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ABSTRACT

Exotic species introductions are a global phenomenon and protected areas are
susceptible to them. Understanding the drivers of exotic species richness is vital for
prioritizing natural resource management, particularly in developing countries with
limited resources. We analyzed the influence of coarse resolution factors on exotic
species richness (plants, mammals, and birds) in Argentina’s National Parks System.
We collected data on native species richness, year of park formation, park area,
region, elevation range, number of rivers crossing area boundaries, roads entering
area, mean annual rainfall, mean annual temperature, mean annual number of visitors,
and Human Influence Index within and surrounding each park. We compiled 1,688
exotic records in 36 protected areas: 83% plants and 17% animals (9.5% mammals,
5.5% birds, 1.5% fishes, 0% amphibians, 0% reptiles). The five parks with the most
exotic species (all taxa combined) were in north Patagonia. Exotic grasses were the
most common exotic plants, and within animals, lagomorphs and feral ungulates were
remarkably widespread. Exotic plant richness was mostly influenced by temperature
and native plant richness, while exotic mammal and bird richness was driven mostly
by anthropogenic variables, with models explaining 36—45% of data deviance. Most
variables that positively influenced exotic taxa were indirectly related to an increase
in spatial heterogeneity (natural or anthropogenic), suggesting greater niche space
variability as facilitators of exotic richness increase. Additional data are needed to
further investigate the patterns and mechanisms of exotic species richness in protected
areas, which will help to prioritize the greatest needs of monitoring and management.

Subjects Biodiversity, Conservation Biology, Ecology

Keywords Exotic mammals, Exotic plants, Biological invasions, Non-native species, Latin
America, Exotic birds, Argentina, Protected area, Alien species

INTRODUCTION

Creating protected areas is one of the most important strategies for biodiversity
conservation (Noss, 1996; Bruner et al., 2001). However, policy and management in
and around protected areas are often ineffective (Pressey, Visconti ¢» Ferraro, 2015), and
anthropogenic disturbances to protected areas are widespread and common (Macdonald
et al., 1989; Brashares, Arcese ¢~ Sam, 2001; Liu et al., 2001; Barber et al., 2011; Laurance et
al., 2012). Exotic species occur in most ecosystems around the globe (Pysek ¢ Richardson,
2010), and their impact on protected areas is amplified because of the role of these
areas in preserving biological diversity and maintaining essential services for many
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communities (Foxcroft, Pysek ¢ Richardson, 2014). Human activities adjacent to protected
areas can have numerous negative consequences, including exotic species introductions
(e.g., Pauchard & Villarroel, 2002) and landscape fragmentation, further isolating protected
areas and increasing their susceptibility to disturbance (Spear et al., 2013). Protected area
vulnerability is particularly important in developing countries with limited resources to
implement effective protection (Bonham, Sacayon & Tzi, 2008).

Research on exotic species has described many aspects of their occurrence, establishment,
spread, and impacts (Catford, Jansson ¢ Nilsson, 2009; Lowry et al., 2012), which are in turn
related to different branches of ecological theory. In particular, community ecology states
that for an introduced species to establish, grow, and spread in a new area, it must encounter
the right combination of environmental conditions, resources, and enemies in that invaded
community (Lodge, 1993; Chesson, 2000); also termed a “niche opportunity” (Shea ¢
Chesson, 2002; Catford, Jansson ¢ Nilsson, 2009). Several hypotheses have been developed
that are related to all or portions of the niche opportunity concept. The community
richness hypothesis (Elton, 1958) states that the process of exotic species establishment is
affected by the number of native species in the community; a greater number of native
species should collectively offer more potential negative interactions, such as competition
or predation, to the introduced species. Alternatively, the rich get richer hypothesis states
that areas of higher native species diversity also support a high number of exotic species
through increased resource availability and diversity (Stohlgren, Barnett ¢» Kartesz, 2003).
The environmental hypothesis states that habitats with high environmental variability and
productivity contain a diverse array of niches that can host a greater number of exotic
species (Melbourne et al., 2007; Catford, Jansson ¢ Nilsson, 2009). Additionally, the human
disturbance hypothesis states that disturbance can act as a facilitating agent, decreasing
interspecific competition or predation in the invaded community (Elton, 1958; Hobbs
¢ Huenneke, 1992). Evidence of human disturbance benefiting invaders is common in
many terrestrial and aquatic communities (Johnson, Olden & Vander Zanden, 2008; Kalwij,
Robertson & Van Rensburg, 2008; Crooks, Chang ¢ Ruiz, 2011).

The drivers of exotic species richness can differ from drivers of invasive species richness
(i.e., species that cause negative ecological or socioeconomic effects), and research on
biological invasions should consider investigating all exotic species, not only those known
to have expanded and caused negative impacts (Spear et al., 2013). Understanding what
drives exotic species richness and preventing introductions is the most efficient and
cost-effective management option for protected areas (7w, 2009). Around the globe, the
number of exotic species in protected areas is a consequence of several interacting factors,
such as the size and age of the park, native plant richness, and human density in surrounding
areas (e.g., McKinney, 2006; White & Houlahan, 2007).

Biological invasions research has favored understanding plant introductions, especially
in developed countries (Pysek et al., 2008; Hulme et al., 2014). Yet in developing countries
biodiversity threats are greatest and resources most limited (Myers et al., 2000), with
research to understand and control exotic species in these countries much needed (Nuiez
¢ Pauchard, 2010). At least 41 of the world’s 100 most invasive species are established in
South America (IUCN, 2000), where many invasions are poorly studied or not considered
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as a priority among governments and citizens. Some exotic species are even favored and
protected for their economic benefits to local communities (Lambertucci ¢ Speziale, 2011;
Speziale et al., 2012). Argentina is severely affected by the introduction of exotic species
(Novaro, Funes ¢» Walker, 2000; Anderson ¢ Valenzuela, 2014); however, there are few
broad scale reviews on this matter (e.g., Novillo ¢ Ojeda, 2008; Merino, Carpinetti ¢» Abba,
2009; Ballari, Anderson ¢ Valenzuela, 2016). At least 402 exotic species are present in
Argentina, of which 40%-50% have become invasive, causing considerable environmental
damage (Brown et al., 2006). Our objective was to analyze how environmental, biotic, and
anthropogenic factors influence exotic species richness within terrestrial protected areas in
Argentina, and to compare across taxonomic groups to provide a basis for future research
and management.

MATERIAL AND METHODS

Study area

The Argentinian National Parks Administration manages a system of national parks
(hereafter NP), national reserves, national natural monuments, and marine parks co-
managed with provincial governments. Argentina’s National Park System represents an
array of protected areas of different sizes, urbanization levels, and climate. Together they
comprise about 43,000 km?, (1.3% of the national territory), and are the protected areas
with highest protection in the country: permanent monitoring and only tourism allowed
in most areas (APN, 2007; Marinaro, Grau ¢ Ardoz, 2012). The remaining protected areas
(e.g., provincial parks, natural reserves) have little to no monitoring and allow high
human disturbance (e.g., cattle grazing, forestry). Often, little or no biodiversity data
are available (Brown et al., 2006), and part of them function as “paper parks” (Berfonatti
& Giacchino, 2003), i.e., protected areas that have little or no formal management on
the ground (Bonham, Sacayon & Tzi, 2008). The 44 terrestrial protected areas in the
Argentinian National Parks System range from 0.08 to 7,270 km?, with variable adjacent
urbanization and levels of human disturbance and diverse climates and biomes (SIB,
2014). A map of protected areas within the National Parks System can be accessed at
http://www.sib.gov.ar/regiones (SIB, 2014).

Data compilation

We compiled an initial list of 15 factors from 36 terrestrial protected areas (the areas
excluded were data deficient). We obtained species lists and maps from the Biodiversity
Information System (SIB, 2014) by the Argentinian National Parks Administration, which
aims to collect, classify and organize biological data on protected areas under their
jurisdiction. Data are evaluated and analyzed by technical staff before being entered into
the species list for each area.

For each protected area, we collected the number of native and exotic species of plants,
fishes, amphibians, reptiles, birds, and mammals (other taxa were data deficient). We
also collected information on park age (years since designation), and park area (ha). Each
area was assigned to one of six political regions predefined (SIB, 2014): Centro (Center),
Centro-Este (East-center), Noreste (Northeast), Noroeste (Northwest), Patagonia Norte
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(North Patagonia) and Patagonia Austral (South Patagonia) (SIB, 2014). Using topographic
maps (1:200,000) (SIB, 2014), we determined elevation range (100 m resolution), number
of permanent rivers crossing protected area boundaries, and number of roads (all types)
entering protected areas. We collected data on climate (1960-2014) from the National
Weather Service (Servicio Meteorolégico Nacional, 2015), which provides data on mean
annual rainfall and mean annual temperature at national scale. Weather data was extracted
from a national map divided into areas showing different mean values. Mean annual
temperature ranged from 4 to 24 °C, and mean annual rainfall ranged from 25 to
1,800 mm. Mean annual number of visitors during 2003-2011 was obtained from an
annual government report from the Resource Management Division of the National Parks
Administration (APN, 2012). The Human Influence Index (hereafter HII) is a global dataset
of 1-kilometer grid cells, combining population pressure, land use and infrastructure, and
transportation access (WCS and CIESIN, 2005). We extracted the mean HII value and HII
range (1 km res.) within each protected area; and the same parameters for a 20 km buffer
zone around park borders representing surrounding disturbance (Spear et al., 2013).

Analyses

We performed Spearman ranked correlations to assess collinearity of predictor variables
(Ir] > 0.70; Dormann et al., 2013). We used generalized linear models (GLMs) in software
R (R Core Team, 2015) using package lme4 (Bates et al., 2015) and fit models using a
Poisson distribution or negative binomial distribution for models with high overdispersion
(i.e., ¢ > 1.0; Quinn & Keough, 2002). We tested model fit for both distributions using a
X? goodness of fit test (o« = 0.05). Each park was our sample unit, and we specified exotic
plant, exotic mammal, and exotic bird richness as the response variable for each model set,
omitting fishes, reptiles, and amphibians from analyses due to the low number of exotic
records.

Factors used to address the rich get richer hypothesis and the community richness
hypothesis were number of native plants (for all taxa), number of native mammals (for
exotic mammals), and number of native birds (for exotic birds). For the human disturbance
hypothesis, factors included park age, number of roads entering area, mean number of
visitors per year, and mean and range HII within and around the protected area. For
the environmental hypothesis, factors included elevation range, park area, mean annual
temperature, mean annual rainfall, number of rivers crossing area boundaries, and region.

We selected factors for each taxon-specific model by regression of each taxon on
individual factors (univariate models). We then combined significant (o < 0.05) factors
into a model set for each taxon. Since each factor may independently influence species
richness, we tested all additive combinations of selected factors within each taxon as
main effects. Factors were centered (mean = 0) and scaled (standard deviation = 1)
before analyses to allow equal weight among factors measured on different scales. We
used sample size corrected Akaike Information Criterion (AIC,) to rank model support
for each taxon, and considered models competing if within 2 AIC. units of the most
parsimonious model (Burnham & Anderson, 2002). The negative binomial distribution
does not allow for model averaging; therefore we selected the simplest top ranked model
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as the best fit (e.g., Spear et al., 2013). Choosing the simplest model within nested top
models is a conservative approach appropriate to avoid overfitting (Richards, Whittingham
¢ Stephens, 2011). Parameter estimates were considered significant if o < 0.05. Finally,
we calculated the amount of deviance explained adjusted for the number of observations
and parameters for each competing model (adj. D?; Guisan ¢~ Zimmermann, 2000) using
package modEvA (Barbosa et al., 2015).

RESULTS

We compiled 22,963 native and 1,688 exotic records in Argentina’s National Parks System.
Records of exotic species were 83% plants and 17% animals (9.5% mammals, 5.5% birds,
1.5% fishes, 0% reptiles, and 0% amphibians). Among vertebrates, we found a strong skew
towards exotic mammals and birds. Due to the very low number of exotic occurrences, we
omitted fishes, reptiles, and amphibians from subsequent analyses. There were no highly
correlated factors (|r| > 0.70).

The protected areas with most documented exotic species were Nahuel Huapi NP (227),
Lago Puelo NP (152), Lanin NP (107), and Los Alerces NP (97), all within the North
Patagonian region (Fig. 1). The protected areas with fewest documented exotic species
were San Antonio Reserve (five), Formosa Reserve (five), Rio Pilcomayo NP (eight), and
Tampalaya NP (nine), all in northern Argentina. Most frequently documented exotic plant
families included grasses (Poaceae) present in 33 of 36 areas (91%), composites (Asteraceae)
in 30 (83%), pink family (Caryophyllaceae) in 25 (75%), knotweed family (Polygonaceae) in
26 (70%), legumes (Fabaceae) in 25 (70%), and the rose family (Rosaceae) in 19 (52%). The
most frequently reported exotic mammals were lagomorphs (28 areas; 78%); specifically,
the European hare (Lepus europaeus) was present in 27 (75%). Following were domestic
ungulates (e.g., cows, horses, and sheep) present in 21 (57%), and rodents (Rattus sp. and
Mus musculus) listed in 11 areas (35%). Wild boar (Sus scrofa) was documented in 11 areas
(35%), and exotic cervids (e.g., Axis axis, Dama dama, Cervus elaphus) in eight (22%). For
carnivores, feral dogs (Canis familiaris) were reported in 11 areas (35%), American mink
(Neovison vison) in six (17%), and feral cats (Felis catus) in four (11%). The most frequent
documented exotic birds were the house sparrow (Passer domesticus) in 29 (78%), and
the rock dove (Columba livia) in 25 (67%). The cattle egret (Bubulcus ibis) is widespread
in Argentina’s protected areas (present in 33 areas [89%]), and while it is considered an
exotic species by the National Parks Administration (SIB, 2014) we did not include it in
subsequent analyses because it was not introduced by humans.

Exotic plants

Univariate models used for selection of variables in the global model for exotic plant
richness showed a positive influence of native plant richness (p < 0.001), park area

(p =0.034), elevation range (p = 0.003), rivers (p =0.009), region (only North Patagonia,
p=0.023), park age (p =0.020), and range HII (p =0.017), and a negative influence of
average temperature (p =0.002). Variables present in competing models included native
plant richness, mean temperature, and park area (Table 1). The top model suggested
exotic plant richness increased with native plant richness, and decreased with increasing
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Figure 1 Exotic species documented in Argentina’s National Parks System by protected area. (A) Pro-
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Table 1 Top models (AAICc < 2.00) of the most influential predictors on exotic plant, mammal, and bird species richness in Argentina’s Na-
tional Parks System. Number of parameters (K), log likelihood (LL), Akaike Information Criterion adjusted for small sample sizes value difference
with top model (AAICc), Akaike model weights (w), and adjusted deviance explained (Adj. D2 [%]) provided for each model.

Response Predictors K LL AAICc w Adj. D2 (%)
. Temp + native plants 4 —154.77 0.00 0.68 45.00
Exotic plants .
Temp + native plants 4 area 5 —154.14 1.46 0.33 45.03
Mean HII + range HII 3 —380.03 0.00 0.32 42.72
. Mean HII + range HII + elevation 4 —78.83 0.16 0.30 43.51
Exotic mammals .
Mean HII + range HII + native plants 4 —=79.11 0.71 0.23 42.91
Mean HII + range HII + rivers 4 —79.54 1.56 0.15 41.99
Range HII 2 —56.59 0.00 0.51 36.54
Exotic birds Range HII + roads 3 —56.04 1.28 0.27 39.04
Range HII 4 rivers 3 —56.19 1.58 0.23 37.83

Table 2 Beta coefficients and their standard errors (SE) of the most influential predictors explaining
the number of exotic plants, mammals, and birds in Argentina’s National Parks System.

Exotic plants Exotic mammals Exotic birds
B (SE) B (SE) B (SE)
No. native plants 0.67 (0.12)
Mean temperature —0.35 (0.13)
Mean HII ~0.29 (0.10)
Range HII 0.42 (0.06) 0.29 (0.08)°
Distribution Negative binomial Poisson Poisson

Notes.

*denotes predictors significant at o < 0.05.
average temperature (Table 2). Park area (8 = —0.18, SE = 0.15) was included with mean
temperature and native plant richness in the only competing model, but was not significant
(p=0.24).

Exotic mammals

Univariate models used for selection of variables in the global model for exotic mammal
richness showed a positive influence of native plant richness (p = 0.001), park area
(p=0.001), elevation range (p = 0.001), rivers (p =0.004), region (only North Patagonia,
p =0.034), park age (p =0.011), roads (p =0.017), and range HII (p < 0.001), and

a negative influence of average temperature (p = 0.017), and mean HII (p = 0.045).
Variables present in competing models included Mean HII, Range HII, elevation, native
plants and rivers (Table 1). The top model for exotic mammal richness indicated that
richness increased with Range HII and decreased with increased Mean HII; Range HII
was the most influential factor (Table 2). Competing models also included Range HII and
Mean HII, in addition to elevation range (p = 0.11), native plant richness (p =0.18), or
rivers (p=0.32).
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Exotic birds

Univariate models used for selection of variables in the global model for exotic bird richness
showed a positive influence of native plant richness (p = 0.02), park area (p = 0.009), rivers
(p=0.012), roads (p = 0.006), range HII (p < 0.001) and mean HII (p =0.007). Variables
present in competing models for exotic bird richness included Range HII, roads and rivers
(Table 1). The top model included Range HII and indicated exotic bird richness increased
with Range HII (Table 2). Competing models also included Range HII, but included either
roads (8=0.12, SE=0.11, p=0.287) or rivers (8 =0.10, SE =0.10, p =0.361).

DISCUSSION

In Argentina’s national park system, exotic plant richness was mostly influenced by native
plant richness, supporting the rich get richer hypothesis, while exotic mammal and bird
richness was driven mostly by anthropogenic factors, supporting the human disturbance
hypothesis. The community richness hypothesis was not supported; no exotic taxon
was negatively influenced by the number of native species. The factors with a consistent
positive influence across taxa could be related, although indirectly, to an increase in
spatial heterogeneity, either natural (native plant richness, e.g., Deutschewitz et al., 2003)
or anthropogenic (spatial range of human disturbance). This supports that niche space
variability and opportunities for colonization may facilitate establishment, in alignment
with the “niche opportunity” concept (Shea & Chesson, 2002). We found that neither
the mean nor range index of human disturbance in areas surrounding protected areas
influenced exotic richness. In contrast, human population surrounding protected areas in
South Africa was the best predictor of exotic plants and animals (Lodge, 1993).

We identified several exotic species that have become invasive in Argentina (e.g., wild
boar, European hare, thistles Cardus sp., wire grass Cynodon dactylon) that appear common
within the national parks system. A national assessment of invasive mammals in Argentina
found that half of the highest risk species were feral domestic animals (Lizarralde, 2016);
in this study we found feral ungulates to be remarkably widespread in protected areas,
followed by feral dogs in one third of the areas.

Since survey and research efforts vary at different regions and areas, data are likely
of heterogeneous quality. Broad scale species lists suffer from inevitable flaws, such
as imperfect detection (Royle, Nichols ¢ Kery, 2005), and usually underestimate species
richness numbers (McGeoch et al., 2012). However, national systematic species surveys
are expensive and time consuming, constraining conservation planners to make best use
of incomplete data (Braunisch ¢ Suchant, 2010), particularly in countries with limited
resources for management actions. In addition, we analyzed current exotic species richness
patterns under the assumption that such richness can be explained by current or recent
conditions. Worldwide, invasion patterns across taxa are temporally dynamic and the
increase in numbers of exotic species does not show any sign of saturation (Seebens et al.,
2017). Despite the expected limitations of the data, 36-45% of the deviance (i.e., lack of fit)
was explained by our models, representing considerable support for observed relationships.
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Exotic plants

Most exotic species were plants, as found for protected areas in other countries (e.g.,
Spear et al., 2013). The most frequently reported exotic plants were grasses (e.g., Lolium
multiflorum, Cynodon dactylon) and other flowering plant species (e.g., Anthemis cotula,
Cardus sp, Taraxacum officinale) that are highly invasive and benefited by disturbance
(IUCN, 2000). Exotic plants are commonly introduced through anthropogenic activities
such as agriculture, transportation, or touristic activities and infrastructure (Kolar ¢
Lodge, 2001; Pickering ¢ Hill, 2007), and disturbance is an important driver of plant spread
(Christen & Matlack, 2009), particularly for exotic grasses (Veldman ¢ Putz, 2010). Yet,
none of the anthropogenic variables we analyzed were strongly supported as pathways
for exotic plants; it is possible we did not include variables that represented the human
activities more directly related to plant introductions in our system.

Parks with greater native plant species richness were not more resistant to successful
introductions; on the contrary, exotic plants were positively related to native plant richness
supporting the rich get richer hypothesis (Stohlgren, Barnett ¢» Kartesz, 2003). Similarly,
areas with high native plant richness contained more exotic plants in USA (Stohlgren
et al., 2008) and Argentina (Speziale & Ezcurra, 2011). Native and exotic species should
have similar responses to broad environmental conditions (Levine ¢ D’Antonio, 1999);
being indirectly, but positively, correlated to habitat heterogeneity and increasing available
resources (Davies, 2009). However, the exotic vs. native richness relationship appears
dependent on spatial scale; being positively associated at large scales and negatively at
smaller scales (Shea ¢ Chesson, 20025 Chen et al., 2010).

Exotic plant richness was lower in warmer protected areas. Temperature positively
influenced exotic plant richness in some European reserves (Pysek, Jarosik ¢ Kucera,
2002), but had no effect in US protected areas (McKinney, 2002; Allen, Brown &~ Stohlgren,
2009). Warmer temperatures may improve the likelihood of species establishing and
reproducing successfully (Le Roux et al., 2013), and a regional study of exotic plants within
Patagonia concluded warmer temperatures likely benefited invaders (Speziale ¢ Ezcurra,
2011). However, exotic species richness was greater in the North Patagonia region, despite
lower mean temperatures relative to other regions. This unexpected relationship may
be explained by increased pathways for introductions from high outdoor recreation and
different management policies (See ‘Regional Differences’ below). For example, even
Patagonian parks located in remote mountain areas contain exotic plants, potentially
because of their popularity as mountaineering destinations (Barros ¢» Pickering, 2014).

Larger areas are usually associated with greater environmental heterogeneity (Wiens,
1989), and may provide more opportunities for colonizing species (MacArthur & Wilson,
1963). However, in our system, park area was not influential on exotic plant richness.
Similarly, support from other studies has been very limited, with effects of area on number
of exotic species ranging from non-influential (Pysek, Jarosik ¢» Kucera, 20025 Allen, Brown
¢ Stohlgren, 2009) to influential but having a negligible effect (McKinney, 2002).
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Exotic mammals
The range of human disturbance within each park was the most influential factor on
exotic mammal richness. Anthropogenic influence, represented mostly as disturbance and
propagule pressure, has often been associated with exotic species richness (e.g., Chown,
Hull & Gaston, 2005; Le Roux et al., 2012), including in protected areas (McKinney, 2006;
Spear et al., 2013). The links between human activities and mammal introductions around
the world are abundant (e.g., livestock, companions, commensals, or sports; Clout ¢
Russell, 2008). In our study, most exotic mammals belong to species usually introduced
for food (e.g., cows, sheep), hunting (e.g., lagomorphs, ungulates), or are associated with
human-modified areas (e.g., rodents). This indicates that direct human actions, either
by intentional introductions or urban expansion, are the main causes increasing exotic
mammal richness in our study area, although successful establishment may be dependent
on other conditions (e.g., climate, Clout ¢» Russell, 2008). Even though the most influential
factor was the range of human disturbance (with a positive effect), the mean human
influence value had an opposite relationship with exotic mammal richness. We propose
this unexpected relationship is a result of large and remote parks, mostly in North Patagonia,
having low mean disturbance values, but high range disturbance values, representing that
the parks had large sections with low disturbance, but they also included smaller sections
with very high human disturbance that could create pathways for introductions.
Elevation range, native plant richness, and number of intersecting rivers did not
influence exotic mammal richness. Range in elevation can represent habitat heterogeneity
and extreme climatic environments, and had a positive association with exotic plant
richness among US national parks (Allen, Brown ¢ Stohlgren, 2009). Elevation remains a
scarcely studied factor in relation to exotic species, possibly because large scale variation in
elevation may not sufficiently describe small scale habitat variability (Stohlgren et al., 2005).
On the other hand, native plant richness is usually correlated to increased heterogeneity
and resources (Davis, Grime ¢ Thompson, 2000), and a US study of protected areas found
that it had a positive effect on exotic mammal richness (McKinney, 2006), but its influence
on exotic animals in this study was limited. Finally, rivers and riparian areas can serve as
corridors for mammals and plants (Naiman, Decamps ¢ Pollock, 1993; Less ¢ Peres, 2008)
but were of limited influence in our system; other studies have found mixed results (Allen,
Brown & Stohlgren, 2009; Spear et al., 2013).

Exotic birds

As with exotic mammals, range of human disturbance had the greatest influence on exotic
bird richness. Globally, exotic bird establishment appears to be influenced by the degree
of environmental similarity between the native range and introduction site (Blackburn &
Duncan, 2001); though Carrete & Tella (2008) suggested the most successful exotic bird
species are those caught in the wild and traded on the pet market. However, most exotic
bird species we documented were not pets, but human-associated birds (e.g., rock dove
and house sparrow), likely because urbanized birds have high establishment success in
novel environments (Moller et al., 2015).
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Riparian corridors can facilitate movement of some bird species (Gillies ¢ Clair, 2008),
and the amount of road networks and their proximity to natural communities potentially
make roads important pathways of invasion (Forman et al., 2003). However, roads and
rivers were not influential on exotic bird richness in our study, their influence may
have been unimportant compared to the range of combined anthropogenic disturbance.
Likewise, in South Africa roads were found to be non-influential on exotic richness (Spear
etal., 2013).

Regional Differences

We observed greater richness of exotic plants and mammals in North Patagonia, and the
five parks with most invasive species (all taxa combined) were located in this region (Fig. 1).
These parks are proximate to cities that are important tourist destinations, offering many
outdoor activities within protected areas that likely serve as pathways for exotic species
introductions (Barros ¢ Pickering, 2014). The policies applied to Patagonia protected areas
during the 20th century were eclectic: the objective of wilderness areas conservation was
followed, while initiatives to sell areas within the national parks and introduce exotic
species were permitted, even though this model was later rejected (Vejsbjerg, Niiiez ¢
Matossian, 2014). Consequently, many species have been introduced for forestry (e.g.,
conifers), fishing (e.g., salmonids), and hunting (e.g., European hare, wild boar, red deer)
(APN, 2007; Bonino Vasallo, 2010).

CONCLUSIONS

Exotic species introductions and invasions are widespread and protected areas are
susceptible to them, demonstrating that environmental protection is usually less effective
than desired (Pressey, Visconti & Ferraro, 2015), particularly in developing countries
(Bonham, Sacayon ¢ Tzi, 2008). Identifying patterns of exotic species richness is a first step
to develop conservation strategies, particularly when resources are limited. We found that
areas of high native richness and human disturbance heterogeneity appear more vulnerable
to exotic species establishment, therefore restricting human settlements or activities
(Foxcroft et al., 2011; Anderson et al., 2015) may limit the impacts of human disturbance.
Protected areas with greater range in human disturbance will face continuing pressure,
complicating management efforts. Limiting the use of exotic species for commercial

or recreational use within and adjacent to protected areas will likely facilitate control

of invasions (Ballari, Anderson ¢ Valenzuela, 2016; Lambertucci & Speziale, 2011). Our
inferences and interpretations are limited by availability and standardization of exotic
species data collected among Argentina’s national parks. Regional or taxa-specific reviews
on exotic species management actions have been recently published (Sanguinetti et al.,
2014; Lizarralde, 2016) which emphasize the lack of information and effective legislation.
It is imperative to allocate resources for comprehensive and systematic surveys of native
and exotic species richness (McGeoch et al., 2012), as well as the area they occupy, within
and outside all protected areas (not only national parks) in Argentina. This additional data
will help to further disentangle the patterns and mechanisms of exotic species richness and
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distribution, serving to prioritize protected areas with greatest need of monitoring and
conservation, and identify which actions would be most helpful.
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