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ABSTRACT
Background. It is possible to detect bacterial species in shotgun metagenome datasets
through the presence of only a few sequence reads. However, false positive results
can arise, as was the case in the initial findings of a recent New York City subway
metagenome project. False positives are especially likely when two closely related are
present in the same sample. Bacillus anthracis, the etiologic agent of anthrax, is a
high-consequence pathogen that shares>99% average nucleotide identity with Bacillus
cereus group (BCerG) genomes. Our goal was to create an analysis tool that used k-mers
to detect B. anthracis, incorporating information about the coverage of BCerG in the
metagenome sample.
Methods. Using public complete genome sequence datasets, we identified a set of
31-mer signatures that differentiated B. anthracis from other members of the B. cereus
group (BCerG), and another set which differentiated BCerG genomes (including
B. anthracis) from other Bacillus strains. We also created a set of 31-mers for detecting
the lethal factor gene, the key genetic diagnostic of the presence of anthrax-causing
bacteria. We created synthetic sequence datasets based on existing genomes to test the
accuracy of a k-mer based detection model.
Results. We found 239,503 B. anthracis-specific 31-mers (the Ba31 set ), 10,183 BCerG
31-mers (the BCerG31 set ), and 2,617 lethal factor k-mers (the lef31 set). We showed
that false positive B. anthracis k-mers—which arise from random sequencing errors—
are observable at high genome coverages of B. cereus. We also showed that there is a
‘‘gray zone’’ below 0.184× coverage of the B. anthracis genome sequence, in which
we cannot expect with high probability to identify lethal factor k-mers. We created a
linear regression model to differentiate the presence of B. anthracis-like chromosomes
from sequencing errors given the BCerG background coverage. We showed that while
shotgun datasets from the New York City subway metagenome project had no matches
to lef31 k-mers and hence were negative for B. anthracis, some samples showed evidence
of strains very closely related to the pathogen.
Discussion. This work shows how extensive libraries of complete genomes can be used
to create organism-specific signatures to help interpret metagenomes. We contrast
‘‘specialist’’ approaches to metagenome analysis such as this work to ‘‘generalist’’
software that seeks to classify all organisms present in the sample and note the more
general utility of a k-mer filter approach when taxonomic boundaries lack clarity or
high levels of precision are required.
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INTRODUCTION
There is great interest in the use of shotgun metagenome data to detect pathogens in
clinical and environmental samples. A large number of bioinformatic tools have been
developed (McIntyre et al., 2017) that use different algorithmic approaches to rapidly parse
and analyze sequence data files. Over the last 8–10 years, these data have been generated
primarily by Illumina sequencing technology. Typically, sequences frommetagenomic data
files are matched against public reference databases, such as NCBI RefSeq. Consistency
of matches across the tree of life is dependent therefore on the database entries being
correctly labelled, having similar levels of representation across species, and having species
defined in a consistent manner. However, we are beginning to understand how the skewed
representation of taxa contained in the database sometimes affects sampling accuracy
(Nasko et al., 2018). The classification of many bacterial species harks back to distinctions
based on morphological, biochemical and virulence characteristics, made prior to the
advent of DNA sequencing. Sometimes, unusually close species boundaries can confound
metagenomic classifiers and result in false positive matches. In 2015, Afshinnekoo et al.
(2015a) published initial findings from an extensive study of the New York Subway
metagenome, which claimed that they had detected bacteria responsible for anthrax
(Bacillus anthracis) and plague (Yersinia pestis). While these misidentifications were swiftly
corrected (Mason, 2015; Afshinnekoo et al., 2015b), indistinct or fuzzy boundaries between
species may yield many errors of this nature.

B. anthracis, the pathogen that is the focus of this work, is a Gram-positive bacterium that
forms tough endospores allowing it to survive dormant in the environment for years. The
5.2 (Mbp) main chromosome shares an average nucleotide identity (ANI, Konstantinidis
& Tiedje, 2005) in excess of 99% with other members of the collection of species known
as the ‘Bacillus cereus group’ (BCerG) (Helgason et al., 2000). The most common species in
this group are B. cereus, B. thuringiensis and B. mycoides (Helgason et al., 2000; Zwick et al.,
2012). The recommended level of difference between bacterial species is an ANI of 95%
(Konstantinidis & Tiedje, 2005). While BCerG strains are mostly opportunistic pathogens
of invertebrates and are commonly found in soil, B. anthracis kills mammals (Carlson et al.,
2018). Spores are generally found at high titers in soils where animals have recently died
from anthrax. Phylogeographic analysis has shown that B. anthracis is probably native to
Africa, with only recent transfer of a limited number of lineages to other continents (Keim
&Wagner, 2009). For these reasons, it would be an unusual outcome to find spores in the
New York subway (Ackelsberg et al., 2015)

What sets B. anthracis apart from other BCerG strains is the presence of two plasmids:
pXO1 (181 kb), which carries the lethal toxin genes, and pXO2 (94 kb), which includes
genes for a protective capsule. Without either of these plasmids, B. anthracis is considered
attenuated in virulence and unable to cause classic anthrax (Dixon et al., 1999). Plasmids
from other BCerG genomes may be very similar to pXO1 and pXO2 but lack the important
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virulence genes (Rasko et al., 2007). Rarely, BCerG strains carry pXO1 and appear to cause
anthrax-like disease (Hoffmaster et al., 2004; Hoffmann et al., 2017); pXO2-like plasmids
are also quite common in BCerG and other Bacillus species (Pannucci et al., 2002; Cachat
et al., 2008).

Shortly after the release of the NYC subway metagenome paper, we produced a blog
post (Petit III et al., 2015) that critically re-analyzed these data in the light of what was
known about B. anthracis genomics. This work, and other critiques, led to reassessment
of the data and revisions to the original manuscript. In this paper, we incorporate some
of the results introduced informally on our blog and extend them to create a k-mer based
approach—using recent public B. anthracis and BCerG data—to analyze in greater detail
how to search for traces of B. anthracis in shotgun metagenome data. While elements of
this method are necessarily specific to B. anthracis and the context of the BCerG group,
the general strategy has far broader utility and this work is a model for future ‘‘specialist’’
studies based on k-mer filtering.

METHODS
Metagenome data and reference genome sequences
Shotgun metagenomic data from the ‘‘NYC’’ study SRP051511 (Afshinnekoo et al., 2015a)
were downloaded from the Sequence Read Archive (SRA) with sra-tools (fastq-dump -I
$SRA_ACCESSION, v2.8.2, https://github.com/ncbi/sra-tools). Reference genomes for
different taxonomic groups were downloaded from the NCBI Nucleotide database in April
2018 with the following queries:

All BCerG genomes= ‘txid86661[Organism:exp] AND ’’complete genome’’[Title] AND
refseq[filter] AND 3000000:7000000[Sequence Length]’

All non-BCerG Bacillus genomes = ‘txid1386[Organism:exp] NOT txid86661
[Organism:exp] ‘‘complete genome’’[Title] AND 3000000:7000000[Sequence Length]
AND refseq[filter]’

B. anthracis genomes were included in the BCerG genome query. The lethal factor gene
was extracted from completed pXO1 plasmids downloaded with the following query:

pXO1 plasmid = ‘pXO1[Title] AND 140000:200000[Sequence Length] ‘

The results of these queries, as of April 2018, are available on our git repository.

Mapping metagenome data to B. anthracis plasmids and
chromosomes
B. anthracis positive samples and control samples were mapped against reference pXO1
(CP009540) and pXO2 (NC_007323) plasmids and reference B. anthracis (CP009541)
and B. cereus (NC_003909) completed genomes with BWA (bwa mem -t $NUM_CPU
$REFERENCE $FASTQ_R1 $FASTQ_R2 >$SAM_FILE, v0.7.5a-r405, Li & Durbin, 2009).
The aligned reads in SAM format were converted to sorted BAM and indexed with
SAMtools (samtools view -@ 10 -bS $SAM_FILE |samtools sort -@ 10 - $SAMPLE, v1.1,

Petit III et al. (2018), PeerJ, DOI 10.7717/peerj.5515 3/19

https://peerj.com
https://www.ncbi.nlm.nih.gov/sra?term=SRP051511
https://github.com/ncbi/sra-tools
http://www.ncbi.nlm.nih.gov/nuccore/CP009540
http://www.ncbi.nlm.nih.gov/nuccore/NC_007323
http://www.ncbi.nlm.nih.gov/nuccore/CP009541
http://www.ncbi.nlm.nih.gov/nuccore/NC_003909
http://dx.doi.org/10.7717/peerj.5515


Li et al., 2009). The per base coverage was extracted with genomeCoverageBed from
BEDTools (genomeCoverageBed -d -ibam $BAM_FILE |gzip –best - >$COVERAGE,
v2.16.2, Quinlan & Hall, 2010). Coverage across the plasmids and chromosomes was
plotted for multiple sliding windows with a custom Rscript. Mapped reads were extracted
and saved in FASTQ with bam2fastq (bam2fastq -o $FASTQ –no-unaligned $BAM_
FILE, v1.1.0, https://gsl.hudsonalpha.org/information/software/bam2fastq) and FASTA
format with fastq_to_fasta from FASTX Toolkit (cat $FASTQ_FILE |fastq_to_fasta
-Q33 -n |gzip –best - >$FASTA_OUTPUT, v0.0.13.2, Gordon & Hannon, 2010).
Scripts, runtime parameters, and output are available at this site (Petit III et al., 2015):
https://github.com/Read-Lab-Confederation/nyc-subway-anthrax-study.

Custom 31-mer assay for B. anthracis and Bacillus cereus Group
In preliminary analysis we found four BCerG genomesmisclassified in theNCBI Taxonomy
database as not being part of the BCerG (see the Results section). To create a rational
method to assign taxonomy to genomes for this study we used mash (mash sketch -k
31 -s 100000 -p $NUM_ CPU -o $OUTPUT_PREFIX *.fasta, v2.0, Ondov et al., 2016) to
reclassify mislabeled Bacillus genomes as B. anthracis, non-anthracis BCerG, or non-BCerG.
We identified B. anthracis strain 2002013094 (NZ_CP009902) as the most distant (Mash
distance 0.000687) B. anthracis member from B. anthracis str. Ames (NC_ 003997). We
also identified B. cytotoxicusNVH 391-98 (NC_009674) as the most distant (Mash distance
0.135333) BCerG member from B. anthracis str. Ames (NC_003997). We then determined
the Mash distance of all Bacillus genomes from B. anthracis str. Ames (mash dist -p
$NUM_CPU $MASH_SKETCH $FASTA_FILE). We used the Mash distance to reclassify
each Bacillus genome as B. anthracis (Mash distance ≤ 0.000687), non-anthracis BCerG
(Mash distance ≤ 0.135333), or non-BCerG (Mash distance > 0.135333). A phylogeny of
all completed Bacillus genomes was created with mashtree (mashtree –numcpus 20 *.fasta
>bacillus-mashtree.dnd, v0.32, https://github.com/lskatz/mashtree).

Sequence 31-mers were extracted and counted with Jellyfish (jellyfish count -C -m
31 -s 1M -o $JELLYFISH_DB $FASTA_ FILE, v2.2.3, Marçais & Kingsford, 2011) and
partitioned into two distinct sets characteristic of BCerG (BCerG31) and B. anthracis
(Ba31) (Fig. 1). The BCerG31 and Ba31 sets were initially comprised of 31-mers conserved
within every member of BCerG (including B. anthracis) and those restricted to only
B. anthracis, respectively. Any Ba31-mers found in non-anthracis BCerG members or
non-BCerG genomes were filtered out. Likewise, any BCerG31-mers found in non-BCerG
Bacillus genomes were filtered out. 31-mers found in rRNA were filtered out with a
Jellyfish database created from the SILVA rRNA database (Quast et al., 2013). We further
filtered the Ba31 and BCerG31 sets using the non-redundant nucleotide sequence database
(NT v5, downloaded April 2017). We used BLASTN (blastn -max_hsps 1 -max_target_
seqs 1 -dust no -word_size 7 -outfmt 15 -query $FASTA_FILE -db $BLAST_DB -evalue
10000 -num_threads $NUM_CPU, v2.8.0, Camacho et al., 2009) to align Ba31 against
non-anthracis BCerG sequences and BCerG31 against non-BCerG sequences. 31-mers with
an exact match were filtered out.
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Figure 1 Flowchart of strategy for primer design.We developed a strategy for selecting the Ba31 and
BCerG31 (A) and lef31 (B) k-mer sets. In (A) the outgroup is determined by the k-mer set. For Ba31, the
outgroup was comprised of all the non-B. anthracis genomes; for BCerG31, it consisted of all non-B. cereus
group genomes.

Full-size DOI: 10.7717/peerj.5515/fig-1

Finding the limits for lethal factor-based detection of B. anthracis
We used B. anthracis whole genome shotgun sequencing projects to determine the limit
of detection of lethal factor k-mers (lef31). We defined lef31 as the unique set of 31-mers
identified in lef genes downloaded from the NCBI Nucleotide database (previously
described) (Fig. 1). B. anthracis projects were identified from the SRA with the following
query:

B. anthracis projects = ‘genomic[Source] AND random[Selection] AND txid86661
[Organism:exp] AND paired[Layout]) AND wgs[Strategy] AND ’’Illumina HiSeq’’’

In this work we have assumed a 95% ‘confidence limit’ for detection of the lethal factor
k-mers, so that detection is held to fail if fewer than 95% of a set of random subsamples are
found to contain at least one lethal factor k-mer. The threshold is then obtained through
computational experiment. For each project, we started at 0.2× B. anthracis genome
coverage and extracted 100 random subsamples of sequences, using Jellyfish as before to
determine if at least one lethal factor k-mer was present. We then continued this process,
reducing the coverage until fewer than 95% of the subsamples contained at least one lethal
factor k-mer. The previous coverage was then recorded as the limit of detection of the
lethal toxin for a given sample.

Assessing Quality of B. anthracis and B. cereus Group specific
31-mers
We used ART (art_illumina -l 100 -f $COVERAGE -na -ss HS20 -rs $RANDOM_SEED
-i $FASTA_FILE -o $OUTPUT_PREFIX, vMountRainier-2016-06-05, Huang et al., 2012)
to simulate 100 bp reads with the built-in Illumina HiSeq 2000 error model for each non-
anthracis Bacillus genome. The Illumina HiSeq 2000 error model was selected to match
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the predominant sequencing technology of the NYC dataset. We simulated coverages
ranging from 0.01× to 15× to determine if false positive Ba31 matches were uniform
across non-anthracis BCerG members. We counted 31-mers for each simulated read set
with Jellyfish as previously described. We then used the k-mer counts to determine the false
positive Ba31 counts in non-anthracis genomes. We found the false positive Ba31 counts to
be higher in non-B. anthracis genomes that were most closely related to B. anthracis (please
see results section). A subset of non-B. anthracis BCerG genomes with a Mash distance
less than 0.01 from B. anthracis, previously described, were selected as our model set. We
further simulated coverages from 15× to 100× to match levels of coverage observed in the
NYC dataset. We then applied linear regression, implemented in the R base stats package
(R v3.4.3), on this subset to develop a predictive model with the observed Ba31 count
as our dependent variable and the observed BCerG k-mer coverage as our independent
variable.

Prediction of low coverage B. anthracis chromosome in simulated
metagenomic sequencing datasets
We used ART to simulate metagenomic mixtures of B. anthracis str. Ames (NC_003997)
and B. cereus strain JEM-2 (NZ_CP018935). B. cereus strain JEM-2 was selected because
it was the closest non-anthracis BCerG member to B. anthracis str. Ames (Mash
distance 0.00873073). We used coverages between 0–100× for B. cereus and coverages
between 0–0.2× for B. anthracis. A python script (subsample-ba-lod.py NC_003997.fasta
NZ_CP018935.fasta coverages-ba.txt coverages-bcg.txt temp_folder/ fasta/ ba-specific-
kmers.fasta bcg-specific-kmers.fasta) was created to simulate mixtures for each pairwise
combination of B. cereus and B. anthracis coverages. For each mixture, we determined the
Ba31 and BCerG31 counts with Jellyfish as previously described. This process was repeated
20 times per pairwise combination of coverages. The model was applied to determine
what level of B. anthracis coverage was required to differentiate observed Ba31-mers from
sequencing errors.

We determined Ba31, BCerG31 and lef31 counts for each sample in the NYC study. The
model was applied to these counts to determine if observed B. anthracis k-mers exceeded
the level expected due to sequencing errors.

We processed each of the subsampled mixtures and samples from the NYC study with
KrakenHLL (krakenhll –report-file $REPORT_FILE –db $DATABASE >$SEQUENCES,
v0.4.7, Breitwieser & Salzberg, 2018). We used dustmasker (dustmasker -outfmt fasta,
v2.8.0, Camacho et al., 2009) to create a DUST-masked version of the standard Kraken
database (kraken-build –standard –db $DATABASE, database built in April 2017) for this
analysis. From the final Kraken report, the number of reads and unique k-mers identified
for B. anthracis were extracted. We compared these results to our method.

Output, figures, runtime parameters and scripts from this study are available in a Git
repository hosted at: https://doi.org/10.5281/zenodo.1323741.
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RESULTS
NY subway metagenome sequences map to core regions of
B. anthracis and B. cereus chromosome and plasmids but not to
lethal factor gene
In the original analysis of the subway metagenome (Afshinnekoo et al., 2015a), two samples
(P00134 (SRR1748707, SRR1748708), and P00497 (SRR1749083)) were reported to
contain reads that mapped to Bacillus anthracis based on results obtained using the
Metaphlan software (Segata et al., 2012). We found that 792,282 reads from P00134 and
270,964 reads from P00497 mapped to the B. anthracis strain Sterne chromosome. The
reads aligned along the entire length of the chromosome, forming a characteristic peak at
the replication origin, a pattern often seen when other bacterial chromosomes have been
recovered from metagenome samples (Brown et al., 2016). However, a similar number of
reads from P00134 and P00497 (765,466 reads and 265,776 reads, respectively) mapped to
the B. cereus 10987 chromosome. We also found that P00134 and P00497 reads mapped
to the both the pXO1 and pXO2 plasmids in conserved ‘‘backbone’’ regions (Rasko et al.,
2007) but that no read mapped to the mobile element containing the lef lethal factor gene.
These results showed that the close taxonomic relationship of B. anthracis and BCerG
made identification of the biothreat agent by mapping reads alone unreliable. In addition,
the pXO1 and pXO2 plasmids were not reliable as positive markers for B. anthracis at
low genome coverages (when the lef gene may not be sampled, see next section) because
backbone sequences cross-matched against plasmids found in BCerG strains.

B. anthracis genome coverage below 0.184× is a “gray area” for
detection, where lethal toxin genes may not be sampled
The best test for presence of virulent B. anthracis (or virulent B. cereus strains containing
pXO1) is detection of the lethal factor gene (2,346 bp) (Bragg & Robertson, 1989). However,
at low sequence coverage of the pathogen, it is not certain that reads from this gene will
be present (given the 3:1 copy number ratio of pXO1 to B. anthracis chromosome (Read et
al., 2002) the ratio of chromosome to lef is ∼620:1). We identified 2,617 31-mers present
in 36 lef gene sequences and called this set ‘‘lef31’’. To estimate the coverage sufficient that
we would expect (with probability above some threshold value, here 0.95) to observe lethal
factor sequences, we randomly subsampled reads from 164 B. anthracis genome projects
and tested for the presence of at least one lef31 match (Fig. 2). With Ba31 and BCerG31
k-mer coverages below 0.103× and 0.112×, respectively, this analysis showed we would
have less than a 95% chance of sampling a single lef31 k-mer even if the lef gene were present.
These k-mer coverages are approximately 0.184×-fold B. anthracis genome coverage, or
9,360 100 base pair reads (Fig. S1).

Conserved and specific 31-mer sets for B. anthracis and BCerG
chromosomes
The results of the previous section showed that at low B. anthracis genome coverage,
detection of the lethal factor is not guaranteed. In metagenomic samples, in which
sequencing coverage is expected to be low for rare organisms, the most reliable way
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Figure 2 Limit of detection for lethal factor gene k-mers (lef31). A total of 164 B. anthracis sequencing
projects were subsampled to different levels of genome coverage, with 100 random subsamples obtained
for each coverage level. Our ability to detect the lethal factor gene is assessed by considering the number of
these subsamples for which we find at least one lef31 k-mer hit. Two thresholds—95% and 100%—were
employed and are shown as colored series below.The figure thus shows the percentage of the B. anthracis
sequencing projects for which 95% (or 100%) of the random subsamples contain at least one lef31 k-
mer. (A) shows results with respect to Ba31 k-mer coverage while (B) shows the corresponding results for
BCerG coverage. The vertical dashed lines show the coverage limits for detection at the respective thresh-
old levels.

Full-size DOI: 10.7717/peerj.5515/fig-2

to detect B. anthracis was to use chromosomal genetic signatures that distinguished the
species from close relatives. We identified 239,503 31-mers conserved in 48 B. anthracis
reference genomes that were not also detected in the remainder of the Bacillus genus (331
genomes), rRNA sequences, or the BLAST non-redundant nucleotide database. We called
this set ‘‘Ba31’’.

We created a second set of 31-mers specific to and conserved in all BCerG genomes
(including B. anthracis). Surprisingly, our initial analysis produced zero 31-mers specific
to all 139 BCerG strains and not other Bacillus. Inspection of the whole genome phylogeny
(Fig. 3) showed that four genomes (NZ_CP007512, NZ_CP017016, NZ_CP020437,
NZ_CP02512) that fell within the BCerG clade based on phylogeny had not been classified
as BCerG in the NCBI Taxonomy hierarchy. After reclassifying these strains as BCerG, we
identified 10,183 BCerG specific 31-mers, which we called ‘‘BCerG31’’.

High background levels of B. cereus strains produce false positive
B. anthracis specific k-mers due to random sequence errors
We simulated synthetic data of Bacillus reference genomes at different genome coverages
using ART software with an error model based on Illumina short read data (Huang et
al., 2012) (Fig. 4). We defined ‘k-mer coverage’ as the sum of counts for k-mers detected
divided by the number of k-mers in the k-mer set. Ba31 and BCerG k-mer coverage had
a linear relationship with genome coverage (Fig. S1). The coefficient was less than 1
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Figure 3 Unrooted phylogeny of BCerG genome assemblies used in the study after reclassifying
BCerG strains. An unrooted phylogenetic representation of 140 BCerG genomes using Mashtree (v0.32,
https://github.com/lskatz/mashtree). Genomes reclassified as BCerG members with mash (v2.0, Ondov
et al., 2016) are indicated with stars. The clade colored blue are B. cereus genomes closely related to
B. anthracis that were used to model false positive results (Fig. 4).

Full-size DOI: 10.7717/peerj.5515/fig-3

(0.56 and 0.61 for Ba31 and BCerG31 respectively), because some portions of the
chromosomes were not well sampled by the k-mers. We found a strong linear relationship
between Ba31 coverage and BCerG31 coverage within B. anthracis genome subsamples
(Pearson’s Correlation r = 0.99, p< 0.001, Fig. S2). As expected, the same relationship did
not appear when we subsampled non-B. anthracis BCerG members (Pearson’s Correlation
r = 0.74, p< 0.001, Fig. S3). However, we did see a small number of Ba31 k-mers detected,
which we suspected were due to random errors introduced by Illumina sequencing (Fig. 4).
The counts of false positive Ba31 k-mers scaled with the approximate genetic distance to
B. anthracis (as measured by mash Ondov et al., 2016) (Fig. S4). We simulated synthetic
data for a group of BCerG strains most closely related to B. anthracis (Fig. 3). We developed
a linear regression model to relate BCerG k-mer coverage and sequencing errors based on
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Figure 4 Linear regressionmodel fit of BCerG coverage and false positive Ba31 counts.We created
random synthetic FASTQ files based on BCerG chromosomes from the clade closest to B. anthracis (blue
in Fig. 3) at different genome coverages and counted the false positive Ba31 k-mers. Shown is the fit of a
linear regression model with an intercept of 0, with BCerG31 coverage as the independent variable and
the Ba31 false positive count as the dependent variable. The solid line shows the predicted values from the
model, and the dashed line reflects the upper 99% prediction interval for the parameters, which we use in
the analyses above.

Full-size DOI: 10.7717/peerj.5515/fig-4

this group (Fig. 4). For every unit of BCerG31 k-mer coverage, we predicted 172 Ba31 false
positive k-mer counts.

A “specialist” model to interpret patterns of B. anthracis genetic
signatures in metagenome samples
In real metagenome samples B. anthracis, if present, may only account for a low proportion
of the total reads and may also be mixed with higher proportions of closely related BCerG
strains. We sought to use the k-mer sets developed in the previous sections and knowledge
of the lef gray zone coverage and BCerG false positive rate to interpret both synthetic and
real metagenome datasets. The logic for assignment is shown in Table 1 and Fig. S5.

For our synthetic dataset we mixed low coverage B. anthracis with higher coverages of
BCerG sequence data (see Methods). We calculated the BCerG31 and Ba31 coverages for
each mixture. Based on the BCerG sequence error model, we calculated the 99% count of
Ba31 signatures predicted to be present by sequencing error under the assumption that
there was no B. anthracis present and that all BCerG were drawn from the most closely
related clade (Fig. 3). We also reported whether the Ba31 coverage lay in or above the gray
zone (Table 2, File S2, Fig. S6). When B. anthracis was below 0.003× genome coverage
(approximately 16,000 bp), we could not distinguish its presence from errors produced in
the absence of B. cereus. As expected, we found that the level of BCerG coverage determined
the lower limit to differentiate genuine Ba31 hits from sequencing errors. At 75× BCerG
coverage the required B. anthracis coverage to differentiate Ba31 matches from sequencing
errors doubled to 0.006×. The threshold for accurate detection was further raised to 0.01×
B. anthracis genome coverage at 100× BCerG coverage.
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Table 1 Potential outcomes of B. anthracis detection, given matches to the Ba31 set in a shotgunmetagenome dataset. This table discusses the
interpretation of four cases when Ba31 k-mer matches are found in the dataset. Columns 1–3 are; lef31 match; whether Ba31 coverage is in the Gray
Zone; and whether Ba31 coverage is above the 99% of the error model based on BCerG coverage.

Case Lef31 Gray Zone Exceeds 99% P.I.a Interpretation

1 yes yes or no yes or no Evidence of lethal factor gene, could be B. anthracis or a B. cereus
strain carrying the pXO1 plasmid.

2 no yes yes Possible B. anthracis or closely related strain based on high Ba31
counts but genome coverage too low to guarantee seeing the lef gene.
Requires more sequence coverage and/or validation by PCR or other
methods.

3 no no yes Ba31 matches exceed what is expected by the BCerG error model, but
are at a level of genome coverage at which lethal factor should have
been detected. Most likely explanation is B. anthracis strain cured of
pXO1 or unsequenced lineage closely related to B. anthracis.

4 no yes or no no Most likely scenario is that BCerG background produced Ba31 k-
mers through random errors but impossible to also rule out presence
of low coverage B. anthracis

Notes.
aPrediction interval.

In contrast, when the samples were classified using KrakenHLL (Breitwieser & Salzberg,
2018), an accurate generalist program based on 31-mers, we found that all were predicted
to contain B. anthracis, including negative controls (Table 2). The B. anthracis calls were
made because of the sequence errors from the high coverage BCerG genomes.

Finally, we tested our model against the NYC dataset (Table 3, File S2). All 1,458 samples
were negative for lef31, in line with the conclusion reached from re-analysis of the dataset
that B. anthracis was absent from the NY subway (Mason, 2015). We found that 1,367 of
the 1,458 samples had at least one BCerG31 k-mer match and, of these, 1,085 contained at
least one Ba31 match. We identified 34 samples with Ba31 counts above the 99% threshold
predicted by the BCerG coverage. These samples did not include the two ( P00134 and
P00497), previously flagged as B. anthracis positive (Afshinnekoo et al., 2015a) (Table 3).
KrakenHLL also classified each these 34 samples as positive for B. anthracis

DISCUSSION
In this work we have described a significant update to a B. anthracis specific 31-mer set
that was introduced in earlier blog posts (Petit III et al., 2015; Minot et al., 2015) and we
have shown how this set can be used to interpret B. anthracis specific signatures in Illumina
metagenome samples. We chose to use k-mer-based signatures for the ease and speed of
computation, with the length of 31 nt selected as it was identified as the shortest likely to
be unique across bacteria datasets (Koslicki & Falush, 2016).

Some species present unusual challenges for metagenome identification. There is no
consistently applied definition for the boundary that divides bacterial species based on
DNA sequence identity and in some cases the presence or absence of mobile elements
like plasmids and phages are required for speciation. B. anthracis is closely related to
non-biothreat species and acquires its enhanced virulence from genes on mobile plasmids.
Such species can be hard to model using ‘‘generalist’’ programs (such as Kraken) that
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Table 2 Artificial mixtures of low coverage B. anthracis and high coverage B. cereus . This table shows some key results from more than 300 ar-
tificial mixtures of B. anthracis and B. cereus sequences created to test our specialized model (File S1). The table includes three B. anthracis coverages
for each B. cereus coverage. The B. anthracis simulated coverages represent the minimum B. anthracis coverage, the coverage at which B. anthracis
was detectable, and the maximum B. anthracis coverage. The first two columns are the coverage in the artificial mixtures of B. cereus and B. anthracis
genomes, respectively. The third column is the observed BCerG31 k-mer coverage. Columns 4-6 are the observed number of Ba31 k-mers, the ex-
pected number of Ba31 k-mers based on the BCerG31 coverage (see Fig. 4) and the 99% prediction interval of the model, which we take as an in-
dicative worst case threshold. The seventh column summarizes whether the observed Ba31 is greater than the 99% P.I. The eighth column is whether
the Ba31 coverage is in the ‘‘gray zone’’ (<0.18× coverage). ‘‘No’’ means the Ba31 exceeds the threshold (note it is possible for the Ba31 coverage to
be at gray zone level but still have a positive match to a lef31k-mer). The final column shows whether KrakenHLL (Breitwieser & Salzberg, 2018) run
on the sample predicted the presence of B. anthracis. This table shows that false positives k-mers resulting from high BCerG coverage limit the detec-
tion of B. anthracis k-mers (Ba31) in mixed cultures. Below 0.006× (75×-fold B. cereus) and 0.01× (100×-fold B. cereus) B. anthracis genome cov-
erages, true positive Ba31 matches cannot be differentiated from false positive matches. KrakenHLL predicted B. anthracis to be present even when it
was not because of the background BCerG genomes coverage.

Artificial genome coverage Ba31 count

B. cereus B. anthracis BCerG31
coverage

Observed Model
fit

Model
upper
99% P.I.a

Exceeds
99% P.I.a

lef31
gray
zone

KrakenHLL

0× 0.001× 0.00002 10 1 331 No Yes Yes
0× 0.003× 0.00245 346 1 332 Yes Yes Yes
0× 0.2× 0.123 25,396 21 352 Yes No Yes
1× 0× 0.593 99 102 433 No Yes Yes
1× 0.003× 0.610 444 104 437 Yes Yes Yes
1× 0.2× 0.727 25,627 125 456 Yes No Yes
5× 0× 3.048 487 524 855 No Yes Yes
5× 0.003× 3.060 919 526 857 Yes Yes Yes
5× 0.2× 3.155 25,502 542 874 Yes No Yes
10× 0× 6.115 1,050 1,051 1,382 No Yes Yes
10× 0.004× 6.100 1,531 1,048 1,379 Yes Yes Yes
10× 0.2× 6.450 26,346 1,074 1,405 Yes No Yes
25× 0× 15.277 2,516 2,625 2,957 No Yes Yes
25× 0.004× 15.174 3,075 2,608 2,939 Yes Yes Yes
25× 0.2× 15.339 27,536 2,636 2,967 Yes No Yes
50× 0× 30.381 5,058 5,221 5,552 No Yes Yes
50× 0.005× 30.438 5,726 5,231 5,562 Yes Yes Yes
50× 0.2× 30.595 29,766 5,257 5,589 Yes No Yes
75× 0× 45.753 7,323 4,530 8,194 No Yes Yes
75× 0.006× 45.699 8,351 7,853 8,184 Yes Yes Yes
75× 0.2× 45.859 31,971 7,881 8,212 Yes No Yes
100× 0× 60.926 9,633 10,470 10,801 No Yes Yes
100× 0.01× 60.958 11,020 10,475 10,807 Yes Yes Yes
100× 0.2× 61.093 33,761 10,498 10,830 Yes No Yes

Notes.
aPrediction interval.

attempt to classify every read in the dataset into one of thousands of taxonomic groups.
We use a ‘‘specialist’’ approach aiming to solve a narrow problem that can be used to
augment the predictions of generalist software. Specialist analyses can take advantage of
unique features of the system and can also afford more effort in the curation of training
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Table 3 Reanalysis of NYC subwaymetagenome sequencing.We counted Ba31, BCerG31 and lef31 k-mers in 1,458 NYC subway metagenomic
samples (Afshinnekoo et al., 2015a; Afshinnekoo et al., 2015b). The table is a breakdown of samples that were within the gray zone and/or had Ba31
matches that exceed the 99% prediction interval. Columns 2–8 display the same data types as columns 3–9 in Table 2. The additional lef column
shows whether lef31 matches were identified or not. The final column provides the outcome case of the sample (Table 1). This table presents four
samples excerpted from the complete results for all samples (File S2). There is one sample within the gray zone (P00738), two from the original
study (P00134 and P00497) and an outlier of samples which exceed the 99% prediction interval (P00981).

Ba31 Count

Sample BCerG31
coverage

Observed Model
fit

Model
upper
99% P.I.b

Exceeds
99% P.I.b

Gray
zone

KrakenHLL lef Outcome
case

P00134a 19.71 2,755 3,387 3,718 No No Yes No 4
P00497a 4.05 953 696 1,027 No No Yes No 4
P00981 1.32 20,079 226 558 Yes No Yes No 3
P00738 0.002 396 1 331 Yes Yes Yes No 2

Notes.
aSamples previously identified as containing B. anthracis.
bPrediction Interval.

data. In this case, we designed 31-mer signature sets based on comparison of hundreds
of complete Bacillus genomes and we incorporated knowledge of false positive k-mers
likely to be produced by close relatives of B. anthracis to develop a ‘worst case’ linear
regression model to differentiate B. anthracis from sequencing errors. We also used the
fact that the presence of a specific gene (lef ) was diagnostic for anthrax. In designing
our k-mer sets we encountered some rare cases of taxonomic mis-assignment in public
datasets and were able to take corrective action (Fig. 3). Generalist programs also rely
on the same taxonomy and reference sequence databases, but it is harder to detect small
errors that lead to mis-assignments when done on a large scale (Nasko et al., 2018). If we
were to attempt approaches to specifically detect other known B. cereus strains that contain
pXO1(Hoffmaster et al., 2004; Klee et al., 2010), we would have to develop and test new
k-mer sets based on their unique chromosomal SNPs. Although we concentrate here on
B. anthracis and BCerG, specialist methods could also be developed for other bacterial
pathogens (e.g., Yersinia pestis and Shigella sonnei) using a similar strategy of accounting
for possible non-pathogen close relatives in the sample and the diagnostic presence of high
consequence virulence genes acquired by horizontal transfer.

Even when a specialized algorithm has been developed, judgement is still required in
interpreting results. In the case of the Bacillus genomes in particular, DNA extraction biases
may affect results in ways we cannot assess without empirical experiments. We can’t tell
what proportion of the DNA came from lysis-resistant spores and what proportion was
from the more fragile vegetative state, and how this balance might vary between strains
across environments. Similarly, using a different sequencing technology, such the Pacific
Biosystems SMRT system, with a different error profile, would require recalibration of the
model.

Our reanalysis of the NYC data (Afshinnekoo et al., 2015a) showed that there was no
direct evidence for the lethal factor k-mers in the metagenome samples (File S2). This
confirms other work (Mason, 2015; Minot et al., 2015; McIntyre et al., 2017), and together
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with the low prior probability of encountering B. anthracis in New York City, suggests
that the samples taken were all negative for anthrax. The two samples originally flagged
as possibly positive (Table 3) fell under case 4 (Table 1), as did 1,049 out of the other
1,456 samples. There were 373 samples with no Ba31 k-mer matches. These are all most
likely true negatives, although, as we showed in the synthetic dataset, high BCerG coverage
can mask the signal of low coverage B. anthracis (Table 2). To get a true negative would
theoretically involve sequencing every cell in the sample (assuming perfectly efficient DNA
preparation), which is impossible currently for all but the simplest communities. The limit
of detection will be a complex calculation that involves the amount of DNA sequence
generated and the complexity of the microbial community. Negative (and positive) calls
ultimately have to be supported through sensitive detection assays such as PCR and/or
culture.

We identified 34 samples above the BCerG thresholds for our model (Table 3). All
the samples fell under case 3 except a single sample which fell under case 2 (Table 1).
An outlier of case 3 samples, P00981, taken from a metal handrail on the A train route
(Afshinnekoo et al., 2015a), had high Ba31 counts (n= 20,079). As we collect more genomes
of B. cereus group we may see more Ba31 k-mers in BCerG genomes. These samples may
contain members of yet unencountered lineages more closely related to B. anthracis than
previously seen, or possibly the result of recent recombination between B. anthracis and B.
cereus genomes (although the latter has not been reported). It is important that these strains
are isolated, sequenced and added to public databases to iteratively improve pathogen
detection. The single case 2 sample, P00738 (Table 3), was also on a metal handrail from
the A train route, although sampled 3 days earlier than P00981. This sample was possibly
the most problematic because the Ba31 counts were in the gray zone, meaning there was
not enough coverage to rule out lef being present. Most likely, this sample contained
another near-B. anthracis strain, but case 2 samples should be a priority for retesting by
culture and PCR methods.

CONCLUSIONS
If B. anthracis, or another BCerG strain containing pXO1, is present in a shotgun
metagenome sample at high genome coverage, identification of lef k-mers is a strong signal
for the likely presence of anthrax-causing bacteria. We showed that using a B. anthracis
specific k-mer set alone to call the presence ofB. anthracis producedmany false positive calls
because sequencing errors of common co-resident BCerG bacteria. We developed models
to partition cases that contained evidence of possible low coverage B. anthracis, accounting
for B. cereus coverage. However, in simulations, we showed that false negative results can
arise when the BCerG coverage is high. Reanalysis of the NYC subway metagenome study
confirmed the absence of B. anthracis containing lef but we found evidence in at least
two samples of BCerG strains that contained what were considered B. anthracis specific
sequences. Culturing strains such as these, genome sequencing and sharing to the public
domain will help improve B. anthracis detection in metagenome shotgun samples.
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