap in covariates is a more serious problem as it can
lead to biased predictions.
• RF is resistant to noise (Strobl et al., 2007).
• Geographical distances can be extended to more complex distances such as watershed
distance along slope lines and or visibility indices, as indicated in the Fig. 2.

In the case of spatiotemporal data, RF seems to have ability to adjust predictions locally
in space and time. Equivalent in kriging would be to use separate models for each day for
example. In the precipitation case study, spatiotemporal kriging, we did not consider the
issue of zero-inflation (censored variables) and have assumed a stationary field in space
and time (means might vary from day to day though, but the covariance structure is the
same over the entire study period). This is an obvious issue for different types of rainfall:
small scale short heavy summer events, vs. widespread enduring winter precipitation, so
again RFsp here shows some advantages with much less assumptions and problems with
the zero-inflated nature of the data. Also, note that we could have maybe improved the
spatiotemporal kriging framework with a more thorough modeling sensibly dealing with
zero-inflation and the heavy skewness of the observed variable. Non-linear model based
spatiotemporal statistical approaches that in general can deal with this type of random
fields are e.g., models based on copulas (Erhardt, Czado & Schepsmeier, 2015;Gräler, 2014),
but these are even more computational and cumbersome to implement on large datasets.

Some important drawbacks of RF, on the other hand, are:
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• Predicting values beyond the range in the training data (extrapolation) is not
recommended as it can lead to even poorer results than if simple linear models are used.
In the way the spatiotemporal RFsp model is designed, this also applies to temporal
interpolation e.g. to fill gaps in observed timeseries.
• RF will lead to biased predictions when trained with data sets that are sampled in a
biased way (Strobl et al., 2007). To get a more realistic measure of the mapping accuracy,
stricter cross-validation techniques such as the spatial declustering (Brenning, 2012), as
implemented in the mlr package (Bischl et al., 2016) or similar, might be necessary.
• Size of the produced models is much larger than for linear models, hence the output
objects are large.
• Models are optimized to reproduce the data of the training set, not to explain a spatial
or spatiotemporal dependence structure.
• Estimating RF model parameters and predictions is computationally intensive.
• Derivation of buffer distances is computationally intensive and storage demanding.

We do not recommend using buffer distances as covariates with RFsp for a large number
of training points e.g.� 1,000 since the number of maps that need to be produced could
blow up the production costs, and also computational complexity of such models would
become cumbersome.

On the other hand, because exceptionally simple neural networks can be used to represent
inherently complex ecological systems, and because computing costs are exponentially
decreasing, it can be said that most of the generic Machine Learning techniques are in
fact ‘cheap’ and have quickly become mainstream data science methods (Lin, Tegmark &
Rolnick, 2017). Also, we have shown that buffer distances do not have to be derived to
every single observation point—for factors it turned out that deriving distances per class
worked quite well. For numeric variables, values can be split into 10–15 classes (from low
to high) and then again distances can be only derived to low and high values. In addition,
limiting the number and complexity of trees in the random forest models (Latinne, Debeir
& Decaestecker, 2001), e.g. , from 500 to 100 often leads to minimum losses in accuracy
(Probst & Boulesteix, 2017), so there is certainly room for reducing size and complexity of
ML models without significantly loosing on accuracy.

Is there still need for kriging?
Given the comparison results we have shownpreviously, we can justifiably askwhether there
is still a need for model-based geostatistics at all? Surely, fitting of spatial autocorrelation
functions, i.e., variograms will remain a valuable tool, but it does appear from the examples
above that RFsp ismore generic andmore flexible for automation of spatial predictions than
any version of kriging. This does not mean that students should not bother with learning
principles of kriging and geostatistics. In fact, with RFsp we need to know geostatistics
more than ever, as these tools will enable us to generate more and more analyses, and
hence we will also need to boost our interpretation skills. So, in short, kriging as a spatial
prediction techniquemight be redundant, but solid knowledge of geostatistics and statistics
in general is important more than ever. Also with RFsp, we still needed to fit variograms
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Figure 14 Illustration of the extrapolation problem of Random Forest. Even though Random Forest is
more generic than linear regression and can be used also to fit complex non-linear problems, it can lead to
completely nonsensical predictions if applied to extrapolation domains. Image credit: Peter Ellis (http://
freerangestats.info).

Full-size DOI: 10.7717/peerj.5518/fig-14

for cross-validation residuals and derive occurrence probabilities etc. All this would have
been impossible without understanding principles of spatial statistics, i.e., geostatistics.

While we emphasize that data-driven approaches such as RF are flexible and relatively
easy to use because they need not go through a cumbersome procedure of defining and
calibrating a valid geostatistical model, we should also acknowledge the limitations of
data-driven approaches. Because there is no model one can also not inspect and interpret
the calibrated model. Parameter estimation becomes essentially a heuristic procedure that
cannot be optimized, other than through cross-validation. Finally, extrapolation with
data-driven methods is more risky than with model-based approaches. In fact, in the case
of RF, extrapolation is often not recommended at all—all decision-tree based methods
such as RFs or Boosted Regression Trees can complete fail in predictions if applied in
regions that have not been used for training (Fig. 14B).

Are geographic covariates needed at all?
The algorithm that is based on deriving buffer distance maps from observation points is
not only computationally intensive, it also results in a large number of maps. One can easily
imagine that this approach would not be ready for operational use where� 1,000 as the
resources needed to do any analysis with such data would easily exceed standard budgets.
But are buffer distances needed at all? Can the geographical location and proximity of
points be included in the modeling using something less computationally intensive?

McBratney, Santos & Minasny (2003) have, for example, conceptualized the so-called
‘‘scorpan’’ model in which soil property is modeled as a function of:

• (auxiliary) soil properties,
• climate,
• organisms, vegetation or fauna or human activity,
• relief,
• parent material,
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• age i.e. the time factor,
• n space, spatial position,

It appears that also s and n could be represented as a function of other environmental
gradients. In fact, it can be easily shown that, as long as there are enough unique covariates
available that explain themajority of physical and chemical processes (past and current) and
enough remote sensing data that provides spectral information about the object/feature,
each point on the Globe can be defined with an unique ‘signature’, so that there is probably
no need for including spatial location in the predictive mapping at all.

In other words, as long as we are able to prepare, for example, hundreds of covariates
that explain in detail uniqueness of each location (or as long as an algorithm can not find
many duplicate locations with unique signature), and as long as there are enough training
point to describe spatial relations, there is probably no need to derive buffer distances
to all points at all. In the example by Ramcharan et al. (2018), almost 400,000 points and
over 300 covariates are used for training a MLA-based prediction system: strikingly the
predicted maps show kriging-like pattern with spatial proximity to points included, even
though no buffer distances were ever derived and used. It appears that any tree-based
machine learning system that can ‘learn’ about the uniqueness of a geographical location
will eventually be able to represent geographical proximity also in the predictions. What
might be still useful is to select a smaller subset of points where hot-spots or points with
high CV error appear, then derive buffer distances only to those points and add them to
the bulk of covariates.

Behrens et al. (2018a) have recently discovered that, for example, DEM derivatives
correlate derived at coarser scales correlate more with some targeted soil properties than
the derivatives derived as fine scales; in this case, scale was represented through various
DEM aggregation levels and filter sizes. Some physical and chemical processes of soil
formation or vegetation distribution might not be visible at finer aggregation levels,
but then become very visible at coarser aggregation levels. In fact, it seems that spatial
dependencies and interactions of the covariates can be explained simply by aggregating
DEM and the derivatives. For a long time physical geographers have imagined that climate,
vegetation and similar are non-linear function of longitude and latitude; now it appears
that the inverse of this could be also be valid.

Remaining methodological problems and future directions
Even though MLA has proven to be efficient in boosting spatial prediction performance,
there still remain several methodological problems before it can be widely applied, for
example:

• How to generate spatial simulations that accurately represents spatial autocorrelation
structure using RF models?
• How to produce predictions from and at various block support sizes—from point
support data to block support data and vice versa?
• How to deal with extrapolation problems (both in feature and geographical spaces)?
• How to account for spatial and spatiotemporal clustering of points?
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Although Machine Learning is often very successful in spatial prediction, we should
not be over-relaxed by its flexibility and efficiency of crunching data. Any purely data or
pattern driven classifier or regressor is a rather mechanical approch to problem solving.
It ignores all of our knowledge of processes and relationships that have been documented
and proven to work over and over. It does not have an explicit (geo)statistical model as
a starting point, so that no mathematical derivations are possible at all. Also, just adding
more and more data to the system does not necessarily mean that the predictions will
automatically become better (Zhu et al., 2012). The main difficulty ML user experience
today is to explain how a particular algorithm has come to its conclusions (Hutson, 2018).
One extreme projection of blind over-use of ML and A.I. is that it could leave us with
less and less capacity to generate knowledge. In that context, what maybe could seem as a
logical development direction for Machine Learning is development of hybrid use of data
and models, i.e., an A.I. systems that not only mechanically mines data, but also mines
models and knowledge and extends from testing accuracy improvements to testing more
complex measures of modeling success such as model simplicity, importance of models
across various domains of science even testing of mathematical proofs (Lake et al., 2017).
Such systems would have been at the order of magnitude more complex than Machine
Learning, but, given the exponential growth of the field of A.I., this might not take decades
to achieve.

One model to rule them all?
Given that with RF multiple variables can be predicted at once, and given that all global
data from some theme such as soil science, meteorology etc. could be put into a single
harmonized and integrated database, one could argue that, in the near future, a single
machine learning model could be fitted to explain all spatial and/or spatiotemporal
patterns within some domain of science such as soil science, meteorology, biodiversity etc.
This is assuming that ALL observations and measurements within that domain have been
integrated and pre-processed/harmonized for use. Such models could potentially be used
as ‘knowledge engines’ for various scientific fields, and could be served on-demand, i.e.,
they would generate predictions only if the predictions are required by the users.

These data set and models would be increasingly large. In fact, they would probably
require super computing power to update them and efficient data storage facilities to serve
them, hence the current state-of-the-art data science might gradually move frommanaging
Big Data only, to managing Big Data and Big Models.

CONCLUSIONS
We have shown that random forest can be used to generate unbiased spatial predictions
and model and map uncertainty. Through several standard textbook datasets, we have
shown that the predictions produced using RFsp are often equally accurate (based on
repeated cross-validation) than equivalent linear geostatistical models. The advantages of
random forest vs. linear geostatistical modeling and techniques such as kriging, however,
lies in the fact that no stationarity assumptions need to be followed, nor is there a need to
specify transformation or anisotropy parameters (or to fit variograms at all).
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Figure 15 The recommended two-stage accuracy-driven framework for optimizing spatial predictions
based on RFsp (see also Eq. (18)). In the first stage, minimum number of objectively sampled points are
used to get an initial estimate of the model. In the second stage, the exact number of samples and sampling
locations are allocated using the prediction error map, so that the mapping accuracy can be brought to-
wards the desired or target confidence intervals.

Full-size DOI: 10.7717/peerj.5518/fig-15

This makes RF fairly attractive for automatedmapping applications, especially where the
point sampling is representative (extrapolationminimized) andwhere relationship between
the target variable, covariates and spatial dependence structure is complex, non-linear and
requires localized solutions. Some serious disadvantage of using RFsp, on the other hand,
is sensitivity to input data quality and extrapolation problems (Fig. 14). The key to the
success of the RFsp framework might be the training data quality—especially quality of
spatial sampling (to minimize extrapolation problems and any type of bias in data), and
quality of model validation (to ensure that accuracy is not effected by overfitting).

Based on the discussion above, we can recommend a two-stage framework explained
in Fig. 15, as possibly the shortest path to generating maximum mapping accuracy using
RFsp whilst saving the production costs. In the first stage, initial samples are used to get
an estimate of the model parameters, this initial information is then used to optimize
predictions (the second stage) so that the mapping objectives can be achieved with
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minimum additional investments. The framework in Fig. 15, however, assumes that there
are (just) enough objectively sampled initial samples, that the RF error map is reliable, i.e.,
accurate, that robust cross-validation is used and a reliable RMSE decay function. Simple
decay functions could be further extended to include also objective ‘cooling’ functions
as used for example in Brus & Heuvelink (2007), although these could likely increase
computational intensity. Two-stage sampling is already quite known in literature (Hsiao,
Juang & Lee, 2000; Meerschman, Cockx & Van Meirvenne, 2011; Knotters & Brus, 2013),
and further optimization and automation of two-stage sampling would possibly be quite
interesting for operational mapping.

Even though we have provided comprehensive guidelines on how to implement RF for
various predictive mapping problems—from continuous to factor-type variables and from
purely spatial to spatiotemporal problems with multiple covariates—there are also still
many methodological challenges, such as derivation of spatial simulations, derivation of
buffer distances for large point data sets, reduction of extrapolation problems etc, to be
solved before RFsp can become fully operational for predictive mapping. Until then, some
traditional geostatistical techniques might still remain preferable.
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