Nine new species of freshwater crabs (Decapoda: Brachyura: Potamidae) from Yunnan Province, China (#22317)

First submission

Editor guidance

Please submit by 14 Jan 2018 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

Custom checks

29 Figure file(s)

1 Other file(s)

New species checks

- Have you checked our new species policies?
- Do you agree that it is a new species?
- Is it correctly described e.g. meets ICZN standard?

Structure your review

The review form is divided into 5 sections.

Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Nine new species of freshwater crabs (Decapoda: Brachyura: Potamidae) from Yunnan Province, China

Tohru Naruse ¹, Jing En Chia ², Xianmin Zhou ^{Corresp. 3, 4}

Corresponding Author: Xianmin Zhou Email address: zhouxmjxmu@ncu.edu.cn

We describe nine new species of potamid freshwater crabs from Yunnan Province, China. These include five species of the genus *Indochinamon* Yeo & Ng, 2007, two species of the genus *Potamiscus* Alcock, 1909, and one species each of the genera *Pararanguna* Dai & Chen, 1985, and *Parvuspotamon* Dai & Bo, 1994. These new species are compared with morphologically allied species in detail. Photographs of the type specimens of some comparative species are also provided to allow better understanding of those have not previously been well illustrated.

¹ University of the Ryukyus, Tropical Biosphere Research Center, Okinawa, Japan

Department of Biological Sciences, Tropical Marine Science Institute, Singapore, Republic of Singapore

³ School of Basic Medical Sciences, Nanchang University, Research lab of Freshwater Crustacean Decapoda & Paragonimus, Nanchang, People's Republic of China

⁴ Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization Supported by the Ministry of Education, Nanchang, People's Republic of China

1	Nine new species of freshwater crabs (Decapoda: Brachyura: Potamidae) from Yunnan
2	Province, China
3	
4	Tohru Naruse ¹ , Jing En Chia ² and Xianmin Zhou ^{3, 4}
5	
6	¹ Tropical Biosphere Research Center, Iriomote Station, University of the Ryukyus, 870 Uehara,
7	Taketomi, Okinawa 907-1541, Japan
8	² Department of Biological Sciences, National University of Singapore, 14 Science Drive 4,
9	Singapore 117543, Republic of Singapore
0	³ Research lab of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical
1	Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, Jiangxi Province 330006,
2	People's Republic of China
3	⁴ Key Laboratory of Payang Lake Environment and Resource Utilization, Ministry of Education,
4	Nanchang University, 461 Bayi Avenue, Nanchang City, Jiangxi Province 330006, People's
5	Republic of China
6	
7	Corresponding author: Xianmin Zhou, zhouxmjxmu@ncu.edu.cn
8	
9	ABSTRACT
20	We describe nine new species of potamid freshwater crabs from Yunnan Province, China. These
21	include five species of the genus Indochinamon Yeo & Ng, 2007, two species of the genus
22	Potamiscus Alcock, 1909, and one species each of the genera Pararanguna Dai & Chen, 1985,
23	and Parvuspotamon Dai & Bo, 1994. These new species are compared with morphologically
24	allied species in detail. Photographs of the type specimens of some comparative species are also
25	provided to allow better understanding of those have not previously been well illustrated.
26	
27	Subjects Biodiversity, Taxonomy, Zoology
28	Keywords Freshwater crab, Potamidae, Indochinamon, Pararanguna, Parvuspotamon,
29	Potamiscus, Yunnan, China, taxonomy, new species
80	
31	INTRODUCTION

- 32 China is the world's most species-rich country of the freshwater crabs; more than 200 species
- have been recorded from the country (Dai, 1999; Cumberlidge et al., 2009; 2011; Cumberlidge
- 34 & Ng, 2009). As Cumberlidge et al. (2011: 46) indicated that there are "(d)ozens of new
- 35 species remain undescribed", more and more new taxa have been described (Cheng, Lin & Li,
- 36 2010; Chu, Sun & Sun, 2017; Chu, Zhou & Sun, 2017; Do, Shih & Huang, 2016; Huang, Huang
- 37 & Ng, 2012; Huang, Mao & Huang, 2014; Huang, Shih & Mao, 2016; Huang, Ahyong & Shih,
- 38 2017; Huang, Shih & Ng, 2017; Lin, Cheng & Chen 2012; 2013; Naruse, Zhu & Zhou, 2013; Ng,
- 39 2017; Zhu, Naruse & Zhou, 2010).
- 40 Yunnan Province is located in southwestern China at the meeting point of the eastern Asia
- 41 monsoon region, the Tibetan Plateau region and the tropical monsoon region of southern Asia
- and Indo-China. Significant range of the province's elevation from 76.4 m to 6,740 m and the
- 43 presence of at least six major river systems (Irrawaddy, Mekong, Pearl, Red, Salween, and
- 44 Yangtze) have contributed a wide range of habitats, topographies and its rich biota (Kunming
- 45 Institute of Zoology, CAS 1999; Yang et al., 2004). Indeed, Yunnan hosts 50 species of the
- 46 freshwater crabs in 15 genera (Dai, 1999; Dai & Cai, 1998; Naruse, Yeo & Zhou, 2008; Chu,
- 47 Zhou & Sun, 2017), which represents the highest number of freshwater crab species in the
- 48 provinces in China. The present study serves to describe nine new species of potamid freshwater
- 49 crabs from Yunnan that includes four genera, viz., *Indochinamon* Yeo & Ng, 2007, *Pararanguna*
- 50 Dai & Chen, 1985, Parvuspotamon Dai & Bo, 1994, and Potamiscus Alcock, 1909.

5152

METHODS

- 53 Specimens examined were collected by members of Chuxiong Medical College, Yunnan, and
- National University of Singapore for our study and are deposited in the Department of Parasitology,
- 55 Medical College of Nanchang University, Nanchang (NCU MCP); the Zoological Reference
- 56 Collection (ZRC), Lee Kong Chian Natural History Museum (previously Raffles Museum of
- 57 Biodiversity Research), National University of Singapore; the Institute of Zoology, the Chinese
- 58 Academy of Sciences, Beijing (CB); and the Ryukyu University Museum (RUMF), University of
- 59 the Ryukyus, Okinawa. Measurements provided are of the carapace length (CL) by the carapace
- 60 width (CW). Terminology used in descriptive accounts essentially follows Ng (1988) and Yeo &
- 61 Ng (2007). The abbreviations G1 and G2 are used for the male first and second gonopods,
- 62 respectively.

63	Morphology of some comparative species were previously not well illustrated, which
64	sometime makes difficult to conduct taxonomic work. A part of photographs taken by a team of
65	the third author (XZ) were shown in this study. Data of those specimens were as follows:
66	Indochinamon gengmaense (Dai, 1995), holotype male (CB05192 YN6491119A), Mengding
67	Town, Dima County Yunnan Province, coll. 7 May 1964. Indochinamon chinghungense (Dai,
68	Song, He, Cao, Xu and Zhong, 1975), holotype male (CB05166 YN 637507) (47.8 × 37.0 mm),
69	Tuanshanzai Town Jinghong County, Yunnan Province, coll. 9 Dec. 1963. Indochinamon
70	boshanense (Dai & Chen, 1985), holotype male (CB05160 HD8183031), Daojie Town, Baoshan
71	County, Yunnan Province, coll. 17 Oct. 1981. Indochinamon jianchuanense (Dai & Chen, 1985),
72	holotype male (CB05159 HD 8183030), Lingcheng Town, Jianchuan County, Yunnan Province,
73	coll. 28 Sep. 1981. Indochinamon menglaense (Dai & Cai, 1998), holotype male (CB05168 YN-
74	9496196A), (43.1 × 33.2 mm), Shangyong, Mengla County, Yunnan Province, coll., 23–26 Apr.
75	1994. Pararanguna semilunata (Dai & Chen, 1985), holotype male (CB05191 HD 8183034),
76	Xiyi Town, Baoshan County, Yunnan Province, coll. 13 Oct. 1981. Parvuspotamon yuxiense Dai
77	& Bo, 1994, holotype male (CB05138 YN 9091116A), Xingping, Yuxi County, Yunnan
78	Province, coll. Aug. 1989. Potamiscus motuoensis Dai, 1990, holotype male (CB05157
79	XZ6389084), Motuo County, Tibet, coll. 29 Jul. 1983. Potamiscus yongshengensis Dai & Chen,
80	1985, holotype male (CB05149 HD 8183035), Yongsheng County, Yunnan Province, coll. 22
81	Aug. 1981.
82	The electronic version of this article in Portable Document Format (PDF) will represent a
83	published work according to the International Commission on Zoological Nomenclature (ICZN),
84	and hence the new names contained in the electronic version are effectively published under that
85	Code from the electronic edition alone. This published work and the nomenclatural acts it
86	contains have been registered in ZooBank, the online registration system for the ICZN. The
87	ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
88	through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The
89	LSID for this publication is: urn:lsid:zoobank.org:pub:642C4FCB-905B-48DB-8E01-
<mark>90</mark>	96C87249D809. The online version of this work is archived and available from the following
91	digital repositories: PeerJ, PubMed Central and CLOCKSS.
92	
03	

94 RESULTS 95 **Systematics** 96 Family Potamidae Ortmann, 1896 97 Subfamily Potamiscinae Ortmann, 1896 (sensu Yeo & Ng, 2003) 98 Indochinamon Yeo & Ng, 2007 99 Indochinamon ahkense sp. n. 100 urn:lsid:zoobank.org:act:98393C16-DDA8-4A13-A9A3-C8778C17E8E6 101 Figures 1–3. 102 Material examined. Holotype male (41.3 × 32.0 mm) (NCU MCP 2013.0003), Shaping 103 Village, Ahke Town, Guangnan County, Yunnan Province, China, coll. Chen Zeng Long, 1 Feb. 104 105 2004. Paratypes: 7 males (largest 33.8 × 26.3 mm), 3 females (largest 43.3 × 33.4 mm) (NCU MCP 106 2013.0004); 4 males (largest 38.4×29.7 mm), 2 females (larger 43.1×33.2 mm) (ZRC 107 108 2013.0551), 2 males (larger $35.6 \times 27.4 \text{ mm}$), 2 females (larger $32.5 \times 24.9 \text{ mm}$) (RUMF-ZC-109 2366), same data as holotype. 110 **Diagnosis.** Carapace (Fig. 1A) broader than long dorsal surface (Fig. 1B) flat, regions 111 demarcated, with short, indistinct setae on metabranchial region; cervical groove distinct, deep, 112 reaching postorbital cristae; epigastric cristae rounded, not sharp, distinctly anterior to postorbital 113 cristae, separated from postorbital cristae by distinct groove; postorbital cristae sharp, not cristate, not reaching epibranchial tooth; regions behind epigastric and postorbital cristae rugose, 114 115 branchial region weakly granulose; antennular fossae (Fig. 1B) rectangular in anterior view; 116 external orbital angle broadly triangular, outer margin longer than inner margin, distinctly 117 cristate, with shallow notch demarcating it from epibranchial tooth; epibranchial tooth distinct; 118 anterolateral margin convex, serrated, distinctly cristate, confluent with posterolateral margin. 119 Epistome (Fig. 1B) posterior margin median tooth well-developed, laterally sloping downwards, 120 only slightly arching. Third maxilliped (Figs. 1B, 2A) exopod with distinct flagellum exceeding 121 two-third merus width. Ambulatory legs (Fig. 1A) with mid-length, slender dactyli, carpi with 122 well-defined median ridges; dactyli of last pair of ambulatory legs about same median length as 123 propodi. Suture between sternites 3 and 4 (Fig. 2A) distinct, straight; pleonal cavity reaching 124 imaginary line joining median part of cheliped bases. Male pleon (Fig. 2A) narrowly triangular;

- telson broadly triangular, proximal width about 1.2 times its median length; segment 6
- trapezoidal, proximal width about 2.2 times median length. G1 (Fig. 3A–C) terminal segment
- slender, subconical, tapered tip, slightly curved, bent obliquely outwards, with rather broad neck
- between terminal and subterminal segments; subterminal segment with distinct cleft on upper
- 129 part of outer margin.
- Etymology. The species is named after the locality in which it is found.
- 131 **Remarks.** *Indochinamon ahkense* sp. n. closely resembles *I. gengmaense* (Dai, 1995) in its
- general carapace morphology and in the slender, subconical, slightly curved G1 terminal
- segment with a tapered tip and bent obliquely outward. However, *I. ahkense* sp. n. can be
- distinguished from *I. gengmaense* by the following characters: external orbital angle blunt, with
- shallow notch demarcating it from epibranchial tooth (versus external orbital angle acute, with
- deep notch demarcating it from epibranchial tooth); and rather broad border between G1 terminal
- and subterminal segments (versus narrow border between G1 terminal and subterminal
- 138 segments) (Figs. 1A, 2A, 3A–C; versus Fig. 4A, F; Dai, 1995: fig. 5 (4, 5), pl. 1 fig. 5; Dai,
- 139 1999: fig. 98 (4, 5), pl. 12 fig. 1).
- The new species is also similar to *I. tannanti* (Rathbun, 1904) and *I. orleansi* (Rathbun, 1904)
- in their shapes of the G1. *Indochinamon ahkense* sp. n. can be distinguished from *I. tannanti* by
- flatter carapace (versus slightly convex), epistome posterior margin divergent posteriorly (versus
- almost straight), and proportionally wider telson (versus telson proportionally narrower) (Figs.
- 144 1A, B, 2A; versus Yeo & Ng, 1998: fig. 1B, C). The new species can be differentiated from *I*.
- orleansi by its straight lateral margins of telson (versus lateral margins concave), and sharp and
- distinct epibranchial tooth (versus epibranchial tooth low) (Figs. 1A, 2A; versus Rathbun, 1904:
- 147 fig. 20; Yeo & Ng, 1998; fig. 6B).
- Distribution. Shaping Village, Ahke Town, Guangnan County, Yunnan Province, China.
- 149
- 150 *Indochinamon* jingguense sp. n.
- 151 urn:lsid:zoobank.org:act:A2CE6AC9-8299-406E-B04B-F8135FA822EC
- 152 Figures 5–7.
- 153
- Material examined. Holotype male (58.0 × 46.0 mm) (NCU MCP 2013.0007), Jinggu
- market, Mekong Basin, Simao, Yunnan Province, China, coll. Tan Heok Hui, 22 May 2000.

Paratypes: 4 males (largest $57.0 \times 43.0 \text{ mm}$), 4 females (largest $53.5 \times 42.1 \text{ mm}$), (ZRC 156 2013.0552), 4 males (largest 59.4 × 44.6 mm), 2 females (larger 46.2 × 37.0 mm) (ZRC 157 158 2013.0553), 3 males (largest 58.3×44.7 mm), 2 females (larger 50.8×37.5 mm) (RUMF-ZC-2367), same data as holotype; 2 males (larger 42.2 × 32.5 mm) (RUMF-ZC-2368), hill stream 20 159 160 km from Simao to Pu'er near border between Simao and Pu'er, Mekong Basin, Simao, Yunnan 161 Province, China, coll. Tan Heok Hui, 20 May 2000. 162 Others: 6 males (largest 42.9×33.7 mm), 4 females (largest 40.3×31.3 mm), 4 juveniles 163 (NCU MCP 2013.0009), 3 males (largest 41.4 × 32.1 mm) (ZRC 2013.0554), Jinggu county, Zhongshang countryside, Yunnan Province, China, coll. Chen Yan, 26 Feb. 2004. 164 **Diagnosis.** Carapace (Fig. 5A) broader than long; dorsal surface (Fig. 5B) relatively flat. 165 166 glabrous; postorbital cristae not confluent with epibranchial teeth; epibranchial region and regions behind epigastric and postorbital cristae rugose; cervical groove distinct, deep; epigastric 167 168 cristae raised, rounded, rugose, separated by distinct groove which opens up into V-shape 169 posteriorly, distinctly anterior to postorbital cristae; postorbital cristae sharp, straight, rugose; external orbital angle triangular, strongly developed, with deep, narrow cleft separating it from 170 171 epibranchial tooth; epibranchial tooth distinct; anterolateral margin convex, granular. Epistome 172 (Fig. 6B) posterior margin median tooth well-developed, laterally sloping downwards, straight to 173 gently concave. Third maxilliped (Figs. 5B, 6A) exopod with distinct flagellum about two-thirds 174 merus width. Ambulatory legs (Fig. 5A) with long, slender dactyli; second pair longest, about 175 8.5 times 1 onger than proximal width. Suture between anterior thoracic sternites 3 and 4 (Fig. 176 6A) distinct, laterally curved posteriorly; pleonal cavity reaching imaginary line joining median 177 part of cheliped bases. Male pleon (Fig. 6A) narrowly triangular, G1 (Fig. 7A–D) sinuous; terminal segment relatively short, about 0.32 times the length of subterminal segment, subconical, 178 179 obliquely bent outwards, convexly curved along inner margin, about 2.8 times longer than broad, groove for G2 marginal; subterminal segment gently sinuous, slender, without distinct cleft on 180 181 upper part of outer margin. G2 (Fig. 7E) distal segment distinctly longer than half of basal 182 segment. 183 **Etymology.** The species is named after the locality in which it is found. 184 **Remarks.** Indochinamon jingguense sp. n. has considerable similarity with congeners from 185 northern Indochina, especially *I. villosum* (Yeo & Ng, 1998), *I. orleansi* (Rathbun, 1904) and *I.* 186 phongnha Naruse, Quynh & Yeo, 2011, in their general shape of the carapace and G1.

187 *Indochinamon jingguense* sp. n. can be distinguished from *I. villosum* by less sinuous G1 (versus more sinuous) (Figs. 7A–D; versus Yeo & Ng. 1998; fig. 5I–K, M, N). The new species can be 188 189 differentiated from I. orleansi by the following characters: sharp and distinct epibranchial tooth 190 (versus epibranchial tooth low), anterolateral margin lined with sharp, large granules (versus 191 anterolateral margin lined with small granules), and sharp and distinct postorbital cristae (versus 192 relatively sharp but low postorbital cristae) (Fig. 5A; versus Yeo & Ng. 1998: fig. 6B). The new 193 species can be distinguished from *I. phongnha* by the following characters: suborbital region 194 smooth and lacking granules (versus suborbital region scattered with granules), outer and upper 195 surfaces of chela with sparsely placed granules (versus outer and upper surfaces of chela forming 196 reticulated pattern), and distal portion of subterminal segment of G1 weakly curved laterally 197 (versus strongly curved) (Figs. 5A, B, 6B, 7A–D; versus Naruse, Nguyen & Yeo, 2011: fig. 8a, b, 198 9a, b). The new species also resembles *I. chinghungense* (Dai, Song, He, Cao, Xu and Zhong, 1975), 199 200 especially if non-adult individuals are observed. However, adult specimens have relatively 201 broader G1 subterminal segments as compared to that of *I. chinghungense*, which is evidently 202 slenderer. The G1s of mid-sized to near full-sized individuals of this species may appear slender 203 and sinuous like adult specimens of *I. chinghungense*, therefore the size of the specimens must 204 be taken into consideration when identifying specimens. Moreover, I. jingguense can be 205 distinguished from *I. chinghungense* by the presence of the slight hump on the inner margin of 206 the G1 terminal segment (versus no hump on the inner margin of the G1 terminal segment) (Figs. 207 7A–D versus Fig. 4G; Dai et al. 1975: fig. 3; Dai, 1999: fig. 86, pl. 10 fig. 5). 208 **Distribution.** Mekong Basin, Simao and Jinggu Counties, Zhongshang, Yunnan. 209 210 Indochinamon parpidum sp. n. 211 urn:lsid:zoobank.org:act:FC1B9878-292C-4492-8A8D-44C7935A6904 212 Figures 8–10. 213 214 **Material examined.** Holotype male (47.1 × 36.5 mm) (NCU MCP 2013.0015), Niuyu Town, 215 Shiping County, Yunnan Province, China, coll. Li Hai Chun, 23 Feb. 2004. 216 Paratypes: 4 males (largest 29.1 × 22.2 mm), 10 females (largest 45.3 × 33.0 mm) (NCU MCP 217 2013.0016), 2 males (larger 43.4×32.3 mm), 2 females (larger 35.0×26.2 mm) (ZRC

218	2013.0558), 2 males (larger 39.3 × 29.7 mm), 2 females (larger 33.5 × 25.6 mm) (RUMF-ZC-
219	2371), same data as holotype.
220	Diagnosis. Carapace (Fig. 8A) broader than long; dorsal surface (Fig. 8B) flat; cervical
221	groove distinct, relatively deep, reaching postorbital cristae; epigastric cristae strong, raised,
222	rounded, distinctly anterior to postorbital cristae; postorbital cristae sharp, breaking out into
223	granules just before reaching epibranchial tooth, slanting posterolaterally towards anterolateral
224	margin, not confluent with epibranchial teeth; branchial region and regions behind epigastric and
225	postorbital cristae rugose; frontal margin gently sinuous; antennular fossae rectangular (Fig. 8B)
226	in anterior view; external orbital angle broadly triangular, with shallow, weak notch demarcating
227	it from epibranchial tooth; epibranchial tooth present, very small, poorly developed; anterolateral
228	margin convex, running inwards posteriorly. Epistome (Fig. 8B) posterior margin with median
229	tooth well-developed, acutely triangular; laterally sloping downwards, almost straight. Third
230	maxilliped (Figs. 8B, 9A) exopod with distinct flagellum about two-thirds merus width. Suture
231	between sternites 3 and 4 (Fig. 9A) distinct, straight; lateral margins of sternite 4 straight;
232	pleonal cavity reaching imaginary line joining median part of cheliped bases. Male pleon (Fig.
233	9A) narrowly triangular; telson broadly triangular, lateral margins distinctly concave; segment 6
234	trapezoidal, proximal width about 2.1 times its median length, lateral margins convex; lateral
235	margins of segments 3 straight. G1 (Fig. 10) terminal segment short, subconical, with bulge of
236	constant width that gradually tapers distally along inner margin, strongly obliquely bent
237	outwards, curved distally with narrowly tapered tip, groove for G2 marginal; subterminal
238	segment gently sinuous, slender, with cleft on upper part of outer margin.
239	Etymology. The species name is a combination of par, Latin for resemble, with the species
240	name Indochinamon hispidum (Wood-Mason, 1871), alluding to the shape of the G1 terminal
241	segment.
242	Remarks. Indochinamon parpidum sp. n. closely resembles I. hispidum (Wood-Mason, 1871),
243	in general carapace morphology and in the short, subconical G1 terminal segment obliquely bent
244	outwards, curved distally, with a low, broad dorsal flap. However, I. parpidum sp. n. can be
245	distinguished from I. hispidum by the following characters: G1 terminal segment with bulge that
246	gradually tapers distally along the inner margin (versus G1 terminal segment with narrow bulge
247	of constant width along inner margin); G1 terminal segment strongly, obliquely bent outwards
248	with a narrowly tapered tip (versus G1 terminal segment obliquely bent outwards to a lesser

249 degree with a broadly tapered tip); and G1 subterminal segment with a cleft on the upper part of 250 the outer margin (versus G1 subterminal segment without a cleft on the upper part of the outer 251 margin) (Fig. 10A-C; versus Dai, 1999: fig. 94 (4, 5)). 252 *Indochinamon parpidum* sp. n. also morphologically similar to *I. guttum* (Yeo & Ng, 1998), 253 but the former can be distinguished from the latter by the distal portion of G1 subterminal 254 segment gradually bent laterally (versus abruptly bent laterally) (Fig. 10A–C; versus Yeo & Ng, 255 1998: fig. 4K-M). 256 **Distribution.** Niuyu Town, Shiping County, Yunnan Province, China. 257 258 Indochinamon aozaoense sp. n. 259 urn:lsid:zoobank.org:act:B1E8716A-894F-44E6-8D41-7226FAF9BE28 260 Figures 11–13. 261 262 Material examined. Holotype male (45.3 × 33.2 mm) (NCU MCP 2013.0005), Aozao 263 Village, Tuzi Town, Nanhua County, Yunnan Province, China, coll. He Yong Gang, 23 Feb. 264 2004. Paratypes: 3 females (largest 35.6 × 26.7 mm) (NCU MCP 2013.0006), same data as holotype. 265 266 **Diagnosis.** Carapace (Fig. 11A) broader than long; dorsal surface (Fig. 11B) flat, short setae 267 present on branchial and metabranchial regions, with regions distinctly demarcated; cervical 268 groove distinct, relatively deep; epigastric cristae strong, raised, rounded, distinctly anterior to 269 postorbital cristae, separated from postorbital cristae by shallow groove; postorbital cristae sharp, 270 breaking out into granules just before reaching epibranchial tooth; branchial region and regions 271 behind epigastric and postorbital cristae rugose; antennular fossae (Fig. 11B) rectangular in 272 anterior view; external orbital angle broadly triangular, with distinct, shallow notch demarcating 273 it from epibranchial tooth; epibranchial tooth distinct; anterolateral margin convex, granular, 274 confluent with posterolateral margin; epistomal region narrow. Epistome (Fig. 11B) posterior margin with median tooth well-developed; laterally sloping downwards, gently arched. Third 275 276 maxilliped (Figs. 11B, 12A) exopod with distinct flagellum about half merus width. Ambulatory 277 legs (Fig. 11A) with short, stout dactyli, carpi with sharply defined median ridges, meri rugose; dactyli of last pair of ambulatory legs with median length about 5.7 times its proximal width, 278 279 about same median length as propodi. Suture between sternites 3 and 4 (Fig. 12A) distinct,

280 shallow, medially concave; lateral margins of sternite 4 distinctly concave; pleonal cavity 281 reaching imaginary line joining median part of cheliped bases. Male pleon (Fig. 12A) narrowly 282 triangular; telson broadly triangular, with lateral margins gently concave; segment 6 trapezoidal, lateral margins straight; lateral margins of segment 3 distinctly concave. G1 (Fig. 13A–D) 283 284 terminal segment short, subconical, strongly bent obliquely outwards, about 0.24 times the length 285 of subterminal segment, with tapering tip; inner margin forming a bulge of constant width; outer 286 margin sinuous, with a cleft along upper part of outer margin; subterminal segment with distinct 287 cleft on upper part of outer margin, greatest width about 0.41 times its length. 288 **Etymology.** The species is named after the locality in which it is found. 289 Remarks. Indochinamon aozaoense sp. n. closely resembles I. boshanense (Dai & Chen, 290 1985), in its general carapace morphology and in the short, subconical G1 terminal segment 291 being strongly bent obliquely outwards, with a slight hump along the outer margin at the 292 proximal end and a sinuous outer margin. However, I. aozaoense sp. n. can be distinguished 293 from I. boshanense by the following characters: epigastric cristae strong (versus epigastric 294 cristae relatively weak); lateral margins of the telson of the male pleon gently concave (versus 295 lateral margins of the telson distinctly and widely concave); and G1 terminal segment with a 296 broad bugle of constant width along the inner margin (versus G1 terminal segment with a 297 relatively narrow bulge along the inner margin) (Figs. 11A, 12A, 13; versus Fig. 4C; Dai & Chen, 298 1985: fig. 2(4, 5, 7), pl. 1 fig. 2; Dai, 1999: fig. 96 (2, 4, 5), pl. 11 fig. 7). 299 The new species is also morphologically similar to *I. jianchuanense* (Dai & Chen, 1985), but 300 the former can be differentiated from the latter by the G1 distal segment strongly bent (versus the 301 bent is weaker); and bulge on the inner margin of G1 distal segment larger (versus narrower) (Fig. 13; versus Fig. 4I; Dai & Chen, 1985: fig. 1 (4, 5); Dai 1999: fig. 95 (4, 5)). 302 303 The new species can be distinguished from *I. menglaense* (Dai & Cai, 1998) by the 304 anterolateral margin of the carapace being lined with rounded granules (versus anterolateral 305 margin lined with spine-like granules); telson lateral margins slightly concave (versus distinctly 306 concave); and bulge on the inner margin of G1 distal segment with constant width (versus more 307 produced, rounded) (Figs. 11A, 12A, 13 versus Fig. 4E, J; Dai & Cai, 1998: figs. 12, 14, 15). 308 The new species differs from *I. dangi* Naruse, Quynh & Yeo, 2011, in the following 309 characters: infraorbital margin straight mesially and curving upwards laterally (versus 310 infraorbital margin almost entirely straight and oblique); G1 distal segment bent less (versus

311 distal segment bent more); and the bulge on the inner margin of G1 distal segment with constant width (versus the bulge absent) (Figs. 11B, 13 versus Naruse, Nguyen & Yeo, 2011: figs. 9d, e, 312 313 11a). **Distribution.** Aozao Village, Tuzi Town, Nanhua County, Yunnan Province, China. 314 315 316 Indochinamon lui sp. n. 317 urn:lsid:zoobank.org:act:3FAF5B0F-9963-4F00-9DBD-5FDE982DD04E 318 Figures 14–16. 319 320 **Material examined.** Holotype male (43.0 × 32.9 mm) (NCU MCP 2013.0010), Fuhuai Town, 321 Yun County, Yunnan Province, China, coll. Lu Yong Feng, 24 Feb. 2004. Paratypes: 2 males (larger 30.8 × 23.3 mm), 1 female (36.9 × 27.5 mm) (NCU MCP 322 323 2013.0011), 2 males (larger $33.1 \times 25.0 \text{ mm}$), 1 female ($31.4 \times 23.6 \text{ mm}$) (ZRC 2013.0555), 1 324 male $(25.5 \times 19.6 \text{ mm})$, 1 female $(34.8 \times 26.2 \text{ mm})$ (RUMF-ZC- 2369), same data as holotype; 325 Others: 1 male $(40.3 \times 30.2 \text{ mm})$, 6 females (largest $36.2 \times 28.1 \text{ mm}$), 5 juveniles (NCU MCP 326 2013.0012), 2 males (larger 32.2 × 24.9 mm) (ZRC 2013.0556), Dashan Village, Xueshan Town, 327 Fengging County, Yunnan Province, China, coll. Yang Zheng Bing, 1 Feb 2004; 9 males (largest 328 male 33.3 by 24.4 mm), 13 females (largest 41.7 × 31.2 mm) (NCU MCP 2013.0013), Xinfu 329 Town, Yun County, Yunnan Province, China, coll. Shen Tian Juan, 26 Feb. 2004; 7 males 330 (largest 39.3 × 29.9 mm), 9 females (largest 41.0 × 30.2 mm), 3 juveniles (NCU MCP 331 2013.0014), 2 males (larger $37.5 \times 28.8 \text{ mm}$), 2 females (larger $38.6 \times 28.6 \text{ mm}$) (ZRC 332 2013.0557), 3 males (largest 34.6×25.7 mm), 2 females (larger 38.5×29.0 mm) (RUMF-ZC-333 2370), Mongku Town, Shuangjiang County, Yunnan Province, China, coll. Li Quan Cheng, 26 334 Feb. 2004. 335 *Diagnosis.* Carapace (Fig. 14A) broader than long; dorsal surface (Fig. 14B) flat, sparse and 336 short setae on branchial and metabranchial regions, with regions distinctly demarcated; cervical 337 groove distinct, relatively deep, reaching postorbital cristae; epigastric cristae rounded, distinctly 338 anterior to postorbital cristae, separated from postorbital cristae by shallow groove; postorbital 339 cristae sharp, breaking out into few, weak granules just before reaching epibranchial tooth; 340 branchial region and regions behind epigastric and postorbital cristae slightly rugose; antennular 341 fossae (Fig. 14B) rectangular in anterior view; external orbital angle broadly triangular, with

342 outer margin longer than inner margin, with distinct, shallow notch demarcating it from 343 epibranchial tooth; epibranchial tooth distinct; anterolateral margin convex, confluent with 344 posterolateral margin. Epistome (Fig. 14B) posterior margin with median tooth well-developed, obtusely triangular; laterally sloping downwards. Third maxilliped (Figs. 14B, 15A) exopod with 345 distinct flagellum about two-third merus width. Ambulatory legs (Fig. 14A) with short, stout 346 347 dactyli, carpi with sharply defined ridges, meri rugose; dactyli of last pair of ambulatory legs with median length about 6.5 times its proximal width, about 1.1 times as long as its propodus. 348 349 Suture between sternites 3 and 4 (Fig. 15A) distinct; lateral margins of sternite 4 slightly concave 350 anteriorly; pleonal cavity just exceeding imaginary line joining medial part of cheliped bases. Male pleon (Fig. 15A) narrowly triangular; telson broadly triangular, with lateral margins gently 351 352 concave; segment 6 trapezoidal, lateral margins straight; lateral margins of segment 3 gently concave. G1 (Fig. 16) terminal segment short, subconical, with a bulge of increasing distal width 353 354 along the inner margin, bent obliquely outwards, with straight tapering tip, without dorsal flap. 355 **Etymology.** The species is named after its collector, Lu Yong Feng. 356 Remarks. Indochinamon lui sp. n. closely resembles I. boshanense (Dai & Chen, 1985), in 357 general carapace morphology and in the short, subconical G1 terminal segment obliquely bent outwards, with tapering tip and without a dorsal flap. However, I. lui sp. n. can be distinguished 358 359 from I. boshanense by the following characters; epibranchial tooth distinct (versus epibranchial 360 tooth poorly developed); and G1 terminal segment with a bulge of increasing distal width along 361 the inner margin and straight, tapering tip (versus G1 terminal segment with a narrow bulge of 362 constant width along the inner margin and slightly curved, tapering tip) (Figs. 14A, 16; versus 363 Dai & Chen, 1985: fig. 2 (4, 5), pl. 1 fig. 2; Dai, 1999: fig. 96 (4, 5), pl. 11 fig. 7). The new species is also morphologically similar to *I. jianchuanense* (Dai & Chen, 1985), but 364 365 the former can be distinguished from the latter by the following characters: G1 distal segment 366 shorter, stouter (versus G1 distal segment longer, slender); and a bulge on the inner margin of G1 367 distall segment more produced distally (versus the bulge more gradually narrowed distally) (Figs. 14A, 16; versus Fig. 4I; Dai & Chen, 1985: fig. 1 (4, 5); Dai, 1999: fig. 95 (4, 5)). 368 369 The new species can be differentiated from *I. dangi* Naruse, Quynh & Yeo, 2011, by the G1 distal segment bent less (versus G1 distal segment bent more); and a bulge on the inner margin 370 of G1 distal segment with constant width (versus the bulge absent) (Fig. 16; versus Naruse, 371 372 Nguyen & Yeo, 2011: fig. 9d, e).

373 **Distribution.** Yun, Fengging and Shuangjiang Counties, Yunnan Province, China. 374 375 Pararanguna Dai & Chen, 1985 376 Pararanguna hemicyclius sp. n. 377 urn:lsid:zoobank.org:act:8D4F20E5-B08C-41C1-91AC-DADE13A58725 378 Figures 17–19. 379 380 Material examined. Holotype male (14.3 × 12.5 mm) (NCU MCP 2013.0017), Dashan 381 Village, Xueshan Town, Fengqing County, Yunnan Province, China, coll. Yang Zheng Bing, 1 Feb. 2004. 382 383 Paratypes: 11 males (largest 10.6×9.5 mm), 10 females (largest 16.2×13.6 mm) (NCU MCP 2013.0018), 3 males (largest 14.0×11.9 mm), 2 females (larger 15.1×12.8 mm) (ZRC 384 2013.0559), 2 males (larger 16.3 × 13.5 mm), 2 females (larger 15.1 × 12.4 mm) (RUMF-ZC-385 386 2372), same data as holotype. Others: 20 males (largest 12.0 × 10.6 mm), 24 females (largest 15.1 × 12.9 mm) (NCU MCP 387 388 2013.0019), 2 males (larger 12.3×10.7 mm), 1 female (12.9×10.9 mm) (ZRC 2013.0560), 1 389 male (12.3 \times 10.9 mm), 1 female (12.6 \times 10.5 mm) (RUMF-ZC-2373), Fengging County, 390 Yunnan Province, China, coll. Yang Zheng Bing, Feb. 2004. 391 **Diagnosis.** Carapace (Fig. 17A) broader than long; dorsal surface (Fig. 17B) relatively flat. 392 with regions distinctly demarcated; cervical groove present, shallow, weakly developed; 393 epigastric cristae rounded, flat, distinctly anterior to postorbital cristae; postorbital cristae weakly 394 developed, gently sloping downwards anteriorly, confluent with branchial and regions behind it; 395 branchial region and regions behind epigastric and postorbital cristae rugose; antennular fossae 396 (Fig. 17B) subtriangular in anterior view; external orbital angle acutely triangular, outer margin 397 convex and longer than inner margin, with obvious cleft demarcating it from epibranchial tooth; 398 epibranchial tooth distinct, small; anterolateral margin gently convex, confluent with posterolateral margin. Epistome (Fig. 17B) posterior margin with well-developed, triangular 399 400 median tooth that has a pointed median tip. Third maxilliped (Figs. 17B, 18) exopod without 401 flagellum. Carpi of chelipeds with well-developed, acute spines on inner margin. Ambulatory 402 legs (Fig. 17A) hairy, with very long, slender dactyli. Suture between sternites 3 and 4 (Fig. 18) 403 indistinct; pleonal cavity reaching imaginary line joining median part of cheliped bases. Male

404 pleon (Fig. 18) broadly triangular; telson broadly triangular, lateral margins gently convex; 405 segment 6 trapezoidal, lateral margins convex, proximal width about 2.8–3 times its median 406 length. G1 (Fig. 19A–C) terminal segment stout, straight, tip truncate, rounded with slight 407 subdistal constriction, groove for G2 marginal, dorsal flap well-developed, high, broad, with broadly convex apex in median part, gradually tapered distally and concaves proximally, appears 408 409 subtriangular and stout from lateral view; subterminal segment slender. G2 (Fig. 19D) distal 410 segment cylindrical, truncate, less than half the length of basal segment. **Etymology.** The species name is derived from *hemicyclium*, Latin for semicircle, alluding to 411 412 the dorsal flap of the G1 terminal segment. 413 **Remarks.** Pararanguna hemicyclius sp. n. closely resembles the only congener, P. semilunata (Dai & Chen, 1985), in its general carapace morphology and in the stout, straight G1 414 415 terminal segment which is rounded with a slight subdistal constriction, possessing a truncate tip and a well-developed, high, broad dorsal flap. However, P. hemicyclius can be distinguished 416 417 from P. semilunata by the following suite of diagnostic characters: anterolateral margin of 418 carapace less convex laterally (versus anterolateral margin strongly convex laterally); dorsal 419 surface relatively flat with distinctly demarcated regions (versus dorsal surface gently convex 420 and inflated with weakly demarcated regions); antennular fossae appears subtriangular in 421 anterior view (versus antennular fossae appears rectangular in anterior view); external orbital 422 angle acutely triangular with an obvious cleft demarcating it from the epibranchial tooth (versus 423 external orbital angle obtusely triangular with a slight cleft demarcating it from the epibranchial 424 tooth); epistome posterior margin median tooth with an acute tip (versus epistome posterior 425 margin median tooth with an obtuse tip); carpi of chelipeds with well-developed, acute spines on inner margin (versus carpi of chelipeds with low, obtuse spines on inner margin); male pleon 426 427 broadly triangular with telson having gently convex lateral margins (versus male pleon relatively 428 narrowly triangular with telson having almost straight lateral margins); dorsal flap of G1 429 terminal segment with broadly convex apex in median part with concave proximally tapered 430 margin (versus dorsal flap of the G1 terminal segment with a more broadly convex apex in 431 median part with convex proximally tapered margin); and G1 terminal segment appearing 432 subtriangular from lateral view (versus G1 terminal segment appearing columnar from lateral view) (Figs. 17–19A–C; versus Dai & Chen, 1985: fig. 16 (4, 5, 7), pl. 1 fig. 5; Dai, 1999: fig. 433 434 200, pl. 25 fig. 1).

435 **Distribution.** Dashan Village, Xueshan Town, Fengqing County, Yunnan Province, China. 436 437 Parvuspotamon Dai & Bo, 1994 438 Parvuspotamon divuense sp. n. 439 urn:lsid:zoobank.org:act:1D4DBFB9-B5BB-49CB-90EA-4C862CD75859 440 Figures 21–23. 441 442 Material examined. Holotype male (25.7 × 20.0 mm) (NCU MCP 2013.0020), Huaguo 443 Village, Diyu Town, Guangnan County, Yunnan Province, China, coll. Nong Guang Lin, 25 Feb. 2004. 444 Paratypes: 8 males (largest 23.3 × 17.4 mm), 10 females (largest 23.3 × 17.8 mm) (NCU MCP 445 2013.0021), 5 males (largest 24.7×18.9 mm), 1 female (21.3×16.2 mm) (ZRC 2013.0561), 5 446 447 males (largest 23.6×18.1 mm), 1 female (19.3×14.6 mm) (RUMF-ZC-2374), same data as 448 holotype. 449 Others: 2 males (larger 16.7×11.9 mm), 2 females (larger 17.2×12.5 mm) (NCU MCP 450 2013.0022), Zhetu Village, Guangnan County, Yunnan Province, China, coll. unknown, 2 Nov. 451 2002; 1 male (16.2×12.5 mm), 1 female (15.8×12.1 mm) (NCU MCP 2013.0023), 452 Xiyangjiang, base of Jiulongshan, Zhetu Village, Guangnan County, Yunnan Province, China, 453 coll. unknown, 2 Nov. 2002. 454 **Diagnosis.** Carapace (Fig. 21A) broader than long; dorsal surface (Fig. 21B) gently convex, 455 with regions distinctly demarcated; cervical groove indistinct, shallow; epigastric cristae rounded, 456 weakly developed, separated from postorbital cristae by shallow groove; postorbital cristae rounded, fairly straight, reaching epibranchial tooth; branchial region and regions behind 457 458 postorbital cristae weakly rugose; antennular fossae (Fig. 21B) narrowly rectangular in anterior view; external orbital angle triangular, low, outer margin gently convex, with distinct, shallow 459 460 notch demarcating it from epibranchial tooth; epibranchial tooth weakly developed, small, granular, appears part of anterolateral margin; anterolateral margin convex, granular, confluent 461 462 with posterolateral margin. Epistome (Fig. 21B) posterior margin with median tooth broadly 463 triangular. Third maxilliped (Figs. 21B, 22A) exopod without flagellum. Ambulatory legs (Fig. 21A) with long, slender dactyli, carpi of first to third ambulatory legs with weak median ridges, 464 465 meri slightly rugose. Suture between sternites 3 and 4 (Fig. 22A) weakly developed; pleonal

166	cavity reaching imaginary line joining proximal part of cheliped bases. Male pleon (Fig. 22A)
467	narrowly triangular; telson broadly triangular, proximal width about 1.3 times its median length,
468	with lateral margins convex. G1 (Fig. 23A-D) terminal segment long, slender, subconical, outer
469	margin convex, about 0.4 times the length of subterminal segment, gently bent but not curving
470	obliquely outwards, inner margin straight, with truncate, narrowly rounded tip ending with dorsa
471	hole (visible from ventral view), with groove for G2 running along entire ventral side, shelf
472	present at neck between terminal and subterminal segments; subterminal segment slender. G2
473	(Fig. 23E) subconical, distal segment less than half the length of basal segment.
174	Etymology. The species is named after the locality in which it is found.
175	Remarks. Parvuspotamon diyuense sp. n. closely resembles the only congener, P. yuxiense
476	Dai & Bo, 1994, in its general carapace morphology and in the long, slender, subconical G1
477	terminal segment with curved outer margin, truncate tip and slender subterminal segment.
478	However, P. diyuense can be distinguished from P. yuxiense by the following characters: 61
179	terminal segment gently bent but not curving obliquely outwards, with a straight inner margin,
480	with a distal dorsal hole that is visible from the ventral view (versus G1 terminal segment
481	curving inwards, with a concave inner margin); groove for G2 running along the ventral side of
182	the G1 terminal segment (versus groove for G2 being marginal along the G1 terminal segment);
483	shelf present at lateral margin between the G1 terminal and subterminal segments (versus shelf
184	absent at lateral margin between the G1 terminal and subterminal segments); and G2 distal
485	segment less than half the length of the basal segment (G2 distal segment more than half the
486	length of the basal segment) (Fig. 23; versus Fig. 20F; Dai & Bo, 1994: fig. 3 (4-6); Dai, 1999:
487	fig. 216 (4–6)).
488	Distribution. Xiyangjiang, Zhetu and Huaguo Village, Diyu Town, Guangnan County,
189	Yunnan Province, China.
490	
491	Potamiscus Alcock, 1909
192	Potamiscus fumariatus sp. n.
193	urn:lsid:zoobank.org:act:0A9F4D94-7238-4780-8171-9D0D6DF36881
194	Figures 24–26.
195	

496	Material examined. Holotype, male (24.1 × 20.1 mm) (NCU MCP 2013.0024), Bailu Town,
497	Wuding County, Yunnan Province, China, coll. Liu Shao Yan, 25 Feb. 2004.
498	Diagnosis. Carapace (Fig. 24A) distinctly broader than long, dorsal surface (Fig. 24B)
499	relatively flat, cervical grooves indistinct, weakly developed, reaching postorbital cristae;
500	epigastric cristae rounded, rugose, appearing almost confluent with postorbital cristae, weakly
501	separated from postorbital cristae by indistinct groove, region between epigastric cristae and
502	frontal margin rugose; frontal region narrow; postorbital cristae gently slanting posterolaterally
503	towards anterolateral margin; regions behind epigastric and postorbital cristae rugose; antennular
504	fossae (Fig. 24B) slit-like in anterior view; cleft between external orbital angle and epibranchial
505	tooth narrow; epibranchial tooth distinct, developed, spine-like; anterolateral margin convex,
506	cristate, very weakly serrated being almost smooth, running inwards posteriorly. Exopod of third
507	maxilliped without flagellum. Suture between sternites 3 and 4 absent (Fig. 25A); pleonal cavity
508	reaching imaginary line joining median part of cheliped bases. Male pleon (Fig. 25A) narrowly
509	triangular; telson broadly triangular. G1 (Fig. 26A-D) terminal segment short, columnar, with
510	broadly flattened truncate, coiled (when viewed dorsally) tip, shorter than half the length of
511	subterminal segment, with groove for G2 marginal; subterminal segment sinuous, broad.
512	Etymology. The species name is derived from an arbitrary combination of the Latin
513	"fumario" (=chimney) and -atus (a suffix to form adjective indicating the possession of a thing or
514	a quality), alluding to the possession of chimney-like G1s.
515	Remarks. Potamiscus fumariatus sp. n. is represented by a single specimen collected together
516	with another species, Aparapotamon grahami (Rathbun, 1931). However, it can be easily
517	distinguished from the latter species by the absence of the flagellum on the exopod of the third
518	maxilliped and its distinct G1 structure.
519	It most closely resembles Potamiscus motuoensis Dai, 1990, in general carapace morphology
520	and in the G1 terminal segment being columnar-shaped and being shorter than half the length of
521	the subterminal segment. Nevertheless, <i>P. fumariatus</i> can be easily distinguished from <i>P</i> .
522	motuoensis by the following characters: anterolateral margin of carapace less convex laterally
523	(versus anterolateral margin of carapace more convex laterally); epibranchial tooth spine-like
524	(versus epibranchial tooth triangular and low); and G1 terminal segment with a broadly flattened
525	truncate tip (versus G1 terminal segment with a blunt tapering tip) (Figs. 24A, 26A-D; versus
526	Figs. 20C, G; Dai, 1990: fig, 69-4, pl. 9 fig. 3; Dai, 1999: fig. 106 (5, 6), pl. 13 fig. 1).

527	Distribution. Bailu Town, Wuding County, Yunnan Province, China.
528	
529	Potamiscus crassus sp. n.
530	urn:lsid:zoobank.org:act:AA45FEE-505F-4C92-BA19-8D8E7AD3091E
531	Figures. 27–29.
532	
533	Material examined. Holotype male (28.0 × 23.6 mm) (NCU MCP 2013.0025), purchased
534	from Kunming market, purportedly from Jinshajiang, Yunnan Province, China, coll. Yang Chang
535	Man, 10 June 2002.
536	Paratypes: 24 males (largest 26.3×22.4 mm), 18 females (largest 23.3×18.9 mm) (ZRC
537	2013.0562), 5 males (largest 27.8 \times 23.4 mm), 3 females (largest 25.1 \times 19.8 mm) (ZRC
538	2013.0563), 6 males (largest 25.4 \times 21.2 mm), 4 females (largest 24.2 \times 19.4 mm) (RUMF-ZC-
539	2375), same data as holotype.
540	Diagnosis. Carapace (Fig. 27A) broader than long, dorsal surface (Fig. 27B) flat, cervical
541	grooves indistinct, weakly developed, not reaching postorbital cristae; epigastric cristae rounded
542	slightly rugose, appearing almost confluent with postorbital cristae, weakly separated from
543	postorbital cristae by indistinct groove; postorbital cristae gently slanting posterolaterally
544	towards anterolateral margin; regions behind epigastric and postorbital cristae rugose; antennular
545	fossae (Fig. 27B) slit-like in anterior view; orbital region broad; epibranchial tooth distinct, low,
546	poorly developed, not triangular; anterolateral margin convex, weakly serrated, not confluent
547	with posterolateral margin, running inwards posteriorly. Epistome (Fig. 27B) posterior margin
548	lateral parts straight, with broadly triangular, obtuse median tooth. Exopod of third maxilliped
549	without flagellum. Suture between sternites 3 and 4 distinct forming a shelf (Fig. 27B); lateral
550	margin of sternum 4 straight; pleonal cavity reaching imaginary line joining median part of
551	cheliped bases. Male pleon (Fig. 28A) narrowly triangular; telson narrowly triangular, shorter
552	than proximal width, longer than sixth segment G1 (Fig. 29A-D) terminal segment stocky,
553	subconical, length about 1.5 times the proximal width, with truncate, broadly rounded tip,
554	appearing longitudinally twisted, with groove for G2 marginal; subterminal segment strongly
555	sinuous, broad, about 1.6 times longer than broad, with distinctive subdistal cleft along outer
556	margin.

557 **Etymology.** The specific name is derived from the Latin "crassus" (= thick, fat), alluding its 558 very stocky G1. 559 **Remarks.** Like the previous species, *Potamiscus crassus* sp. n. was also found together with 560 Aparapotamon grahami (Rathbun, 1931). However, it can be easily distinguished from the latter 561 species by the narrowly triangular telson of the male pleon, the absence of the flagellum on the 562 exopod of the third maxilliped and its distinct G1 structure. 563 Potamiscus crassus sp. n. most closely resembles P. yongshengensis Dai & Chen, 1985, in general carapace morphology and in the subconical G1 terminal segment appearing 564 longitudinally twisted as well as possessing a truncate tip. However, P. crassus sp. n. can be 565 566 easily distinguished from P. vongshengensis by the following characters: epibranchial tooth poorly developed and not triangular (versus epibranchial tooth more developed and triangular); 567 suture between sternites 3 and 4 distinct forming a shelf and lateral margin of sternum 4 straight 568 569 (versus suture between sternites 3 and 4 not present and lateral margin of sternum 4 concave); 570 male pleon with narrow telson, lateral margins proximally narrowed abruptly (versus male pleon 571 with broadly triangular telson, lateral margins of telson only slightly concave); and G1 terminal 572 segment with broadly rounded tip (G1 terminal segment with a narrowly rounded tip) (Figs. 27A, 573 28A, 29A–D; versus 20D, H; Dai & Chen, 1985: fig. 5 (4, 5, 7), pl. 1 fig. 6; Dai, 1999: fig. 102 574 (2, 4, 5), pl. 12 fig. 5). 575 **Distribution.** Jinshajiang, Yunnan Province, China. 576 **CONCLUSIONS** 577 The present study described nine new species of potamid freshwater crab genera 578 579 Indochinamon Yeo & Ng, 2007, Pararanguna Dai & Chen, 1985, Parvuspotamon Dai & Bo, 580 1994, and *Potamiscus* Alcock, 1909. *Indochinamon* was established for species mainly 581 distributed on Indochina and southern China that were previously assigned to "Potamon", which 582 was until then used as a "catch-all" genus for many Asian potamid species (Yeo & Ng, 2007). 583 The present study added 5 species to the genus, and the genus currently contains 39 species 584 (Cumberlidge & Ng, 2009; Naruse, Nguyen & Yeo, 2011; Do, Nguyen & Le, 2016; present study). Twenty out of the 34 species are distributed on China, of which 19 species are known 585 586 from Yunnan. Potamiscus is also distributed en Indochina and southern China (Cumberlidge & 587 Ng, 2009). The present study added two species, and the genus now contains 16 species, 7 of

588	which have been recorded from Yunnan. Pararanguna and Parvuspotamon were monotypic
589	genera, but the present study described 1 species each for the 2 genera. Both genera are endemic
590	to Yunnan Provice. Yunnan was already known to host the highest number of freshwater crab
591	species in the provinces in China, and the present study further added 9 species and brings the
592	number to 59. It is noteworthy that 8 out of 9 new species described in the present study were
593	collected by local colleagues and students at our request within a relatively short period in
594	February 2004. Considering also the fact that more and more species have been discovered from
595	Yunnan as well as other provinces of China (see Introduction), it is most probable that the
596	species diversity of this group is still understudied.
597	
598	ACKNOWLEDGEMENTS
599	We are grateful to Peter K. L. Ng for his support and encouragement of this study, and to Darren
600	C. J. Yeo and Ng Ngan Kee for their kind assistance and input to this manuscript. Students from
601	Chuxiong Medical College, Yunnan, and Tan Heok Hui (National University of Singapore)
602	kindly helped collecting material for our study. We also thank Jun Chen and Shuqiang Li for
603	their help in accessing specimens in IZAS. Thanks are also due to Chunchao Zhu and Jiexin Zou $$
604	for their help during a course of this study.
605	
606	Funding support
607	A research grant on Indochinese arthropods from the National University of Singapore. This
608	work is supported by the National Science Foundation of China (Grant No. 81260257, 31460156,
609	31560179), Natural Science Foundation of Jiangxi, China (Grant No. 20171BAB214013), the
610	Innovation Special Foundation for Graduates of Nanchang University (Grant No. CX2016280)
611	and National Sharing Service Platform for Parasite Resources (TDRC-22).
612	
613	
614	REFERENCES
615	Cheng YZ, Lin GH, Li YS. 2010. Two new species of freshwater crabs (Decapoda: Potamidae)
616	serving as intermediate hosts of Paragonimus in Fujian, China. Chinese Journal of
617	Parasitology & Parasitic Diseases 28(4):241–245. (In Chinese with English abstract and
618	figure legends)

- 619 Chu K, Sun Y, Sun H. 2017. Sinopotamon baokangense sp. nov., a new freshwater crab with
- spoon-tipped cheliped fingers from Hubei Province, P.R. China (Decapoda, Brachyura,
- 621 Potamidae). Crustaceana 90(3):263-274.
- 622 Chu K, Zhou L, Sun H. 2017. A new genus and new species of freshwater crab (Decapoda:
- Brachyura: Potamidae Ortmann, 1896) from Yunnan Province, China. Zootaxa 4286(2):241–
- 624 253. DOI: 10.11646/zootaxa.4286.2.7
- 625 Cumberlidge N, Ng PKL, Yeo DCJ, Magalhães C, Campos MR, Alvarez F, Naruse T, Daniels
- 626 SR, Esser LJ, Attipoe FYK, Clotilde-Ba F-L, Darwall W, McIvor A, Baillie JEM, Collen B &
- Ram M. 2009. Freshwater crabs and the biodiversity crisis: Importance, threats, status, and
- 628 conservation challenges. *Biological Conservation* 142:1665–1673. DOI:
- 629 10.1016/j.biocon.2009.02.038
- 630 Cumberlidge N, Ng PKL, Yeo DCJ, Naruse T, Meyer KS, Esser LJ. 2011. Diversity, endemism
- and conservation of the freshwater crabs of China (Brachyura: Potamidae and
- 632 Gecarcinucidae). Integrative Zoology 2011, 6:45–55. DOI: 10.1111/j.1749-
- 633 4877.2010.00228.x
- 634 Cumberlidge N, Ng PKL. 2009. Systematics, evolution, and biogeography of the freshwater
- 635 crabs. In: Martin JW, Crandall KA & Felder DL, ed. Crustacean Issues 18. Decapod
- 636 Crustacean Phylogenetics. Boca Raton: CRC Press, 491–504. DOI: 10.1201/9781420092592-
- 637 c25
- Dai AY. 1990. On the zoogeographical distribution of freshwater crabs in southwestern China.
- 639 From Water to Land, Snake Research Institute 375–385, pl. 1. (in Chinese with English
- summary).
- Dai AY. 1995. Five new species of freshwater crabs of genus *Potamon* from Yunnan Province,
- China (Crustacea: Decapoda: Potamidae). *Journal of the Taiwan Museum* 48(1):49–59.
- Dai AY. 1999. Fauna Sinica (Arthropoda. Crustacea. Malacostraca. Decapoda.
- 644 *Parathelphusicae. Potamidae*). Beijing: Science Press. (In Chinese with English summary)
- Dai AY, Bo WF. 1994. A new genus and three new species of freshwater crabs of Yuxi area of
- Yunnan Province (Crustacea: Decapoda: Brachyura: Potamidae). *Memoirs of Beijing Natural*
- 647 *History Museum* 54:21–28.

- Dai AY, Cai YX. 1998. Freshwater crabs of Xishangbanna, Yunnan Province, China
- 649 (Malacostraca: Crustacea: Parathelphusidae, Potamidae). Acta Zootaxonomica Sinica
- 650 23(3):245–252. (In Chinese with English summary and figure legends)
- Dai AY, Chen GX. 1985. A preliminary report on the freshwater crabs of Hengduan Mountains
- Area. *Sinozoologica* 3:39–72, pl. 1, 2. (In Chinese with English summary)
- Dai AY, Song YZ, He LY, Cao WJ, Xu ZB, Zhong WL. 1975. Description of several new
- species of freshwater crabs belonging to the intermediate hosts of lung flukes. *Acta Zoologica*
- 655 *Sinica* 21(3):257–264, pls. 1–3.
- Do VT, Shih HT, Huang C. 2016. A new species of freshwater crab of the genus *Tiwaripotamon*
- Bott, 1970 (Crustacea, Brachyura, Potamidae) from northern Vietnam and southern China.
- Raffles Bulletin of Zoology, 64:213–219.
- Do VT, Nguyen TC, Le HA. 2016. A new species of the genus *Indochinamon* Yeo & Ng, 2007
- 660 (Crustacea: Brachyura: Potamoidea: Potamidae) from northern Vietnam. Raffles Bulletin of
- 661 Zoology 64:187–193.
- Huang C, Ahyong ST, Shih HT. 2017. Cantopotamon, a new genus of freshwater crabs from
- Guangdong, China, with descriptions of four new species (Crustacea: Decapoda: Brachyura:
- 664 Potamidae). Zoological Studies 56(41): 1–20. DOI: 10.6620/ZS.2017.56-41
- Huang C, Huang JR, Ng PKL. 2012. A new species of *Nanhaipotamon* Bott, 1968 (Crustacea:
- 666 Decapoda: Brachyura: Potamidae) from Zhuhai, Guangdong Province, China. Zootaxa
- 667 3588:55–63.
- Huang C, Mao SY, Huang JR. 2014. Two new potamid crabs, Yuexipotamon arcophallus new
- genus, new species and *Minutomon shanweiense* new genus, new species, (Crustacea:
- Decapoda: Brachyura: Potamidae) from southern China. *Zootaxa* 3764(4):455–466. DOI:
- 671 10.11646/zootaxa.3764.4.5
- Huang C, Shih HT, Mao SY. 2016. Yuebeipotamon calciatile, a new genus and new species of
- freshwater crab from southern China (Crustacea, Decapoda, Brachyura, Potamidae). ZooKevs
- 674 615:61–72. DOI: 10.3897/zookeys.615.9964
- Huang C, Shih HT, Ng PKL. 2017. A new genus and new species of Potamidae (Crustacea:
- Decapoda: Brachyura: Potamoidea), the first stygomorphic cave crab known from China and
- 677 East Asia. Zootaxa, 4232 (1): 71–084.

- Kunming Institute of Zoology, CAS, 1999. Wildlife in Yunnan. Beijing: Chinese Forestry
- 679 Publishing House.
- 680 Lin GH, Cheng YZ, Chen SH. 2012. A new species of genus *Nanhaipotamon* (Decapoda:
- Potamidae) from China. Chinese Journal of Parasitology & Parasitic Diseases 30(6):434–
- 437. (In Chinese with English summary and figure legends)
- 683 Lin GH, Cheng YZ, Chen SH. 2013. A new species of the genus *Nanhaipotamon* (Decapoda:
- Potamidae) serving as intermediate host of *Paragonmus skrjabini*. Chinese Journal of
- 685 Parasitology & Parasitic Diseases 31(1):39–42. (In Chinese with English summary and
- figure legends)
- Naruse T, Yeo DCJ, Zhou X. 2008. Five new species of freshwater crabs (Crustacea: Decapoda:
- Brachyura: Potamidae) from China. *Zootaxa* 1812:49–68.
- Naruse T, Nguyen XQ, Yeo DCJ. 2011. Three new species of *Indochinamon* (Crustacea:
- 690 Decapoda: Potamidae: Potamiscinae) from Vietnam, with a redescription of *Ranguna*
- 691 (*Ranguna*) *kimboiensis* Dang, 1975. *Zootaxa* 2732:33–48.
- Naruse T, Zhu C, Zhou X. 2013. Two new species of freshwater crabs of the genus
- 693 Heterochelamon Türkay & Dai, 1997 (Crustacea: Decapoda: Brachyura: Potamidae) from
- 694 Guangxi Zhuang Autonomous Region, southern China. *Zootaxa* 3647(4):567–576.
- 695 Ng PKL. 1988. The freshwater crabs of Peninsular Malaysia and Singapore. Singapore:
- 696 Shinglee Press.
- 697 Ng PKL. 2017. Descriptions of two new cavernicolous species of *Chinapotamon* Dai &
- Naiyanetr, 1994 (Crustacea: Brachyura: Potamidae) from China. Crustacean Research 46: 1–
- 699 16. DOI: 10.18353/crustacea.46.0 1
- Rathbun MJ. 1904–1906. Les crabes d'eau douce (Potamonidae). Nouvelles Archives du Muséum
- 701 d'Histoire naturelle Paris, 4e série, 6:225–312, pls. 9–18; 7:159–322; 8:33–122.
- Wood-Mason J. 1871. Contributions to Indian Carcinology: On Indian and Malayan Telphusidae,
- 703 Part I. *Journal of the Asiatic Society of Bengal* 40(2):189–207, 449–454, pls. 11–14, 27.
- Yang Y, Tian K, Hao J, Pei S, Yang Y. 2004. Biodiversity and biodiversity conservation in
- Yunnan, China. *Biodiversity & Conservation* 13(4):813–826.
- Yeo DCJ, Ng PKL. 1998. Freshwater crabs of the *Potamon tannanti* species group (Crustacea,
- Decapoda, Brachyura, Potamidae) of northern Indochina. Raffles Bulletin of Zoology
- 708 46(2):627–650.

709	Yeo DCJ, Ng PKL. 2003. Recognition of two subfamilies in the Potamidae Ortmann, 1896
710	(Brachyura, Potamidae) with a note on the genus Potamon Savigny, 1816. Crustaceana
711	76(10):1219–1235. DOI: 10.1163/156854003773123456
712	Yeo DCJ, Ng PKL. 2007. On the genus "Potamon" and allies in Indochina (Crustacea:
713	Decapoda: Brachyura: Potamidae). Raffles Bulletin of Zoology, Supplement 16:273-308.
714	Zhu C, Naruse T, Zhou X. 2010. Two new species of freshwater crabs of the genus
715	Sinolapotamon Tai & Sung, 1975 (Decapoda, Brachyura, Potamidae) from Guangxi zhuang
716	autonomous region, China. Crustaceana 83(2):245-256.
717	DOI: 10.1163/001121609X12603430877199
718	
719	
720	
721	
722	
723	

725 Figure legends 726 727 Fig. 1. Indochinamon ahkense sp. n. (Holotype, NCU MCP 2013.0003). 728 A, overall view; B, cephalothorax, anterior view. 729 730 Fig. 2. Indochinamon ahkense sp. n. (Holotype, NCU MCP 2013.0003). 731 A, cephalothorax, ventral view; B, left chela, outer view. 732 733 Fig. 3. *Indochinamon ahkense* sp. n. Holotype (NCU MCP 2013.0003). 734 A-C, left G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D, 735 left G2, dorsal view. Scales = 3 mm. 736 737 Fig. 4. Dorsal views of entire bodies (A-E) and ventral views of G1s (F-J) of comparative 738 *Indochinamon* species. 739 A, F, I. gengmaense (Dai, 1995) (Holotype, CB05192 YN6491119A); B, G, I. chinghungense 740 (Dai, Song, He, Cao, Xu and Zhong, 1975) (Holotype, CB05166 YN 637507); C, H, I. 741 boshanense (Dai & Chen, 1985) (Holotype, CB05160 HD8183031); D. I. J. jianchuanense (Dai 742 & Chen, 1985) (Holotype, CB005159 HD 8183030); E. J. I. menglaense (Dai & Cai, 1998) 743 (Holotype, CB05168 YN-9496196A). 744 745 Fig. 5. *Indochinamon jingguense* sp. n. (Holotype, NCU MCP 2013.0007). 746 A, overall view; B, cephalothorax, anterior view. 747 748 Fig. 6. Indochinamon jingguense sp. n. (Holotype, NCU MCP 2013.0007). 749 A, cephalothorax, ventral view; B, right chela, outer view. 750 751 Fig. 7. *Indochinamon jingguense* sp. n. (Holotype, NCU MCP 2013.0007). 752 A–D, left G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D, 753 enlarged view of distal portion, dorsal view; E, left G2, dorsal view. Scales = 3 mm. 754 755 Fig. 8. Indochinamon parpidum sp. n. (Holotype, NCU MCP 2013.0015).

785

786

756 A, overall view; B, cephalothorax, anterior view. 757 758 Fig. 9. Indochinamon parpidum sp. n. (Holotype, NCU MCP 2013.0015). A, cephalothorax, ventral view; B, right chela, outer view. 759 760 761 Fig. 10. Indochinamon parpidum sp. n. (Holotype, NCU MCP 2013.0015). 762 A–D, left G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D, 763 enlarged view of distal portion, dorsal view. Scales = 3 mm. 764 765 Fig. 11. Indochinamon aozaoense sp. n. (Holotype, NCU MCP 2013.0005). 766 A, overall view; B, cephalothorax, anterior view. 767 768 Fig. 12. Indochinamon aozaoense sp. n. (Holotype, NCU MCP 2013.0005). 769 A, cephalothorax, ventral view; B, right chela, outer view. 770 771 Fig. 13. Indochinamon aozaoense sp. n. (Holotype, NCU MCP 2013.0015). 772 A–D, left G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D, 773 enlarged view of distal portion, dorsal view. Scales = 3 mm. 774 775 Fig. 14. Indochinamon lui sp. n. (Holotype, NCU MCP 2013.0010). 776 A, overall view; B, cephalothorax, anterior view. 777 Fig. 15. Indochinamon lui sp. n. (Holotype, NCU MCP 2013.0010). 778 779 A, cephalothorax, ventral view; B, right chela, outer view. 780 781 Fig. 16. Indochinamon lui sp. n. (Holotype, NCU MCP 2013.0010). 782 A–D, left G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D, 783 enlarged view of distal portion, dorsal view. Scales = 3 mm. 784

Peer| reviewing PDF | (2017:12:22317:0:1:NEW 21 Dec 2017)

A, overall view; B, cephalothorax, anterior view.

Fig. 17. Pararanguna hemicyclius sp. n. (Holotype, NCU MCP 2013.0017).

787 788 Fig. 18. Pararanguna hemicyclius sp. n. (Holotype, NCU MCP 2013.0017). 789 Cephalothorax, ventral view. 790 791 Fig. 19. Pararanguna hemicyclius sp. n. (Holotype, NCU MCP 2013.0017). 792 A-C, right G1; A, ventral view; B, dorsal view; C, lateral view; D, right G2, dorsal view. Scale = 793 1 mm. 794 795 Fig. 20. Dorsal views of entire bodies (A–D) and ventral views of G1s (E–H) of comparative 796 species. 797 A, E, Pararanguna semilunata (Dai & Chen, 1984) (Holotype, CB05191 HD8183034); B, F, Parvuspotamon yuxiense Dai & Bo, 1994 (Holotype, CB05138 YN 9091116A); C, G, 798 799 Potamiscus motuoensis Dai, 1990 (Holotype, CB05157 XZ6389084); D. H. Potamiscus 800 yongshengensis Dai & Chen, 1985 (Holotype, CB05149 HD 8183035). 801 Fig. 21. Parvuspotamon diyuense sp. n. (Holotype, NCU MCP 2013.0020). 802 803 A, overall view; B, cephalothorax, anterior view. 804 805 Fig. 22. Parvuspotamon diyuense sp. n. (Holotype, NCU MCP 2013.0020). 806 A, cephalothorax, ventral view; B, right chela, outer view. 807 808 Fig. 23. Parvuspotamon diyuense sp. n. (Holotype, NCU MCP 2013.0020). 809 A–D, right G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; 810 D, enlarged view of distal portion, dorsal view; E, right G2, dorsal view. Scales = 1 mm. 811 812 Fig. 24. Potamiscus fumariatus sp. n. (Holotype, NCU MCP 2013.0024). 813 A, overall view; B, cephalothorax, anterior view. 814 815 Fig. 25. Potamiscus fumariatus sp. n. (Holotype, NCU MCP 2013.0024). 816 A, cephalothorax, ventral view; B, right chela, outer view. 817

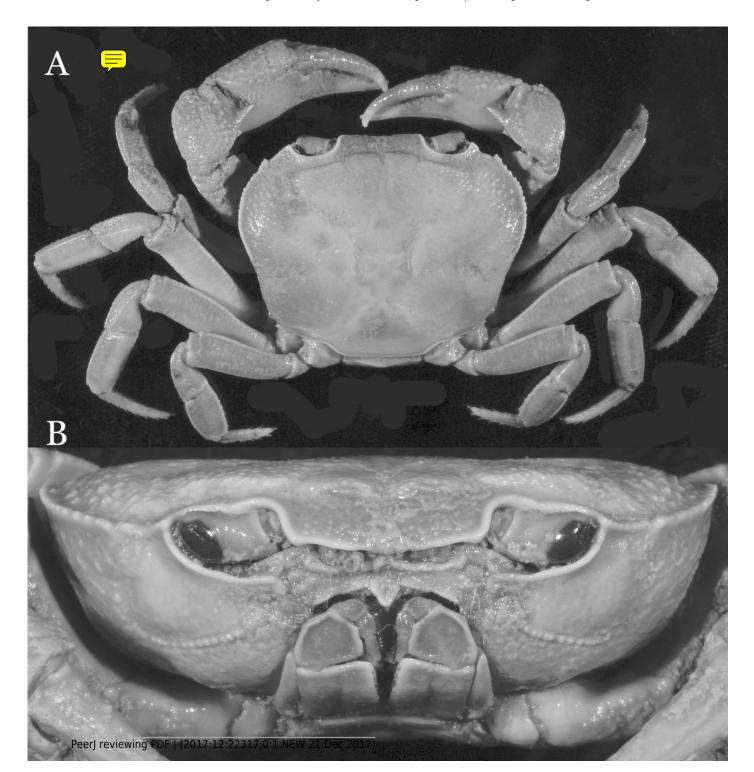

818	Fig. 26. Potamiscus fumariatus sp. n. (Holotype, NCU MCP 2013.0024).
819	A-D, left G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D
820	enlarged view of distal portion, dorsal view; E, left G2, dorsal view. Scales = 1 mm.
821	
822	Fig. 27. Potamiscus crassus sp. n. (Holotype, NCU MCP 2013.0025).
823	A, overall view; B, cephalothorax, anterior view.
824	
825	Fig. 28. Potamiscus crassus sp. n. (Holotype, NCU MCP 2013.0025).
826	A, cephalothorax, ventral view; B, left chela, outer view.
827	
828	Fig. 29. Potamiscus crassus sp. n. (Holotype, NCU MCP 2013.0025).
829	A-D, right G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view;
830	D, enlarged view of distal portion, dorsal view; E, right G2, dorsal view. Scales = 3 mm.
831	
832	

Figure 1

Indochinamon ahkense sp. n. (Holotype, NCU MCP 2013.0003).

A, overall view; B, cephalothorax, anterior view.

*Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.

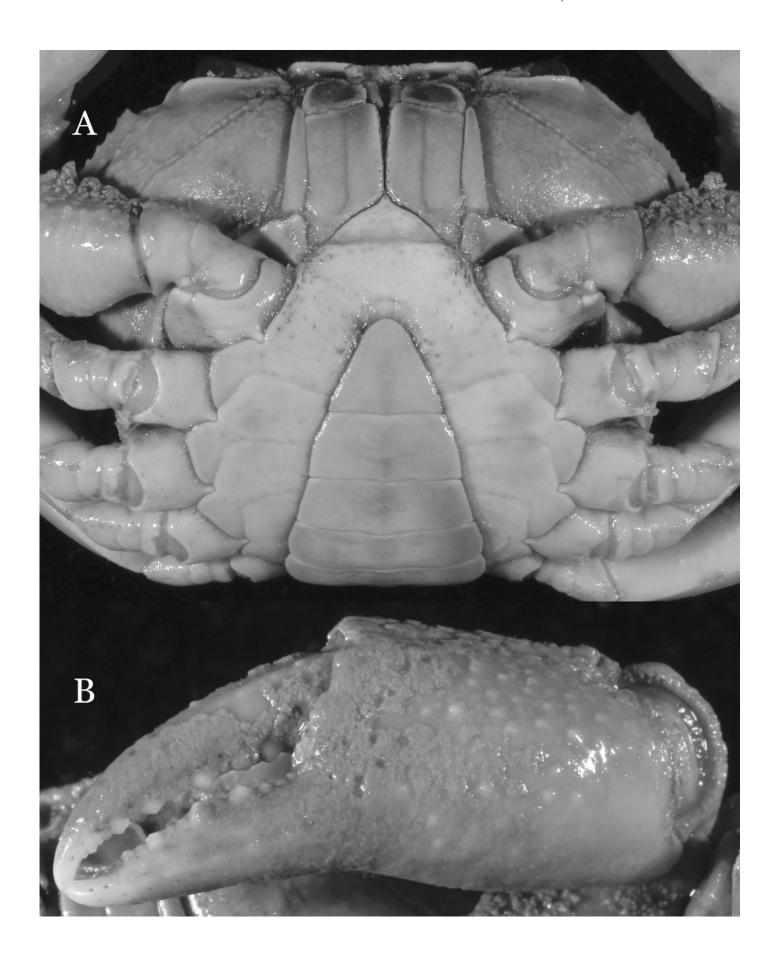


Figure 2

Indochinamon ahkense sp. n. (Holotype, NCU MCP 2013.0003).

A, cephalothorax, ventral view; B, left chela, outer view.

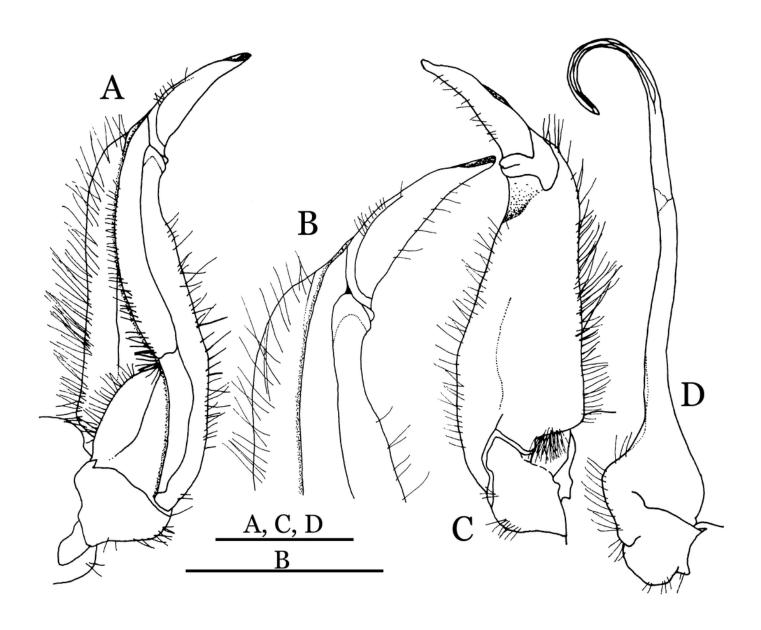
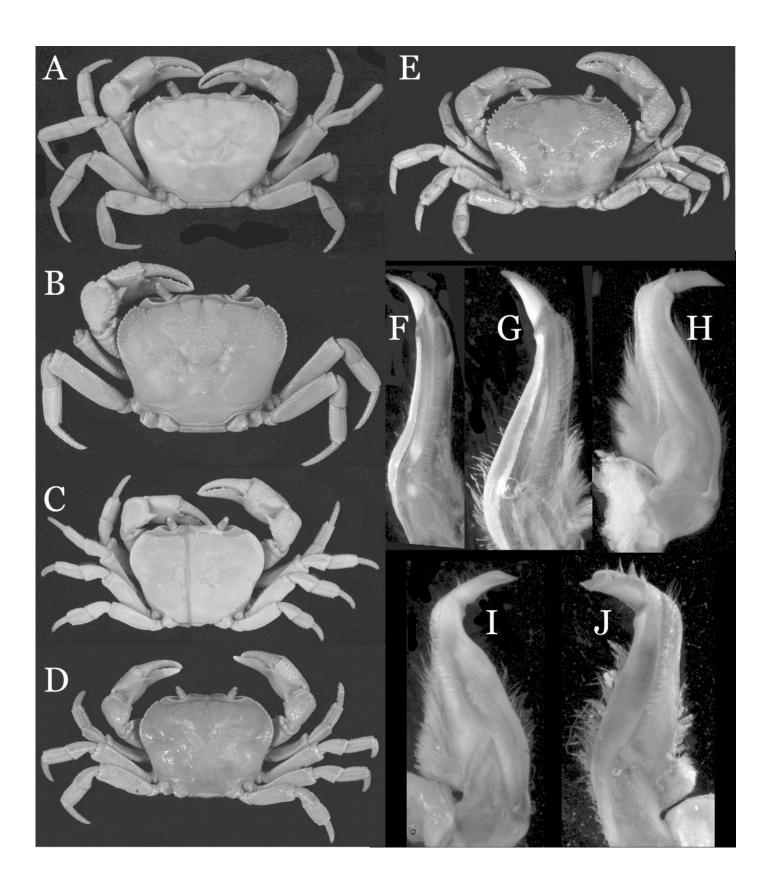
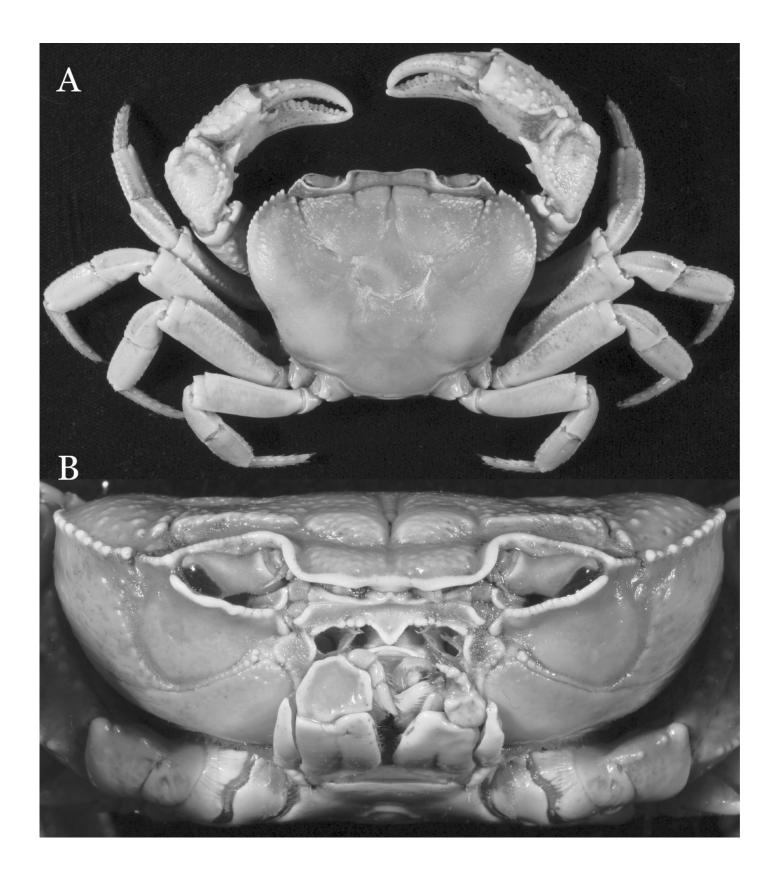

*Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.

Figure 3

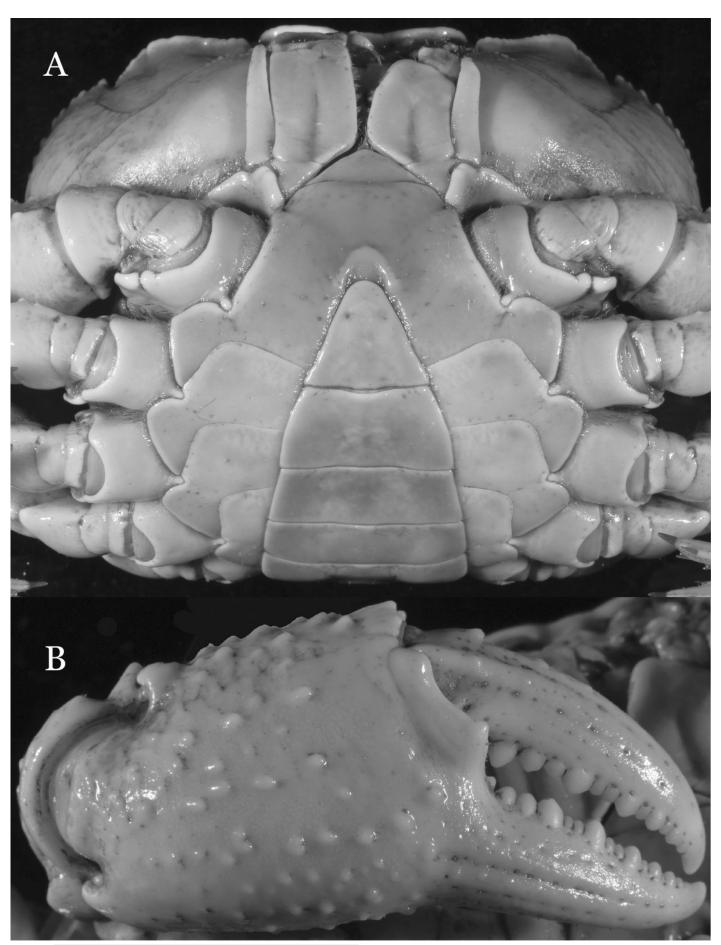
Indochinamon ahkense sp. n. Holotype (NCU MCP 2013.0003).


A-C, left G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D, left G2, dorsal view. Scales = 3 mm.

Dorsal views of entire bodies (A-E) and ventral views of G1s (F-J) of comparative [I]Indochinamon[i] species.

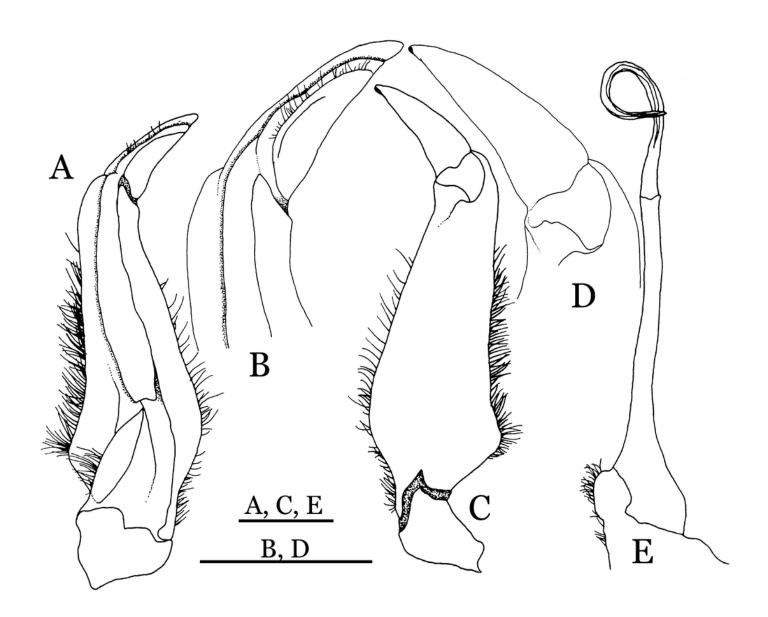

A, F, I. gengmaense (Dai, 1995) (Holotype, CB05192 YN6491119A); B, G, I. chinghungense (Dai, Song, He, Cao, Xu and Zhong, 1975) (Holotype, CB05166 YN 637507); C, H, I. boshanense (Dai & Chen, 1985) (Holotype, CB05160 HD8183031); D, I, I. jianchuanense (Dai & Chen, 1985) (Holotype, CB005159 HD 8183030); E, J, I. menglaense (Dai & Cai, 1998) (Holotype, CB05168 YN-9496196A).

Indochinamon jingguense sp. n. (Holotype, NCU MCP 2013.0007).

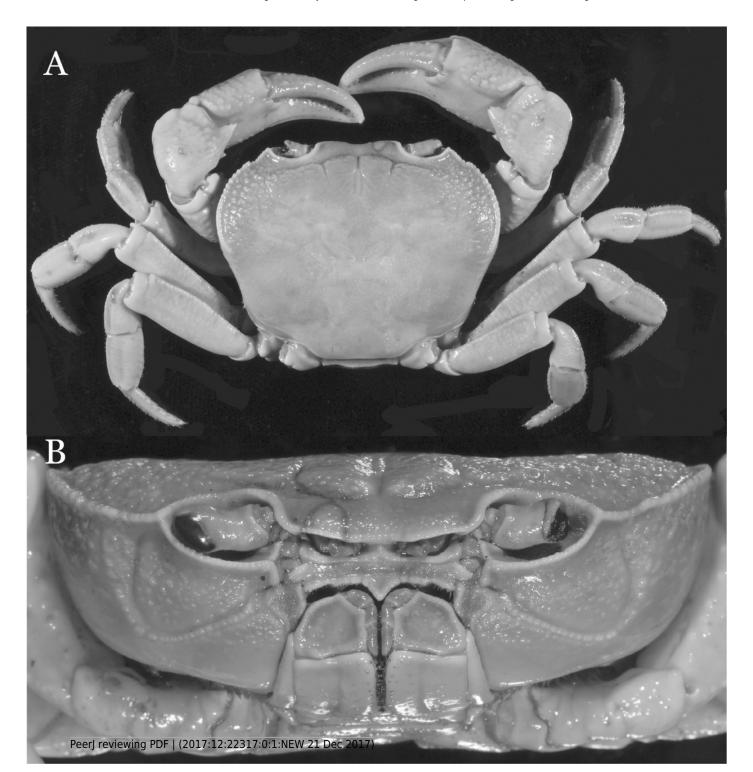

A, overall view; B, cephalothorax, anterior view.

Indochinamon jingguense sp. n. (Holotype, NCU MCP 2013.0007).

A, cephalothorax, ventral view; B, right chela, outer view.

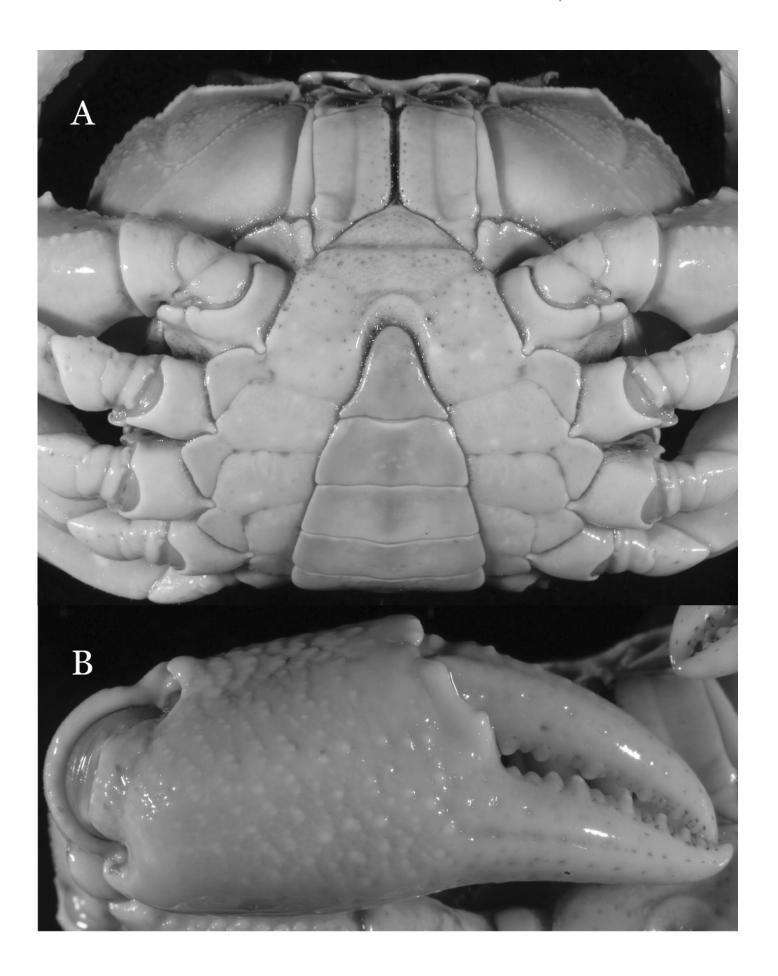


PeerJ reviewing PDF | (2017:12:22317:0:1:NEW 21 Dec 2017)

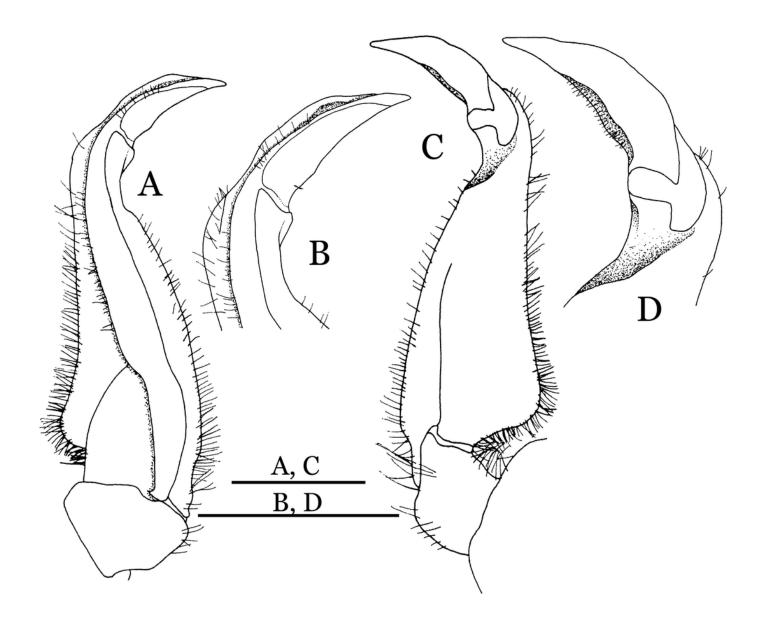

Indochinamon jingguense sp. n. (Holotype, NCU MCP 2013.0007).

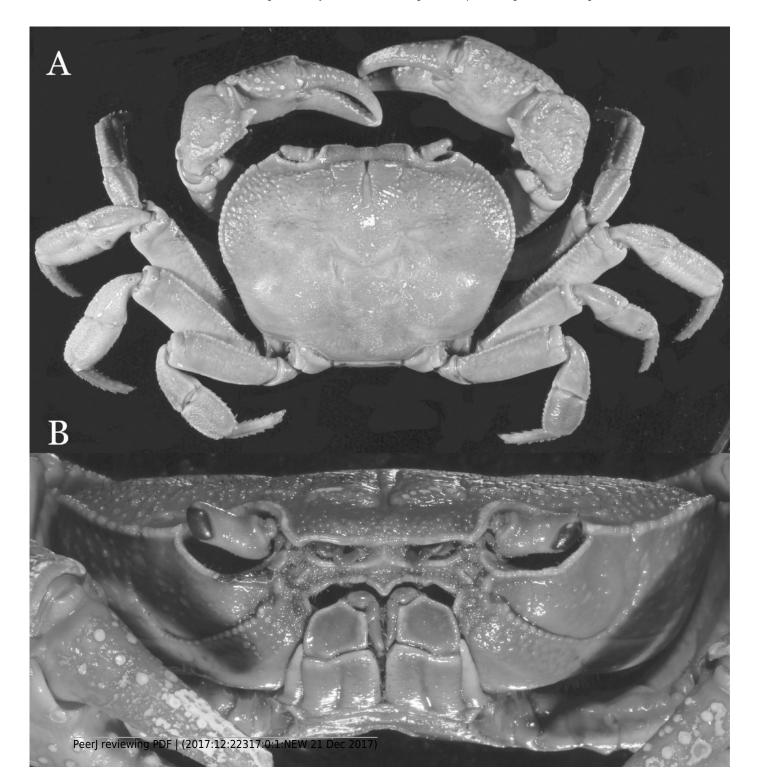
A-D, left G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D, enlarged view of distal portion, dorsal view; E, left G2, dorsal view. Scales = 3 mm.

Indochinamon parpidum sp. n. (Holotype, NCU MCP 2013.0015).


A, overall view; B, cephalothorax, anterior view.

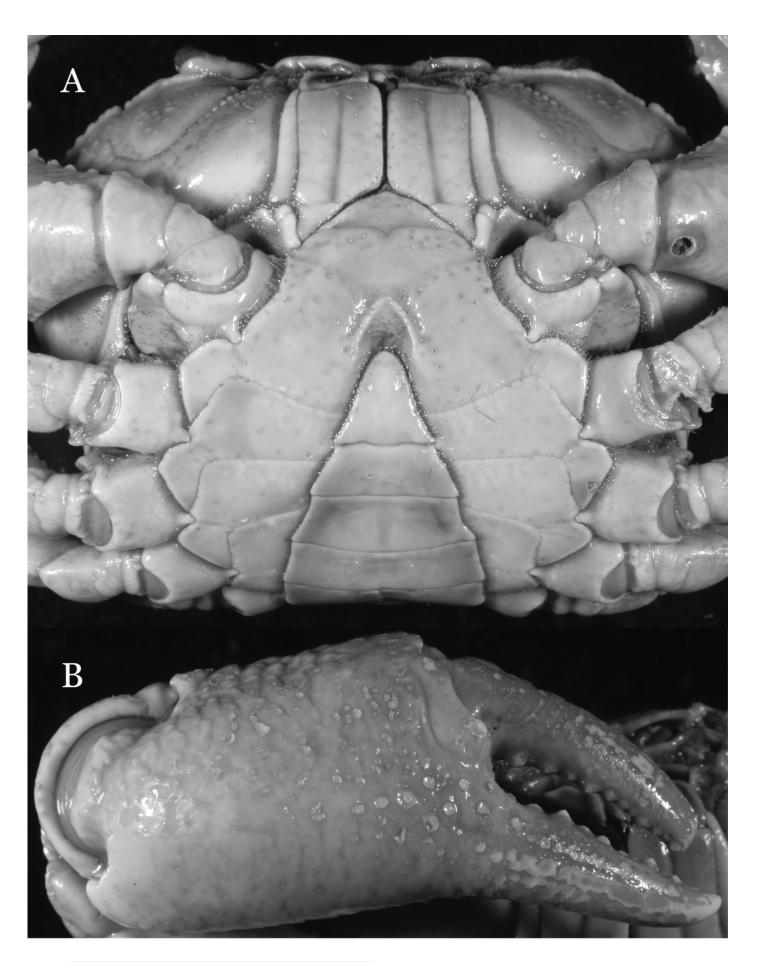
Indochinamon parpidum sp. n. (Holotype, NCU MCP 2013.0015).


A, cephalothorax, ventral view; B, right chela, outer view.

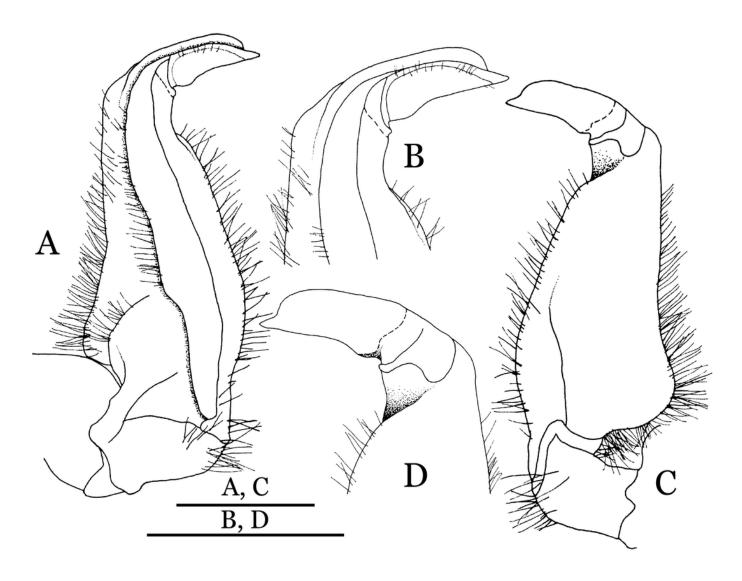

Indochinamon parpidum sp. n. (Holotype, NCU MCP 2013.0015).

A-D, left G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D, enlarged view of distal portion, dorsal view. Scales = 3 mm.

Indochinamon aozaoense sp. n. (Holotype, NCU MCP 2013.0005).

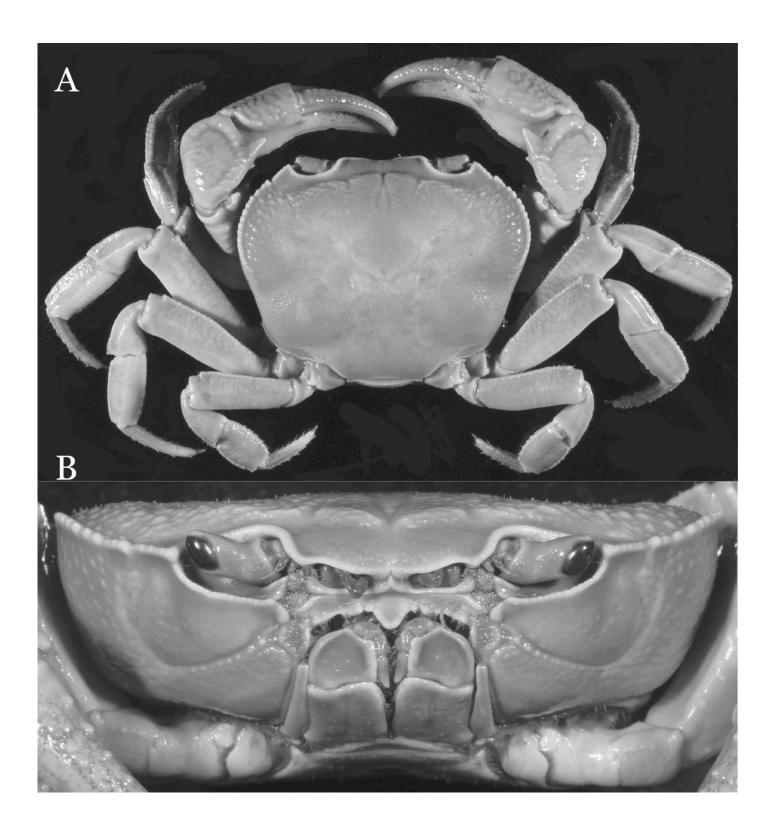

A, overall view; B, cephalothorax, anterior view.

Indochinamon aozaoense sp. n. (Holotype, NCU MCP 2013.0005).

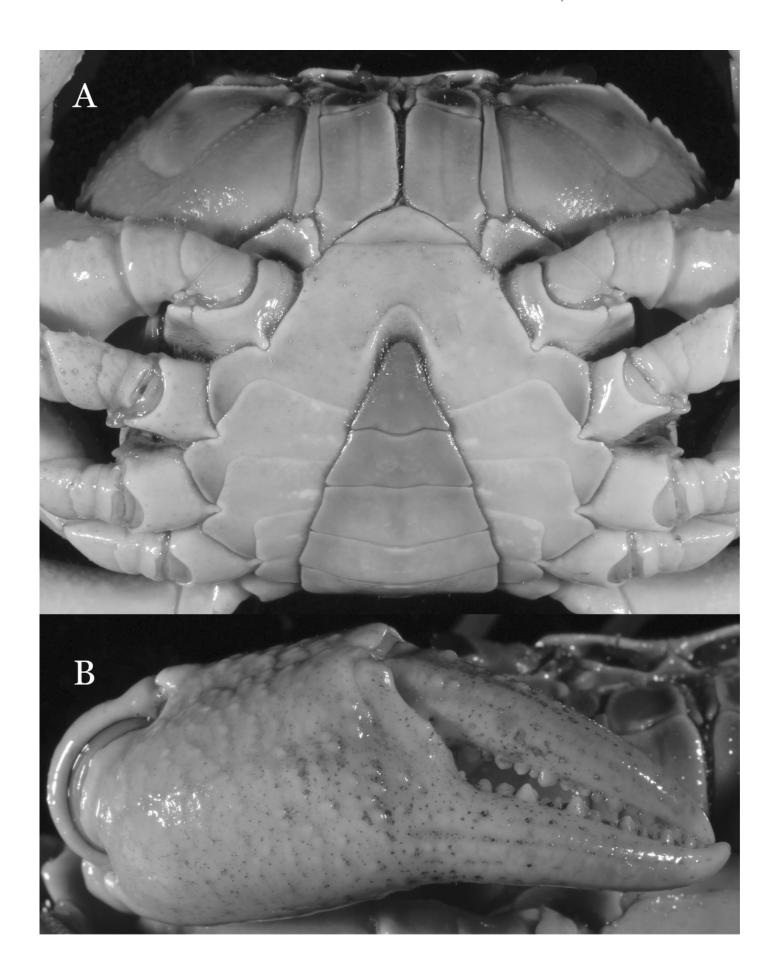

A, cephalothorax, ventral view; B, right chela, outer view.

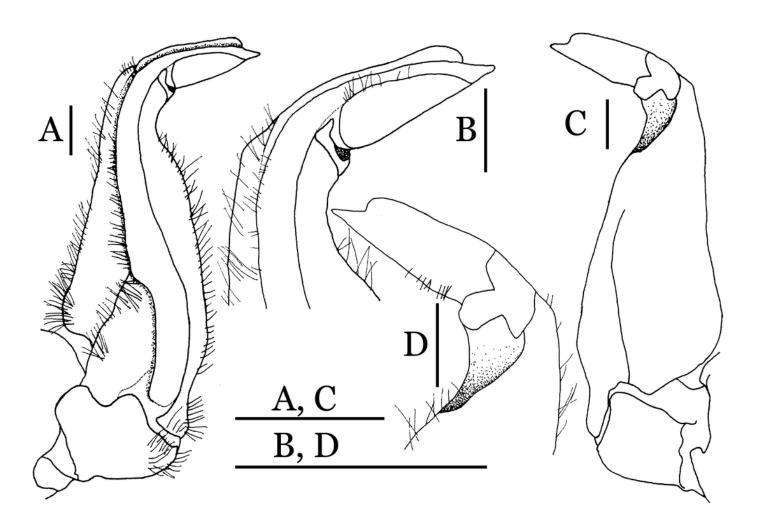
PeerJ reviewing PDF | (2017:12:22317:0:1:NEW 21 Dec 2017)

Indochinamon aozaoense sp. n. (Holotype, NCU MCP 2013.0015).

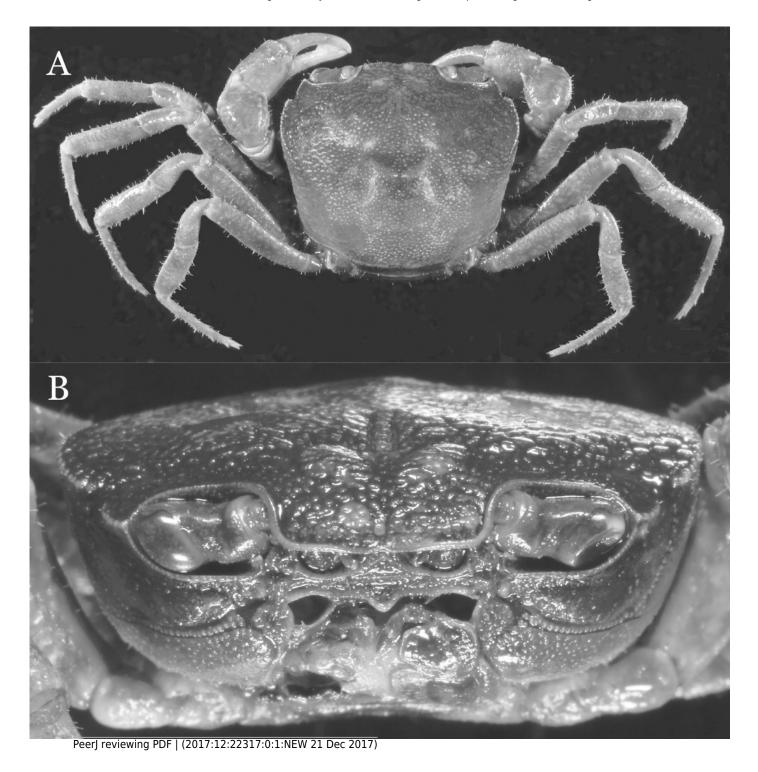

A-D, left G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D, enlarged view of distal portion, dorsal view. Scales = 3 mm.

Indochinamon lui sp. n. (Holotype, NCU MCP 2013.0010).

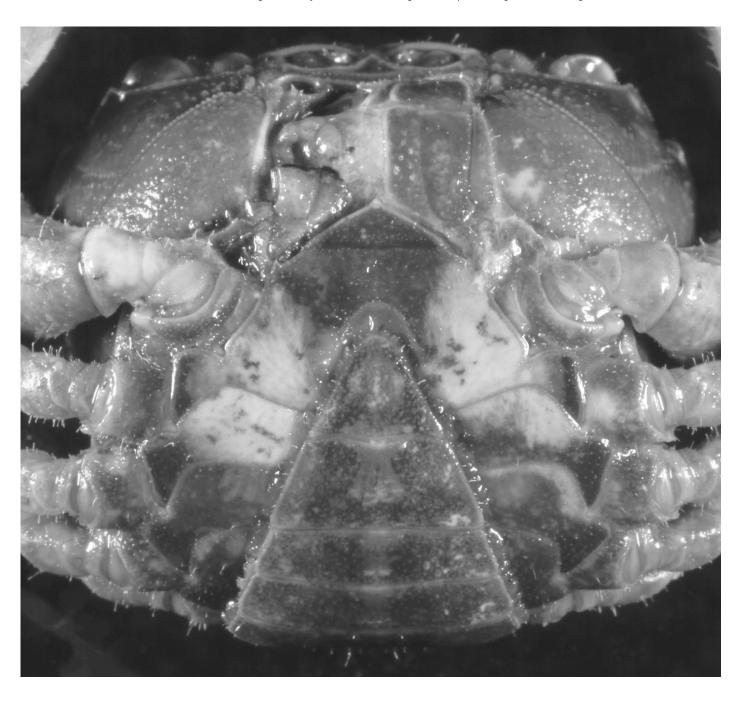

A, overall view; B, cephalothorax, anterior view.


Indochinamon lui sp. n. (Holotype, NCU MCP 2013.0010).

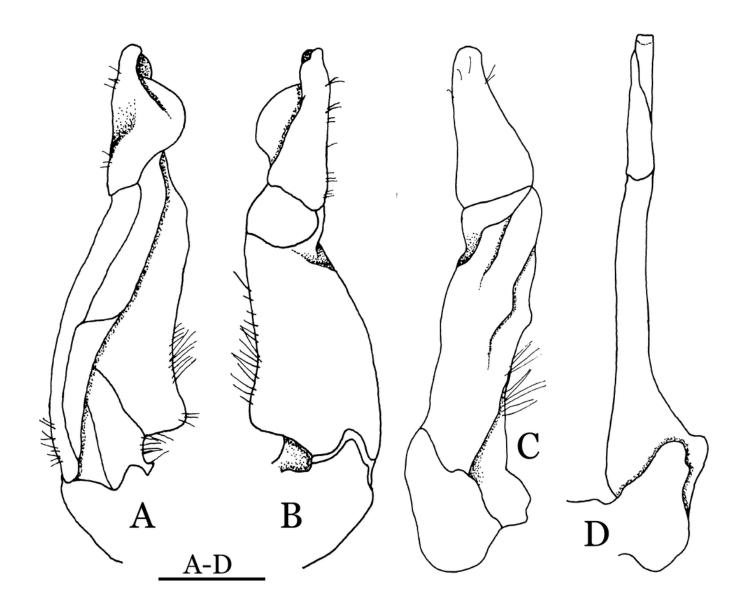
A, cephalothorax, ventral view; B, right chela, outer view.


Indochinamon lui sp. n. (Holotype, NCU MCP 2013.0010).

A-D, left G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D, enlarged view of distal portion, dorsal view. Scales = 3 mm.

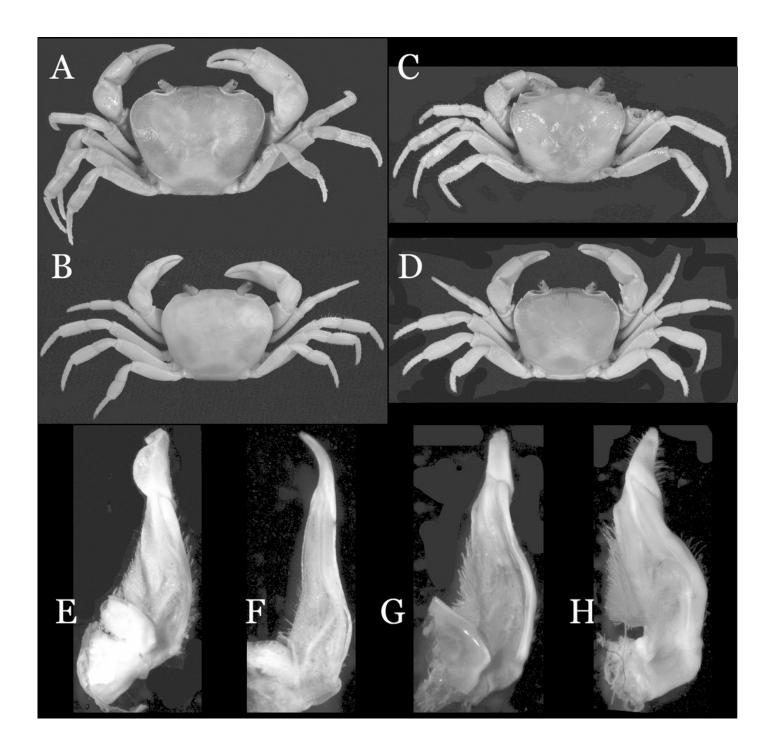

Pararanguna hemicyclius sp. n. (Holotype, NCU MCP 2013.0017).

A, overall view; B, cephalothorax, anterior view.

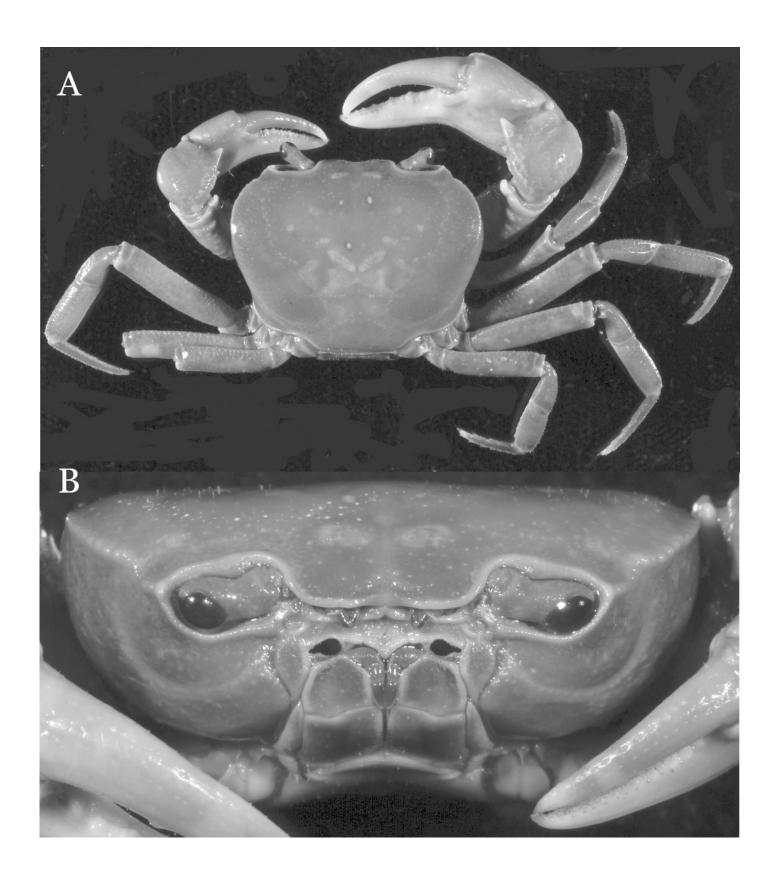

Pararanguna hemicyclius sp. n. (Holotype, NCU MCP 2013.0017).

Cephalothorax, ventral view.

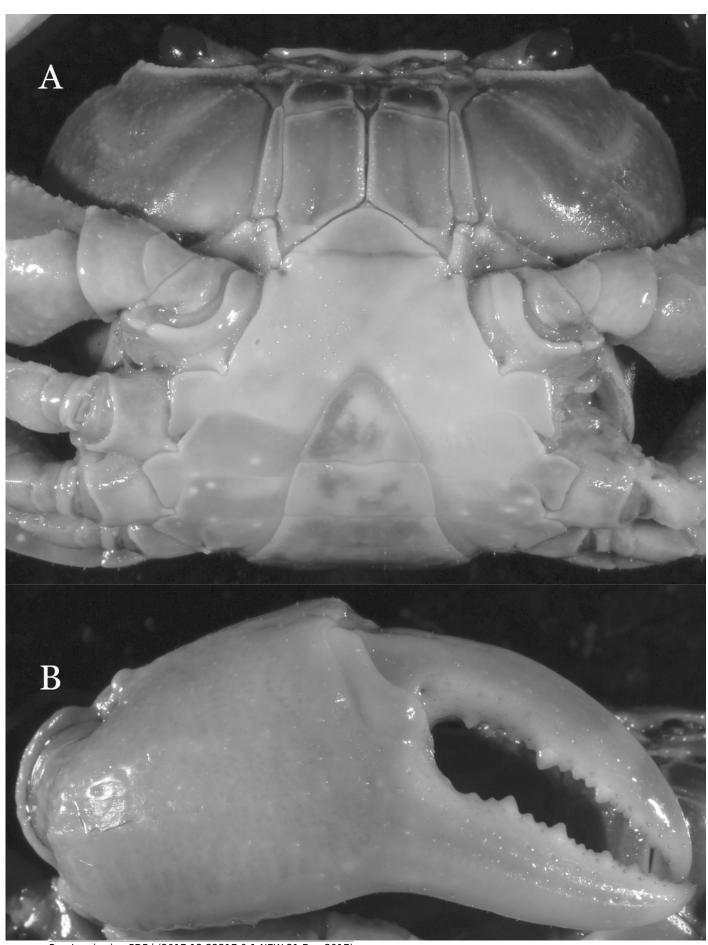
Pararanguna hemicyclius sp. n. (Holotype, NCU MCP 2013.0017).


A-C, right G1; A, ventral view; B, dorsal view; C, lateral view; D, right G2, dorsal view. Scale = 1 mm.

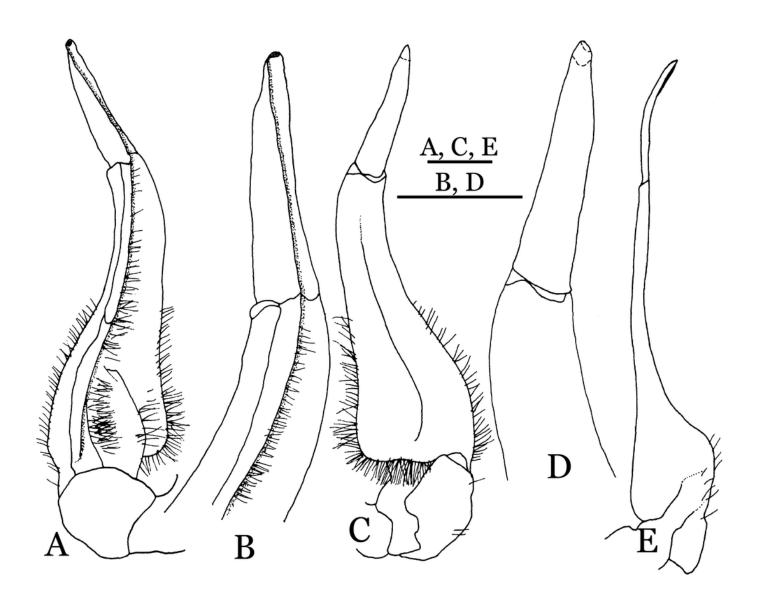
Dorsal views of entire bodies (A-D) and ventral views of G1s (E-H) of comparative species.


A, E, Pararanguna semilunata (Dai & Chen, 1984) (Holotype, CB05191 HD8183034); B, F, Parvuspotamon yuxiense Dai & Bo, 1994 (Holotype, CB05138 YN 9091116A); C, G, Potamiscus motuoensis Dai, 1990 (Holotype, CB05157 XZ6389084); D, H. Potamiscus yongshengensis Dai & Chen, 1985 (Holotype, CB05149 HD 8183035).

Parvuspotamon diyuense sp. n. (Holotype, NCU MCP 2013.0020).

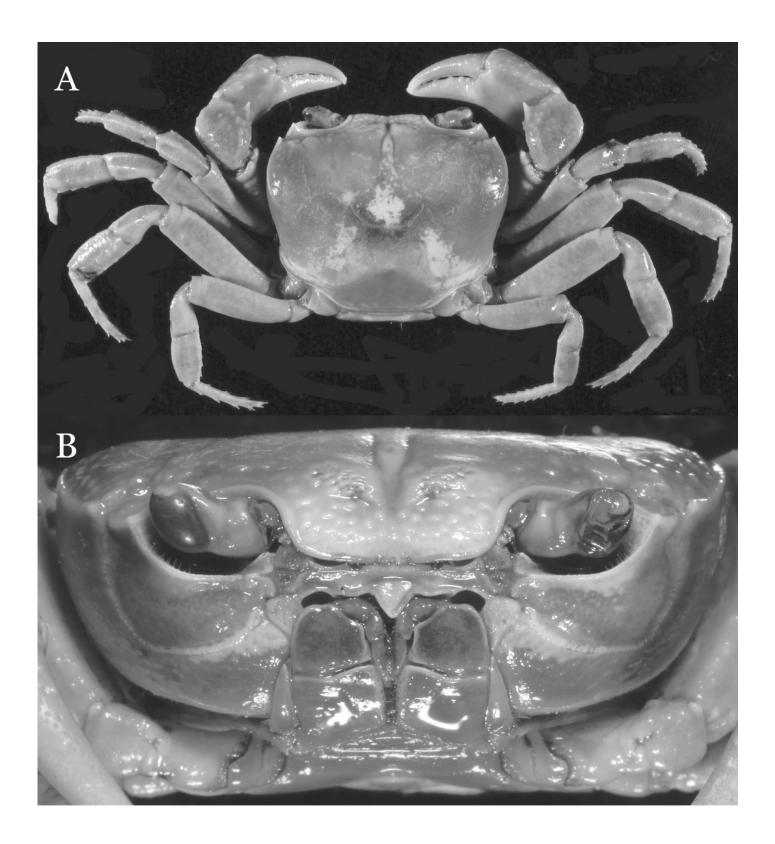

A, overall view; B, cephalothorax, anterior view.

Parvuspotamon diyuense sp. n. (Holotype, NCU MCP 2013.0020).

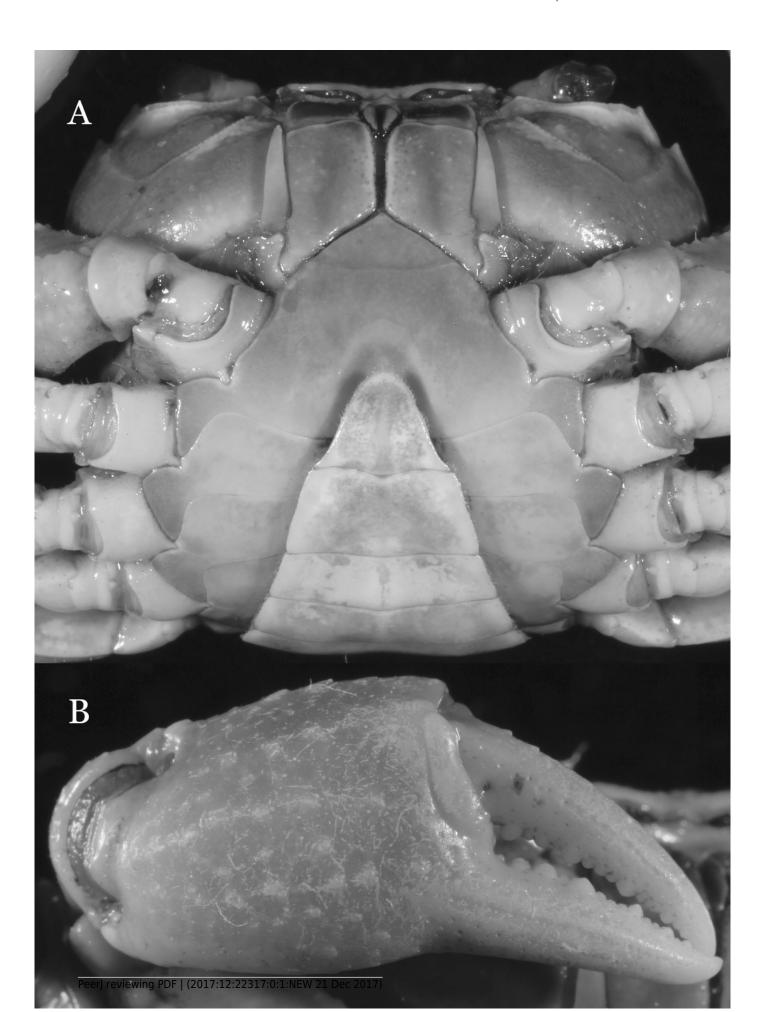

A, cephalothorax, ventral view; B, right chela, outer view.

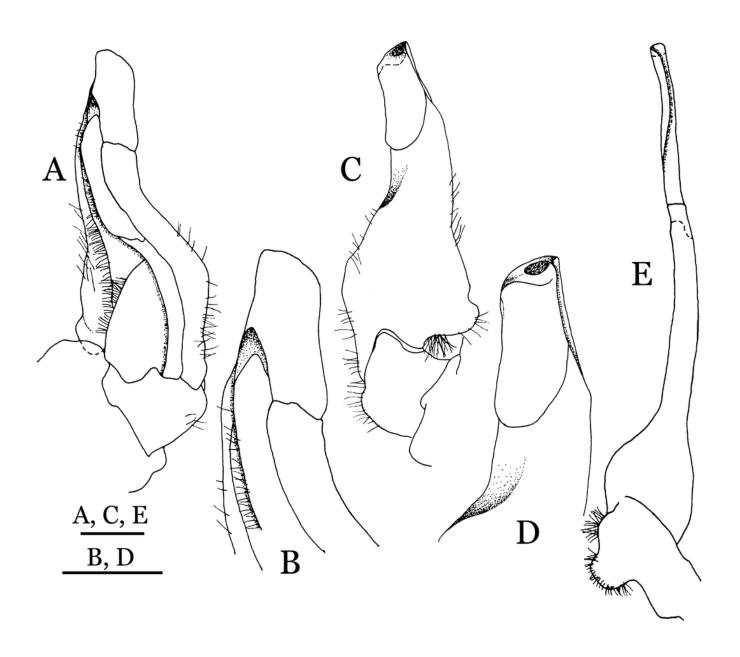
PeerJ reviewing PDF | (2017:12:22317:0:1:NEW 21 Dec 2017)

Parvuspotamon diyuense sp. n. (Holotype, NCU MCP 2013.0020).

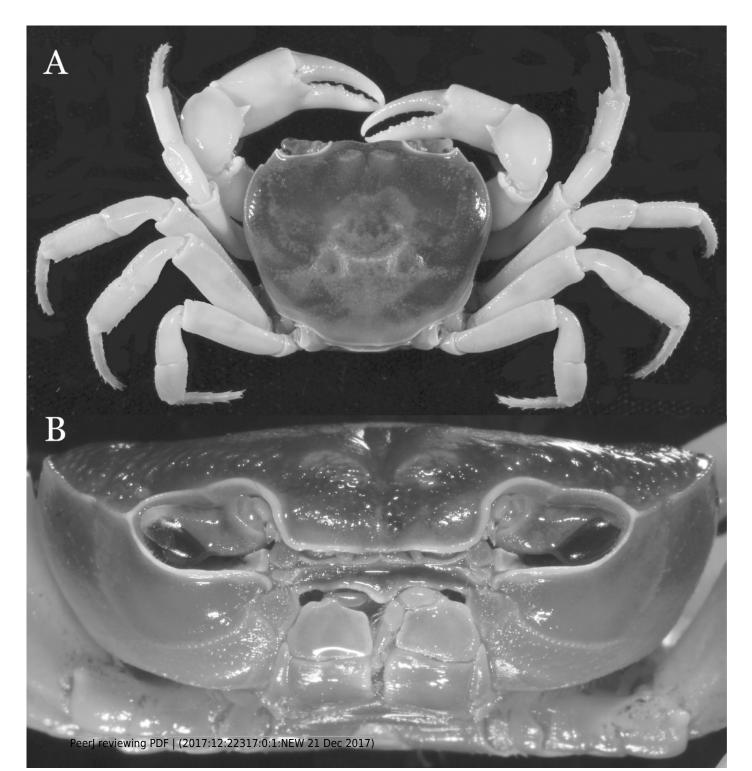

A-D, right G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D, enlarged view of distal portion, dorsal view; E, right G2, dorsal view. Scales = 1 mm.

Potamiscus fumariatus sp. n. (Holotype, NCU MCP 2013.0024).


A, overall view; B, cephalothorax, anterior view.


Potamiscus fumariatus sp. n. (Holotype, NCU MCP 2013.0024).

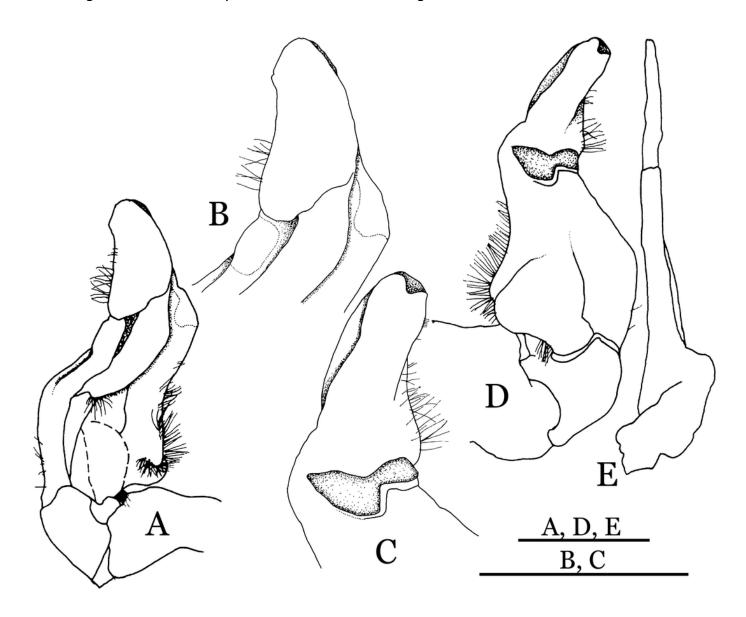
A, cephalothorax, ventral view; B, right chela, outer view.


Potamiscus fumariatus sp. n. (Holotype, NCU MCP 2013.0024).

A-D, left G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D, enlarged view of distal portion, dorsal view; E, left G2, dorsal view. Scales = 1 mm.

Potamiscus crassus sp. n. (Holotype, NCU MCP 2013.0025).


A, overall view; B, cephalothorax, anterior view.


Potamiscus crassus sp. n. (Holotype, NCU MCP 2013.0025).

A, cephalothorax, ventral view; B, left chela, outer view.

Potamiscus crassus sp. n. (Holotype, NCU MCP 2013.0025).

A-D, right G1; A, ventral view; B, enlarged view of distal portion, ventral view; C, dorsal view; D, enlarged view of distal portion, dorsal view; E, right G2, dorsal view. Scales = 3 mm.

