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ABSTRACT
Circular RNA (circRNA) is an endogenous noncoding RNA with a covalently closed
cyclic structure. Based on their components, circRNAs are divided into exonic
circRNAs, intronic circRNAs, and exon-intron circRNAs. CircRNAs have
well-conserved sequences and often have high stability due to their resistance to
exonucleases. Depending on their sequence, circRNAs are involved in different
biological functions, including microRNA sponge activity, modulation of alternative
splicing or transcription, interaction with RNA-binding proteins, and rolling
translation, and are a derivative of pseudogenes. CircRNAs are involved in the
development of a variety of pathological conditions, such as cardiovascular
diseases, diabetes, neurological diseases, and cancer. Emerging evidence has
shown that circRNAs are likely to be new potential clinical diagnostic markers or
treatments for many diseases. Here we describe circRNA research methods and
biological functions, and discuss the potential relationship between circRNAs and
disease progression.
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INTRODUCTION
Circular RNA (circRNA) was considered as a class of endogenous noncoding RNA
(ncRNA) (Wilusz & Sharp, 2013), but it is now considered that circRNA can be translated
into functional polypeptides (Legnini et al., 2017; Pamudurti et al., 2017; Yang et al.,
2017b, 2018b). Unlike linear ncRNA, circRNA is formed with different combinations of
sequences and domains, and can be divided into three categories; namely, exonic circRNA
(ecRNA) (Zhang et al., 2014), circular intronic (ciRNA) (Zhang et al., 2013) and exon-
intron circRNA (ElciRNA) (Li et al., 2017b) (Table 1; Fig. 1). Similar to other ncRNAs, the
sequence and structure of circRNA determine its biological functions. CircRNA is mainly
located in the cytoplasm and is highly stable compared to other ncRNAs (Danan et al.,
2012). In addition, recent research has shown that the lengths of mature circRNA dictate
the mode of nuclear export (Huang et al., 2018). CircRNA is abundantly expressed and
evolutionarily conserved across eukaryotic organisms (Morris & Mattick, 2014;

How to cite this article Xu et al. (2018), A comprehensive review of circRNA: from purification and identification to disease marker
potential. PeerJ 6:e5503; DOI 10.7717/peerj.5503

Submitted 11 May 2018
Accepted 1 August 2018
Published 24 August 2018

Corresponding author
Kun Wang, wangk696@qdu.edu.cn

Academic editor
Juan Riesgo-Escovar

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj.5503

Copyright
2018 Xu et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.5503
mailto:wangk696@�qdu.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.5503
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


Table 1 The characteristics of different types of CircRNA.

Name Type Location Joint site Sequence feature Function

ecRNA (Zhang
et al., 2014)

exon cytoplasms 3′–5′ phosphodiester
bond

Formed by cyclization of exons
containing the reverse
complementary sequence of
introns and selective cyclization.

Functioning as miRNA sponges;
Interact with RNA-binding proteins
(RBPs); Participates in translation.

CiRNA (Zhang
et al., 2013)

intron nucleus 2′-5′ phosphodiester
bond

5′ splice site enriched with 7 GU
motifs and 3′ branch site contains
11 C motifs.

Regulation of gene transcription.

ElciRNA (Li
et al., 2017b)

exon–intron nucleus 3′-5′ phosphodiester
bond

Formed by cyclization of exons
containing the reverse
complementary sequence of
introns and selective cyclization.

Regulation of gene transcription.

Notes:
ecRNA, exon circRNA; ciRNA, intron circRNA; ElciRNA, exon-intron circRNA.

Figure 1 Characteristics of different types of circRNA. (A) mRNA: A class of single-stranded ribo-
nucleic acids with genetic information transcribed from deoxyribonucleic acid (DNA). (B) Exon skipping
event results in covalently splices and forms an ecRNA after the introns were removed. (C) The inter-
action between two RBPs can bridge two flanking introns together and form ecRNA, ElciRNA and
mRNA. (D) RNA polymerase cleaves the intron from pre-mRNA to form an annulus, the circRNA
formed in this manner is ciRNA. Full-size DOI: 10.7717/peerj.5503/fig-1
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Wang et al., 2014), and it plays critical roles in many diseases, including nervous
system disorders, cardiovascular diseases (CVDs), diabetes, and cancer (Burd et al., 2010;
Wang et al., 2017b). CircRNA governs gene expression through guiding a number of other
molecules, such as splicing factors, RNA polymerase II (Jeck et al., 2013), small nuclear
ribose nucleoprotein (snRNP) (Huang & Shan, 2015; Li et al., 2017b) and miRNAs
(Li et al., 2015a). These interactions promote or inhibit the transcription of the
corresponding mRNA.

SURVEY METHODOLOGY
Analysis: Through extensive literature searches, the role of circRNA in diseases and
the methods of circRNA detection and characterization were analyzed, indicating the
importance of circRNA and its research prospects, including our previous research
results combined with other research results.

BIOGENESIS OF CircRNA
CircRNA does not have terminal structures, such as a 5′ end cap and 3′ end poly
(A) tail, which are covalently closed to form a circular structure (Jeck et al., 2013).
Jeck and colleagues (2013) proposed two different models of exon circularization.
One model is intron-pairing-driven circularization (Fig. 2A), and the other model is
lariat-driven circularization (Fig. 2B) (Jeck et al., 2013). In the first mechanism, the
two introns that flank the exon or exons of the incipient circRNA have a complementary
structure to bind to each other. The pairing of the flanking introns brings the splice
sites close to each other, shaping a secondary structure that makes back-splicing possible.
In the second mechanism, a pre-mRNA is spliced, and two transcripts are produced
as follows: an mRNA from which one or more exons are missing; and a lariat consisting
of the skipped exons, which makes the circularization possible. The exon lariat is
spliced one more time to generate two other elements, namely a circRNA and an
intron lariat. Typically, many lasso structures are formed by introns, but they are
degraded by the branching enzyme (Rodriguez-Trelles, Tarrio & Ayala, 2006).
In these two typical models of circularization, ALU complementary flanking
elements (retrotransposons characterized by the action of the Arthrobacter luteus
(Alu) restriction endonuclease) repeated in intronic regions compete with canonical
linear-RNA splicing and act as an inevitable accelerator in the formation of circRNA
by reverse complementary matches (Ashwal-Fluss et al., 2014; Hansen et al., 2013;
Ivanov et al., 2015; Jeck et al., 2013). DExH-Box Helicase 9 (DHX9) is an RNA helicase
that specifically binds to reverse Alu elements (IRAlu) to guide the formation of
circRNA (Aktas et al., 2017). IRAlu has already become a significant basis of analyzing
and forecasting the formation mechanism of circRNA (Zhang et al., 2014). In addition,
the genomic structure of long exons flanked by long introns harboring inverted
repeat elements facilitates RNA circularization (Jeck et al., 2013). Many proteins are
involved in circRNA biogenesis. In normal growing cells, NF90/NF110 binds to
A/U-rich elements (including base paired Alu elements) in the introns flanking
many exons that yield circRNAs, promoting back-splicing events (Li et al., 2017a).
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HNRNPL promotes circRNA formation via back splicing (Fei et al., 2017).
The RNA-binding proteins, such as MBL (muscleblind) (Ashwal-Fluss et al., 2014)
and QKI (RNA-binding protein quaking I) (Conn et al., 2015), also participate in the
back-splicing process and cyclization of RNA. Interestingly, high levels of MBL bind to
its own pre-mRNA and determine its back-splicing, leading to the inhibition of
canonical splicing, decreasing MBL levels and upgrading circMBL (Ashwal-Fluss et al.,
2014). Monomeric QKI binds to both ends of intron flanking sites and combines to
form cyclic exons by bringing the two cyclic shear sites close (Conn et al., 2015).
FUS regulates circRNA biogenesis by binding the introns flanking the back-splicing
junctions (Errichelli et al., 2017). CircRNA production is further controlled by FUS
(Errichelli et al., 2017) and by multiple heterogeneous nuclear ribonucleoprotein
(hnRNP) and serine-arginine (SR) proteins (Fei et al., 2017; Kramer et al., 2015;
Liang et al., 2017). In contrast, the RNA-editing enzyme, ADARs (Adenosine
deaminases acting on RNA) block circRNA formation by binding to complementary
double-stranded areas of flanking introns and abolishing the interaction of
double-stranded chains (Ivanov et al., 2015). Recent research has found that
inhibition or slowing of pre-mRNA processing mechanisms, such as spliceosomes,
leads to profound increases in circRNA production by extending read through to
downstream genes and production of circRNA (Liang et al., 2017).

Figure 2 Two different models of exon circularization of circRNA. (A) Intron-pairing-driven cir-
cularization: during the formation of circRNA, an intron reverse complementary motif comprising
GU-rich and C-rich elements is the key component to facilitate cyclization. (B) Lariat-driven circular-
ization: the formation of circRNA is facilitated by the lariat structure. The complementary ALU flanking
element which is repeated in the intron region competing for classical linear RNA splicing and the
circularization is accelerated by reverse complementarity. Full-size DOI: 10.7717/peerj.5503/fig-2
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PROPERTIES OF CircRNA
CircRNA has several unique features and properties when compared to other linear
RNAs and ncRNAs. Most of the unique features are generated from exons, while few
others are generated from introns or intron fragments (Cocquerelle et al., 1993).
Several circRNAs possess microRNA response elements (MREs), which enable them to
interact with miRNAs to govern target gene expression (Hansen et al., 2013; Yang et al.,
2016). Many circRNAs are derived from pre-mRNA and regulate their own gene expression
predominantly at posttranscriptional levels (Salzman et al., 2012). Generally, circRNAs
show tissue-specific and/or developmental stage-specific expression patterns similar to those
of corresponding linear mRNA targets, and their expression level is >10 times higher than
that of the linear mRNA (Jeck et al., 2013; Memczak et al., 2013). CircRNA exists and has
been detected in many types of extracellular body fluids, such as saliva, blood and urine
(Jeck et al., 2013; Qu et al., 2015). More than 400 circRNAs have been found in human
cell-free saliva from healthy individuals (Bahn et al., 2015). CircRNAs have evolutionary
conserved sequence features across different species (Rybak-Wolf et al., 2015). The covalently
closed loop structures lacking 5′–3′ polarity and without poly-adenylated tail favor resistance
to RNA exonuclease degradation (Suzuki & Tsukahara, 2014). CircRNA plays stable
biological roles because the average half-life of circRNA in most species is much longer than
its linear counterpart (Bahn et al., 2015; Memczak et al., 2013).

FUNCTION OF CircRNA
CircRNA has a variety of functions, including modulation of alternative splicing or
transcription, regulating the expression of parental genes, interacting with RNA-binding
proteins (RBPs), altering RBP activity, miRNA sponge activity, rolling circle translation
and generating pseudogenes.

CircRNA modulates alternative splicing or transcription
CircRNA participates in the regulation of alternative splicing and transcription, thereby
controlling gene expression (Fig. 3A). For example, circMbl is generated from the
second exon of the splicing factor MBL, which competes with canonical pre-mRNA
splicing, while circMbl and its flanking introns have conserved MBL-binding sites to allow
binding to MBL. Interestingly, the alteration of MBL level significantly affects circMbl
formation, and this effect depends onMBL-binding sites in the flanking intronic sequences
(Ashwal-Fluss et al., 2014). Studies have shown that several circRNAs are abundantly
found in the nucleus where they regulate transcriptional activity by interacting with
polymerase II and homeopathic reactions. For instance, EIciRNA interacts with snRNPs
to regulate the transcription of parental genes in a homeopathic manner (Chen, 2016).
Li et al. (2015a) found that circRNA-ITCH interacts with miR-7, miR-17, and miR-214 as
well as upregulates the expression of ITCH. During embryogenesis, sisR-4 promotes
transcription of its host gene by activating an enhancer present in the intron where sisR-4
is encoded, which is essential for development (Tay & Pek, 2017). HNRNPL directly
regulates the alternative splicing of RNAs, including encoding the androgen receptor,
the key lineage-specific prostate cancer oncogene (Fei et al., 2017).
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CircRNA interacts with RBPs
Apart from miRNA regulation, circRNA can sequester RBPs and thus control the
intracellular localization and transport of RBPs and associated mRNAs (Hentze &
Preiss, 2013; Jeck & Sharpless, 2014) (Fig. 3B). Some circRNAs combine with RBPs and
ribonucleoprotein complexes, thereby inhibiting their activity. However, circRNA
functions as stores of RBPs and ribonucleoprotein complexes. EcRNA acts as a scaffold
by specifically binding to protein molecules to provide an interaction platform for
RNA-binding proteins, RNA, and DNA. For example, in HEK293 cells, CDR1as contains
a region near perfectly complementary to miR-671, which causes the circRNA to be

Figure 3 The five main functions of the circRNA. (A) Regulating selective splicing or transcription:
Stable circRNA and EIciRNAs are located in the nucleus, where they bind to RNA polymerase and
promoting transcription; circRNA competes with pre-mRNA splicing to reduce the level of linear mRNA
and excludes specificity from pre-mRNA by changing the composition of processed mRNA; (B) inter-
action with RBPs: circRNA binds with RBPs and ribonucleoprotein complexes and interfere with
their functions. As a single circRNA can bind with multiple units of RBPs, they serve as stores of RBPs;
(C) miRNA sponging activity: circRNA binds with miRNA and affecting the miRNA-dependent target
gene suppression; (D) rolling circle translation: some circRNA can be translated into proteins by means
of a roll loop amplification mechanism; (E) generation of pseudogenes: some circRNA are reverse
transcribed into cDNA and integrated into the genome; however, the mechanism of integration is not
yet clear. Full-size DOI: 10.7717/peerj.5503/fig-3
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endonucleolytically cleaved by argonaute 2 (AGO2) in a miR671-dependent manner
(Hansen et al., 2011). CDR1as is derived from an antisense long ncRNA (Barrett
et al., 2017) and is expressed several orders of magnitude higher than cerebellar
degeneration-related protein 1 (CDR1) gene from the opposite strand (Hansen et al.,
2011; Piwecka et al., 2017). Chen et al. (2017d) found that there are cellular
differential mechanisms in the recognition of internal and external circRNAs as
follows: external circRNA induces activation of RIG-I-mediated cellular autoimmune
effector pathways, and endogenous circRNA does not induce this pathway due to
binding of RBPs.

CircRNA as MiRNA sponge
CircRNAs act as competing endogenous RNAs (ceRNAs) that contain shared MREs by
which they sequester miRNAs and prevent their interactions with target mRNAs (Fig. 3C).
Systematically validated circRNAs, such as ciRS-7 (CDR1as) (Hansen et al., 2013;
Memczak et al., 2013) and Sry circRNA (Hansen et al., 2013; Zhao & Shen, 2015), are
produced from the mRNAs of CDR1 and dysregulated rat testis SRY, respectively.
During the embryonic developmental process in zebrafish, the expression of CDRlas
reduces brain volume, thereby hampering brain development. However, exogenous
delivery of miR-7 reverses the brain volume reduction and reinstates normal brain
development, indicating that CDRlas blocks miR-7 by sponging functions (Hansen et al.,
2013; Hansen, Kjems & Damgaard, 2013). New research has found that the CDR1as
sequence overlaps the lncRNA LINC00632 sequence (Barrett et al., 2017). In general,
there are only several circRNAs containing enough miRNA-binding sites to function as
strong sponges, and other circRNAs are exceptional cases (Chen, 2016; Tay & Pek, 2017).
Knockdown of circHIPK2 expression significantly inhibits astrocyte activation via
regulation of autophagy and endoplasmic reticulum stress through targeting MIR124-2HG
and SIGMAR1 (Huang et al., 2017). CircHECW2 plays a role in the epithelial-
mesenchymal transition (EMT) pathway by competitively inhibiting miR-30D, which
releases ATG5, thereby promoting the Notch1 signaling pathway (Yang et al., 2018a).

Rolling circle translation
In eukaryotic cells, cyclic mRNA can be translated by typical translation machineries
because it contains an internal ribosome entry site sequence, and it can bind directly to the
ribosome (Thompson, 2012) (Fig. 3D). In prokaryotic cells, such as E. coli, circRNA
contains a well-conserved infinite open reading frame (ORF) system, which enables the
translation of circularized RNA (Abe et al., 2015). In eukaryotic systems, some
circRNAs have binding sites for ribosomal 40S subunits, thus initiating translation,
which has been demonstrated both in vivo and in vitro studies (Holdt, Kohlmaier &
Teupser, 2017). In an E. coli system, circRNA with green fluorescent protein (GFP)
inserted in the ORF can successfully translate GFP (Wang & Wang, 2015). Interestingly,
circRNA also drives protein translation by methylation of adenosine N6 (m6A)
(Yang et al., 2017b). Protein translated by circRNA can act synergistically with the protein
expression products of the parent gene and function together. For example, circ-FBXW7
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translates a new protein that inhibits glioma (Yang et al., 2018b). Circ-ZNF609
directly translates into proteins that participate in muscle formation (Legnini et al., 2017).
In prokaryotic cells, proteins are generated from circRNA by means of rolling circle
amplification analogous to a polymerase reaction in the eukaryotic translation system,
which reveals that there is no need for multiple binding of translational machinery to the
RNA template (Rodriguez-Trelles, Tarrio & Ayala, 2006). The circular amplification
not only produces long and repetitive peptide sequences but also increases the productivity
of the linear counterpart (Thompson, 2012).

Generate pseudogenes
Studies have shown that stable circulatory molecules can be reverse transcribed and
integrated into the genome to form circRNA-derived pseudogenes (Dong et al., 2016)
(Fig. 3E). Bioinformatics analysis of the mouse genome using computational pipeline
(CIRCpseudo) found that at least 33 pseudogenes are possibly derived from the same
circRNA at the ring finger and WD repeat domain 2 (RFWD2) locus (circRFWD2) and
that nine of the pseudogenes are from exons (exons 2 to 4 or 5) of circRFWD2. It is well
documented that pseudogenes play an important role in cell differentiation and in
cancer progression (Kalyana-Sundaram et al., 2012).

METHODS OF CircRNA DETECTION AND
CHARACTERIZATION
Preliminary purification and identification
Molecular biology method
The loop structure of circRNA has high stability compared to linear RNA, and it is
resistance to enzyme digestion (You & Conrad, 2016). Therefore, an enzymatic digestion
method can be used for the preliminary purification and identification of circRNA (Jeck &
Sharpless, 2014).

First, the processing of extracted RNA with exonucleases, such as RNase R, nicotinic
acid phosphatase and 5′ end exonuclease, destroys most linear RNA, but circRNA remains
intact due to no open ends in circRNA for these enzyme reactions. A circRNA-specific
divergent primer can be used to amplify abundant circRNA in which linear RNAs do not
amplify (Jeck & Sharpless, 2014; Suzuki et al., 2006). Second, the migration velocity of
circRNA is slower than that of long linear RNA due to lack of polarity at the end.
Particularly, circRNA migration is much slower than RNA from homologous gene
transcription in weak crosslinked gels, and this difference helps to detect circRNAs easily
through Northern blot analysis (Tabak et al., 1988). Third, the fluorescence in situ
hybridization technique can locate circRNA at a subcellular level (Li et al., 2017b;
Zhang et al., 2013). As circRNA does not have a poly (A) structure, the traditional
oligo dT enrichment method using a Ribo-Zero kit to remove rRNA is not effective.
The removal of linear RNA using RNase R is the most effective step for the enrichment
of circRNA and generating a circRNA library (Ebbesen, Kjems & Hansen, 2016; Jeck &
Sharpless, 2014).
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High-throughput sequencing
The traditional RNA-Seq technique does not distinguish circRNAs from linear
RNAs (You & Conrad, 2016). As a result, improvements have been made to detect and
validate circRNA. First, as the intergenic exon rearrangement has different forms,
generation of divergent primers with boundary combinations can form circRNA candidate
sequence, which can be used to compare to sequencing data (Salzman et al., 2013). Second,
bioinformatics analysis of whole genome sequence and assessment of sequence data
through different sequence alignment algorithm can be used to identify circRNAs (Jeck
et al., 2013). Third, templates designed with multiple sequence splice joints can directly
detect circRNAs from cDNA sequence (Hoffmann et al., 2014). Currently, many
algorithms are available for the prediction and study of circRNAs, including Acfs (You &
Conrad, 2016), FUCHS (Metge et al., 2017) and CIRI2 (Gao, Zhang & Zhao, 2017).
Acfs allows accurate and fast identification of circRNA, and it also determines the
abundance of circRNAs from single- and paired-ended RNA-Seq data. Acfs is well suitable
for a wide spectrum of applications, including characterizing the landscape of circRNA
from a variety of organisms. The FUCHS system is based on long sequencing reads
(>150 bp/reads), which detects circRNA within the variable shear and provides other
information for more accurate interpretation. CIRI2 uses the maximum likelihood
estimate based on multiple seed matches to identify reverse splice junctions, and it
filters out false positives and mapping errors derived from the repetitive sequence. CIRI2
has a significant balance of sensitivity, reliability, duration, and RAM usage (Ebbesen,
Kjems & Hansen, 2016; Jeck & Sharpless, 2014).

Gene chip
The human genome array, U133plus2.0 tool, can detect mRNA but cannot detect ring
RNA because the probe is designed for linear RNA (Lu et al., 2017). Therefore, the
human genome array cannot effectively distinguish circRNA and linear RNAwhen a normal
probe is used. However, if the probe is designed based on the reverse splice site of the
circRNA, this array tool can specifically detect circRNA because there is no reverse splice site
sequence in linear RNA, thus effectively distinguishing circRNA and mRNA (Li et al., 2018).

Primer design
Recently, the field of circRNA research is gaining more attention because circRNAs
contribute to many physiological and pathological processes. Unlike conventional PCR
primers, the design of circRNA primers should consider certain criteria. For the detection
of ecRNA, primers should be designed for the cross-cut site (back-splice). In the case of
ciRNA, primers targeting cross-cleavable sites should be used. Primers can also be
designed around intron regions. Moreover, the length of the amplified product should not
be more than 100 bp. Sequence position transformation is also important (Panda &
Gorospe, 2018). The differences in the selection of primers for linear RNA and circRNA are
listed in Fig. 4.

The actual amplification effect after primer design needs to be experimentally determined.
If the quantification of circRNA is performed by qPCR, the length of amplification should be
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identified according to the experimental requirements of qPCR. Thus, qPCR remains the
most widely used technique to assess the expression level of circRNA.

CircRNA research database
In recent years, increasing numbers of circRNA research tools with different aspects and
improved functional analysis have been generated. The currently available online
databases for the detection and characterization of circRNA, which contain GenBank
annotations or circRNA from published articles, are presented here. Each database
analyzes circRNA with different characteristic features for detection, and each database
provides abundant information for circRNAs. There are several free online databases
available for circRNA research as shown in Table 2.

CircRNA AS A DISEASE MARKER IN DISEASE
PROGRESSION
The best-known circRNA, CDR1as, is the inhibitor of miR-7, and it is the critical ncRNA
known to be involved in various diseases, including cancer, neurodegenerative diseases,
diabetes, and atherosclerosis (Peng, Yuan & Li, 2015). In addition more functions of
circRNAs being revealed, the underlying relationships between circRNAs and various
diseases have been rapidly elucidated. The great specificity and conservation of circRNAs
in various tissues add a further dimension to the discovery of these disease biomarkers.
CircRNAs involved in diseases are listed in Table 3.

CircRNA in cardiovascular diseases
Cardiovascular diseases poses an increasing threat to human health. According to a report
from the World Health Organization (WHO), nearly 17.5 million people die of CVD each
year (Mendis, Davis & Norrving, 2015). CircRNA is highly specific and is exclusively
expressed in different tissues, including vascular and heart tissue (Fan et al., 2017).

Figure 4 The difference between linear RNA and circRNA primer design. (A) FW is a forward primer
with the b chain as template. The base sequence of synthesis is the original sequence of a. RV is a reverse
primer with a chain as template, and the base sequence of synthesis is the original sequence of b. The
sequence between FW and RV is high; (B) The original primers need to reverse: the synthetic primers are
FW′ and RV′, where FW′ is the reverse complementary sequence of the RV primer, RV′ is the reverse
complementary sequence of FW primer. Full-size DOI: 10.7717/peerj.5503/fig-4
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Pathological hypertrophy and heart failure
MiR-223 is an endogenous regulator of hypertrophy in cardiomyocytes, which can
induce cardiac hypertrophy and heart failure (HF) (Wang et al., 2015b). In cardiac
hypertrophy, ARC (apoptosis repressor with CARD domain) is a miR-223 downstream
target (Wang et al., 2016). The heart-related circRNA (HRCR) can function as an
endogenous miR-223 sponge to inhibit miR-223 activity, subsequently increasing the
expression of ARC (Wang et al., 2016). However, the expression of HRCR is decreased
during cardiac hypertrophy and HF. Thus, it is speculated that increased expression of
HRCR attenuates the development of cardiac hypertrophy and HF, and it may be an
attractive therapeutic target for cardiovascular disorders associated with pathological
hypertrophy (Wang et al., 2016).

Atherosclerosis
Circular ANRIL RNA (circular antisense ncRNA in the INK4 locus, cANRIL) is an
antisense transcript from the INK4A/ARF (cyclin-dependent kinase 4 inhibitor, INK4a;

Table 2 Database for circRNA research.

Tool name The latest version URL Remarks

circlncRNAnet
(Wu et al., 2018b)

May 2017 http://app.cgu.edu.tw/circlnc/ It aims to broaden the understanding of ncRNA
candidates by testing in silico several hypotheses of
ncRNA-based functions on the basis of large-scale
RNA-seq data.

starBase v2. 0
(Li et al., 2014b)

December 2013 http://starbase.sysu.edu.cn Includes microRNA, mRNA, lncRNA and other
RNA information. It is a useful tool for detecting
miRNA-circRNA interaction. If there is a need to
retrieve all circRNA in the genome, circRNABase
is useful.

circBase (Glazar,
Papavasileiou &
Rajewsky, 2014)

December 2015 http://www.circbase.org/ Thousands of circRNAs are annotated from
eukaryotic cells.

circ2Traits
(Hancock, 2015)

December 2013 http://gyanxet-beta.com/circdb Provides more information about the genomic
positions of circRNAs and circRNA-associated
diseases.

nc2Cancer
(Cheng et al., 2015)

http://bioinfo.au.tsinghua.edu.cn

DeepBase v2. 0
(Zheng et al., 2016)

November 2015 http://rna.sysu.edu.cn/deepBase/ This database is a platform for annotation and
discovery of small (microRNA, siRNA and
piRNA) and long ncRNAs from next-generation
sequencing data.

CircInteractome
(Dudekula et al., 2016)

December 2015 https://circinteractome.nia.nih.gov/index.html This database can be used only to match the
circRNA with relevant RNA-binding proteins.

TSCD(Xia et al., 2016a) August 2016 http://gb.whu.edu.cn/TSCD/ It is useful for characterizing tissue-specific
circRNAs in human and mouse genomes.

CIRCpedia (Zhang
et al., 2016)

January 2015 http://www.picb.ac.cn/rnomics/circpedia/ This database contains reverse splicing and variable
splicing sites of circRNAs from 39 individuals and
mouse samples.

circRNADb (Chen
et al., 2016)

http://reprod.njmu.edu.cn/circrnadb It contains a record of more than 30,000 exons with
circRNA nature in the human genome

Note:
Every database present has its own sphere of competence, and only the perfect combination of various databases can provide accurate information.
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Table 3 CircRNA in disease development and progression.

Diseases CircRNA References

CVD Pathological hypertrophy
and HF

HRCR Wang et al. (2016),
Wang & Wang (2015),
Wang et al. (2015b)

Atherosclerosis CANRIL Holdt et al. (2016)

Cardiac senescence Circ-Foxo3 Du et al. (2016a, 2016b)

MI CDRlas Geng et al. (2016),
Li et al. (2014a),
Read et al. (2014)

MFACR Wang et al. (2017a)

Neurodegenerative diseases CDRlas Zhao et al. (2016)

CircRar1 Nan et al. (2017)

Diabetes CDRlas Kim et al. (2017),
Wang et al. (2013),
Xu et al. (2015)

OA Hsa_circ_0005105 Wu et al. (2017)

MDD Hsa_circRNA_103636 Cui et al. (2016)

Silicosis CircHECTD1 Zhou et al. (2018)

Cancer GC Hsa-circ-002059 Li et al. (2015c)

Circrna_100269 Zhang et al. (2017)

Hsa_circ_0003159 Tian et al. (2017)

Hsa_circ_0000190 Chen et al. (2017c)

CircPVT1 Chen et al. (2017a)

CRC Hsa_circ_001988 Wang et al. (2015a)

Circ_001569 Xie et al. (2016)

CircCCDC66 Hsiao et al. (2017)

Hsa_circ_000984 Xu et al. (2017b)

ESCC Has_circ_0067934 Xia et al. (2016b)

Cir-ITCH Li et al. (2015a)

HCC CircZKSCAN1 Yao et al. (2017)

CDRlas Xu et al. (2017a)

Hsa_circ_0005075 Shang et al. (2016)

Hsa_circ_0004018 Fu et al. (2017)

Hsa_circ_0001649 Qin et al. (2016)

CircARSP91 Shi et al. (2017)

Circ-10720 Meng et al. (2018)

Circ-ITCH Guo et al. (2017)

Cervical Cancer CDRlas Lee et al. (2015)

BC Circ-Amotl1 Yang et al. (2017a)

Human oral squamous
cell carcinomas (OSCC)

Circrna_100290 Chen et al. (2017b)

Lung adenocarcinoma (LAC) Hsa_circ_0013958 Zhu et al. (2017)

Bladder carcinoma CircTCF25 Zhong, Lv & Chen (2016)

CircPTK2 Xu et al. (2017c)
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alternative reading frame, ARF) locus (Salzman et al., 2013), which inhibits the expression
of INK4/ARF (Burd et al., 2010). Another research group found that cANRIL prevents
rRNA prebinding and exonuclease-mediated rRNA maturation by binding to the
C-terminal lysine-rich domain of PES1, inducing an increase in the expression and
activity of p53 and subsequent decrease in apoptosis. This pathway inhibits atherosclerosis
by eliminating hyperproliferative cell types in atherosclerotic plaques, indicating that
cANRIL may be associated with the prevention or treatment of atherosclerosis
(Holdt et al., 2016).

Cardiac senescence
CircFoxo3 is generated from Foxo3, a member of the forkhead family of transcription
factors that is highly expressed in aged heart samples from elder patients. The expression
of circFoxo3 is highly correlative with markers of cellular senescence (Du et al., 2016a).
Experimental studies have found that cells expressing high levels of circFoxo3 are
unable to transition to S phase, revealing that circFoxo3 represses cell cycle progression
and cell proliferation (Du et al., 2016b). CircFoxo3 is mainly distributed in the cytoplasm
where it interacts with several transcription factors [E2F1, Focal adhesion kinase
(FAK), and HIF1a] and antisenescence proteins, such as ID-1, thus preventing their
nuclear entry. In fact, the nuclear entry of FAK and HIF1a is essential for their
antisenescence role. Thus, circFoxo3 repress their antiaging effects. In addition, circFoxo3
also positively correlates with cellular senescence (Du et al., 2016a). Together, these studies
suggest that circRNA originating from FOXO genes may be a promising target for
repositioning of ID-1, E2F1, FAK, and HIF1a from the cytoplasm to nucleus, ultimately
attenuating cellular senescence in aging hearts (Du et al., 2016a).

Myocardial infarction
Myocardial infarction (MI) is a fatal disease worldwide (Mozaffarian et al., 2015).
Due to the lack of available biomarkers, MI cannot be predicted effectively (Vausort et al.,
2016). To date, some studies have made significant progress in solving this issue.

Wang et al. (2017a) found that mitochondrial fission and apoptosis-related circRNA
(MFACR) plays a protective role in the heart through attenuating mitochondrial fission in
cardiomyocytes by directly targeting miR-652-3p and increasing the expression of its
target, MTP18, which promotes cell survival in cardiomyocytes. Thus, MFACR-dependent
inhibition of miR-652-3p increases MTP18 and mitochondrial fission, which results
in a reduction in cardiomyocyte apoptosis and extension of MI injury (Wang et al., 2017a).
Cdr1as play detrimental roles in MI by acting as a miR-7 sponge and inhibiting its activity
(Geng et al., 2016; Memczak et al., 2013; Xu et al., 2017a). It is well documented that
miR-7a/b plays a protective role through negatively regulating the expression of poly
ADP-ribose polymerase (PARP) and decreasing apoptosis in myocardial cells (Fan et al.,
2017; Zhao et al., 2009). SPI and PARP play proapoptotic roles during MI development
(Li et al., 2014a; Read et al., 2014). Hypoxia-induced increases in SP1 and PARP
expression cause apoptotic cell death, and SP1 and PARP are target genes of miR-7,
which can decrease cell apoptosis (Geng et al., 2016; Li et al., 2014a; Read et al., 2014).
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Collectively, the ciRS-7-miR-7-PARP/SP1 axis may offer new biomarkers for the diagnosis
of MI, while additional diagnostic markers remain to be discovered (Fan et al., 2017).

CircRNA in neurodegenerative diseases
There are thousands of circRNAs expressed in brain tissue (Rybak-Wolf et al., 2015;
You et al., 2015). As the central nervous system ages, age-related circRNAs accumulate
in the brain and have been identified as promising indicators of aging (Kumar et al., 2017).
This section focuses on aging diseases, such as nerve injury, Alzheimer’s disease (AD)
and Parkinson’s disease.

In hippocampal neural cells (HT22), Lin et al. (2016) found that oxygen-glucose
deprivation/reoxygenation (OGD/R) injury significantly regulates the expression of
15 circRNAs compared to normal cells, suggesting the involvement of circRNA in nerve
injury. Moreover, CDRlas plays a protective role by inhibiting miR-7, which directly
regulates the expression of a-synuclein and ubiquitin protein A. Importantly, a-synuclein
and ubiquitin protein A are associated with the occurrence of AD (Lukiw, 2013) and
Parkinson’s disease (Hancock, 2015). However, the disturbance of the miRNA-circRNA
system in the hippocampal CAl region of disseminated AD causes the adsorption of
miR-7, leading to increased expression of ubiquitin protein A in the human central
nervous system (Zhao et al., 2016). In lead-induced neuronal apoptosis, circRar1
directly inhibits miR-671, resulting in suppression of Akt2 and increased expression of
caspase-8 and other apoptosis-related proteins (Nan et al., 2017). Currently, the function
of circRNA in the nervous system is largely unclear, and the potential of circRNA as a
biomarker for neurodegenerative disorder requires further study (Kumar et al., 2017).

Diabetes
CDRlas plays an essential role in islet cell function and insulin secretion (Xu et al., 2015).
Thus, CDRlas may gain importance in the diagnosis and treatment of diabetes mellitus.
It is well known that the impairment of islet b-cell function leads to absolute or
relative insulin deficiency (insulin resistance), which increases blood sugar level and
diabetes (Kim et al., 2017; Xu et al., 2015). MiR-7 negatively regulates islet b-cell
proliferation. MiR-7 overexpression damages the dedifferentiation ability of b cells,
leading to downregulation of insulin secretion and ultimately diabetes. MiR-7 targets
multiple components of the mammalian (mTOR) signaling pathway, which are involved
in pancreatic b-cell proliferation. Silencing of miR-7 expression in b cells increases their
proliferative activity, indicating that miR-7 affects pancreatic b-cell renewal and is
associated with diabetes mellitus. Together, these findings reveal that CDR1as/miR-7 may
be a potential therapeutic target for treating and managing diabetes (Wang et al., 2013).

CircRNA in cancer
Accumulating evidence has shown that circRNAs affect the invasive characteristics of
tumors in various ways, including competition with miRNAs, translation into proteins,
activity as miRNA reservoirs, and formation of fusion circRNAs (f-circRNAs)
(Han et al., 2017; Memczak et al., 2013). Genomic alterations, particularly aberrant

Xu et al. (2018), PeerJ, DOI 10.7717/peerj.5503 14/28

http://dx.doi.org/10.7717/peerj.5503
https://peerj.com/


chromosomal translocations, are responsible for the onset of many types of cancers and
solid tumors (Jeck et al., 2013). F-circRNA, which is produced from transcribed exons of
translocated chromosomes, promotes carcinogenesis by increasing cell viability and
resistance to therapy. Abnormal f-circRNA is functionally related to cancer progression in
many types of malignancies (Guarnerio et al., 2016). The specific roles of circRNAs in
various tumors are described in the following sections.

CircRNA in gastric cancer
Gastric cancer (GC) is the fourth most common gastrointestinal malignant neoplasm
and is the third leading cause of cancer-related deaths worldwide (Doi et al., 2015).
Numerous circRNAs are abnormally expressed in GC. Increased expression of
Hsa-circ-002059 is significantly associated with the tumor stage of GC (Li et al., 2015c).
CircRNA_100269 suppresses gastric tumor cell growth by targeting miR-630. However,
circRNA_100269 expression is downregulated during GC and can be used as a
biomarker to predict cancer recurrence (Zhang et al., 2017). The expression levels of
hsa_circ_0003159 (Tian et al., 2017), hsa_circ_0001895 (Shao et al., 2017) and
hsa_circ_0000190 (Chen et al., 2017c) are down-regulated in GC. Another research
group has found that the expression of circPVT1 is often upregulated in GC tissue (Chen
et al., 2017a). Sui et al. (2017) found that the expression of tumor-associated genes,
such as CD44, CXXC5, MYH9, and MALAT1, is regulated through different
mechanisms of circRNA-miRNA-mRNA interactions. Together, all studies have
shown that circRNA plays a crucial role during GC development and that circRNA
expression levels can be used as potential biomarkers for clinical prognosis prediction,
sensitivity and specificity (Li et al., 2015b).

Colorectal cancer
In colorectal cancer (CRC), the downregulated hsa_circ_001988 is associated with
differentiation and perineural invasion (Wang et al., 2015a). Perineural invasion is a
predictor of prognosis in colorectal cancer, and it is negatively correlated with survival
time and local recurrence in colorectal cancer patients (Peng et al., 2011). These results
suggest that circRNAs may be potential candidates for therapeutics and biomarkers for
CRC (Wang et al., 2015a). Evidence has shown that circRNA is related to CRC. Cir-ITCH
is also downregulated in CRC, exhibiting an anticancer effect by binding to miR-7 and
miR-20a (Huang et al., 2015). Circ_001569 directly inhibits the regulatory activity of
miR-145, thereby upregulating the expression of its targets, such as E2F5, BAG4, and
FMNL2, which are involved in tumor proliferation and invasion in CRC (Xie et al., 2016).
CircCCDC66 regulates a subset of oncogenes, which control multiple pathological processes,
including cell proliferation, migration, invasion, and anchorage-independent growth, in
CRC (Hsiao et al., 2017). In addition, other circRNAs, such as hsa_circ_000984 (Xu et al.,
2017b) and hsa_circ_001988 (Wang et al., 2015a), are also abnormally expressed in CRC.

Esophageal squamous cell carcinoma
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent and deadly types
of cancers, and the prognosis of ESCC remains poor (Xia et al., 2016b). In ESCC,
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has_circ_0067934 is upregulated and accelerates malignant cell proliferation (Xia et al.,
2016b). The expression of Cir-ITCH inhibits ESCC proliferation by suppressing the
Wnt/b-catenin pathway through sponging miRNAs, such as miCH-7, miR-17, and
miR-214. It is well known that ITCH mediates degradation of activated Dvl2, which is a
key component of the Wnt pathway. However, the downregulation of Cir-ITH in
ESCC releases the brakes on the Wnt pathway by enhancing the expression of oncogenic
miCH-7, miR-17, and miR-214, consequently leading to uncontrolled proliferation of
ESCC (Li et al., 2015a). Sun et al. constructed a circRNA-miRNA interaction network,
in which circRNA9927-NBEAL1 represents the largest node. These findings indicate
that some circRNAs may be novel potential biomarkers and therapeutic targets of ESCC
(Xia et al., 2016b).

Hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths
across the world and is particularly prevalent in less developed countries (Doi et al., 2015).
Increasing evidence has suggested that circRNAs may play a key role in the development of
HCC. The ZKSCAN1 gene and its related circRNA (circZKSCAN1) inhibit HCC cell
growth, migration, and invasion by blocking several signaling pathways (Yao et al., 2017).
MiR-7 is a tumor-suppressing ncRNA, which attenuates HCC proliferation, and it
decreases the risk of microvascular invasion by suppressing the expression of its target
gene, PIK3CD, and p70S6K (Xu et al., 2017a). However, miR-7 activity is counteracted by
the overexpression of CDRlas, which adsorbs miR-7 (Xu et al., 2017a). Similarly,
hsa_circ_0005075 participates in cell adhesion during HCC development and is
considered as a biomarker for HCC (Shang et al., 2016). In contrast, the expression levels
of tumor suppressive circRNA, such as hsa_circ_0004018 (Fu et al., 2017),
hsa_circ_0001649 (Qin et al., 2016) and CircARSP91 (Shi et al., 2017), are significantly
downregulated in HCC. CircRNA can interact with transcription factors. Twist is a
critical EMT-inducing transcription factor that increases expression of Vimentin, and
circ-10720 knockdown counteracts the tumor-promoting activity of Twist1 in vitro
(Meng et al., 2018). More importantly, circ-ITCH not only has prognostic significance but
can also be used as a predictive biomarker for HCC (Guo et al., 2017).

Cervical cancer
Cervical cancer is one of the most common death-causing malignancies in women
worldwide. FAK, which is a key regulator of growth factor receptor- and integrin-mediated
signal pathways, promotes the proliferation, invasion and migration of cervical cancer
cells, and it exacerbates the progression of the disease (Lee et al., 2015). In HeLa and C33A
cells, the increased level of CDRlas promotes FAK expression by inhibiting miR-7,
which targets FAK and acts as a tumor suppressor in cervical cancer cells. This finding
indicates that there is a relationship between CDRlas and oncogenic transcription
factors in cervical cancer. Thus, the targeted therapy of CDRlas regulatory networks
would provide a new approach for the diagnosis and treatment of cervical cancer
(Lee et al., 2015).
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Breast cancer
Breast cancer (BC), the most frequently diagnosed cancer in women around the world,
has been the focus of major advances in the last few decades (Doi et al., 2015).
Many circRNAs are differentially expressed in BC and participate in cancer-related
pathways mainly by sequestering tumor suppressive miRNAs (Lu et al., 2017). Hippo
signaling promotes BC progression by upregulating the expression of AMOTL1 and
favoring metastasis (Couderc et al., 2016). Interestingly, the expression of circ-Amotl1
does not alter Amotl1 mRNA or protein levels. However, circ-Amotl1 interacts with c-myc
and translocates to the nucleus, revealing that the functions of circ-Amotl1 are different
from the conventional miRNA sponging activity of circRNA in BC cells (Yang et al.,
2017a). Tumor metastasis is one of the most important factors for tumor death. Forkhead
box C1 (FOXC1), the target of miR-3607, is downregulated in circIRAK3-silenced cells,
and it mediates circIRAK3-induced BC cell migration (Wu et al., 2018a).

Other diseases
Some other diseases also show a connection with circRNAs. Hsa_circ_0005105
promotes extracellular matrix degradation by regulating the expression of the miR-26a
target, NAMPT, in osteoarthritis (OA) (Wu et al., 2017). Hsa_circRNA_103636 is
easily detectable in blood samples, and the expression pattern of hsa_circRNA_103636
is altered in major depressive disorders (MDDs) (Cui et al., 2016). CircHECTD1
mediates silica-induced macrophage activation via HECTD1/ZC3H12A-dependent
ubiquitination in Silicosis (Zhou et al., 2018). In bladder cancer, circTCF25 downregulates
miR-103a-3p and miR-107 as well as upregulates cyclin-dependent kinases 6 (CDK6),
suggesting that circTCF25 is a new biomarker (Zhong, Lv & Chen, 2016).

Cancer-related circRNAs with their corresponding miRNAs form a circRNA-
miRNA-mRNA axis that regulates the expression of cancer-related proteins (Sui et al.,
2017). Furthermore, the new expression of circRNAs in tumor cells, tissue-specificity,
diversity, and high stability identify circRNAs as useful biological markers of cancer,
thus improving the accuracy and specificity of diagnostic biomarkers (Zhong, Lv &
Chen, 2016).

CircRNA as a disease marker potential
Currently available reports clearly show that alterations in the expression of circRNA play
important roles in the development of various pathological conditions. CircRNA is
emerging as a novel biomarker due to its conservation, abundance, cell type-specific
expression, tissue-specific expression, and roles in disease progression (Meng et al., 2017).
HRCR attenuates the pathogenesis of cardiac diseases and has the potential to become a
therapeutic target (Wang et al., 2016). CircFoxo3 may be a promising target of cellular
senescence in aging heart (Du et al., 2016a).

Researchers have provided evidence that ciRS-7 has the potential as a biomarker for
neurodegenerative disorder (Lukiw, 2013), diabetes (Wang et al., 2013), or MI (Lin et al.,
2018). CircRNAs regulate the expression of cancer-related proteins in various types of
cancer, including GC (Li et al., 2015c; Shao et al., 2017), CRC (Wang et al., 2015a),
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ESCC (Xia et al., 2016b), HCC (Yao et al., 2017), and BC (Lu et al., 2017), through the
circRNA-miRNA-mRNA axis, which represents their potential as diagnostic markers,
prognostic indicators, therapeutic targets and even drug prospects in cancer.

CONCLUSION AND FUTURE DIRECTIONS
CircRNAs have conserved sequences, tissue specificity, high stability and high abundance,
thereby making them potential markers for disease screening and treatment (Westholm
et al., 2014). The rapid development of high-throughput sequencing techniques and
bioinformatics analyses suggest that circRNAs are likely to become new efficient targets
in the clinical settings for the detection and treatment of diseases, such as diabetes,
cancer, CVD, and neurological diseases. circRNAs can function as miRNA sponges
(Hansen et al., 2013) and regulate multiple signaling pathways in CVDs (Fan et al., 2017),
different types of cancers (Lu et al., 2017; Meng et al., 2018; Yao et al., 2017),
neurodegenerative diseases (Kumar et al., 2017) and diabetes (Zhao et al., 2017).
However, further studies are needed to reveal the complete biological functions of circRNA
in terms of both physiological and pathological processes to promote the application of
circRNA in future clinical use.

Despite rapid advances in the detection and characterization of circRNAs, the
knowledge of circRNA functions is still at an early stage, which is one of the major
drawbacks for the potential use of circRNAs for therapeutic or diagnostic purposes.
New methods, such as chip technology, can be used to screen possible disease-related
circRNAs in cell or experimental animal models, which will increase our knowledge about
the role of circRNAs in the occurrence and development of pathological disorders.
In addition to broadening functional aspects of circRNA, the following unknowns
should also be addressed: mechanisms of trigger and control of circRNA formation
dynamics; the link between the circRNA formation process and the corresponding
linear RNA generation; the relationship between different circRNA products from the
same gene; and regulatory mechanism of circRNA generation. The identification and
characterization of specific circRNA-interacting molecules are important to provide
information for most of these unknowns. In addition, the naming of circRNA has not
yet been unified, and the mechanisms of circRNA in many diseases remain unclear.
By solving these unknowns, circRNA may be a promising diagnostic tool and efficient
therapeutic target for treatment of various pathological disorders.
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