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ABSTRACT
Many neotropical species have a complex history of diversification as a result of the
influence of geographical, ecological, climatic, and geological factors that determine
the distribution of populations within a lineage. Phylogeography identifies such
populations, determines their geographic distributions, and quantifies the degree of
genetic divergence. In this work we explored the genetic structure of Habia rubica
populations, a polytypic taxon with 17 subspecies described, in order to obtain
hypotheses about their evolutionary history and processes of diversification. We
undertookmultilocus analyses using sequences of fivemolecularmarkers (ND2, ACOI-
I9,MUSK, FGB-I5 andODC), and sampling from across the species’ distribution range,
an area encompassing from Central Mexico throughout much of South America. With
these data, we obtained a robust phylogenetic hypothesis, a species delimitation analysis,
and estimates of divergence times for these lineages. The phylogenetic hypothesis of
concatenated molecular markers shows that H. rubica can be divided in three main
clades: the first includes Mexican Pacific coast populations, the second is formed
by population from east of Mexico to Panama and the third comprises the South
American populations. Within these clades we recognize seven principal phylogroups
whose limits have a clear correspondence with important geographical discontinuities
including the Isthmus of Tehuantepec in southern Mexico, the Talamanca Cordillera,
and the Isthmus of Panama inNorth America. In South America, we observed amarked
separation of two phylogroups that include the populations that inhabit mesic forests in
western and central South America (Amazon Forest) and those inhabiting the seasonal
forest from the eastern and northern regions of the South America (Atlantic Forest).
These areas are separated by an intervening dry vegetation ‘‘diagonal’’ (Chaco, Cerrado
and Caatinga). The geographic and genetic structure of these phylogroups describes
a history of diversification more active and complex in the northern distribution of
this species, producing at least seven well-supported lineages that could be considered
species.
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INTRODUCTION
The origins and evolutionary drivers of neotropical diversity are one of the most studied
and hotly debated topics since the first biological explorations in the 19th century (Salvin
& Godman, 1879–1904). Two main hypotheses have been proposed to explain the high
levels of neotropical biodiversity (Rull, 2008). On one hand, the glacial-interglacial cycles
of the Pleistocene (last ∼2.6 Mya) have been suggested as the major drivers of divergence,
during which allopatric speciation took place in isolated rainforest refuges, particularly
during the cooler and drier conditions of the glacial maxima (Whitmore & Prance, 1987;
Hooghiemstra & Van der Hammen, 1998; Hewitt, 2000; Bennett, 2004). On the other hand,
the paleogeographic changes that occurred throughout theCenozoic (i.e., the last∼66Mya),
like the Andean orogeny and the uprising of the Isthmus of Panama (Hewitt, 2000; Willis
& Niklas, 2004; Nores, 2004), have been postulated as major factors driving diversification,
as new geographical barriers both increased isolation and promoted divergence. Both
hypotheses have however been criticized. For instance, there is little palynological
(Colinvaux et al., 2001; Bush & De Oliveira, 2006), phylogenetic (e.g., Moritz et al., 2000;
Glor, Vitt & Larson, 2001), or ecological-modeling support (Cowling, Maslin & Sykes, 2001;
Mayle et al., 2004) for a Pleistocene origin of tropical diversity. Indeed, most divergence
times estimated so far date back to the Neogene, supporting a role for more ancient
diversification events. However, differentiation patterns across taxa are highly discordant
and frequently cannot be linked to specific landscape or vicariant events (Burns & Naoki,
2004; Burns & Racicot, 2009; Mauck & Burns, 2009) as this hypothesis proposes; instead,
they seem more related to each species ability to persist through environmental changes
and independently disperse across putative geographic barriers (e.g., Smith et al., 2014).

The role of ecological divergence in producing neotropical diversity has taken force in
the last decade. For instance, alternating cycles of contracting and expanding tropical forests
could have resulted in multiple bouts of differentiation that produced assemblages of ‘‘old’’
and ‘‘young’’ taxa exclusive to each habitat (e.g., Pennington et al., 2004; Smith et al., 2013).
This is not only important for species diverging in situ, but also for taxa that dispersed and
differentiated across newly available habitats, such as those involved in inter-continental
exchange after the uplifting of the Isthmus of Panama. It has been suggested that animals
tolerant to a variety of habitats and elevation zones quickly expanded through this corridor
into North America, while species restricted to more humid conditions could only disperse
more recently into northern latitudes (Zamudio-Beltrán & Hernández-Baños, 2015).

Another point that fuels this debate is the species concept itself. That is, evidence
supporting one or another hypothesis can be dismissed or not depending on whether the
taxa studied are considered (or not) independent species. Traditionally, species boundaries
have been drawn based on morphology, but the onset of high-throughput molecular
techniques has allowed inferring these boundaries from statistical models based on the
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coalescent framework (e.g., Bayesian Phylogenetics and Phylogeography; BP&P; Yang &
Rannala, 2010). As both views have their own limitations (see for instance Sukumaran &
Knowles, 2017), an integrative approach based on different types of data (morphological,
ethological, ecological, molecular, etc.) seems necessary to operationally determine whether
lineages have been evolving separately and therefore can be considered different species
(De Queiroz, 2007).

The Red-crowned Ant Tanager (Habia rubica, Cardinalidae) is a highly polytypic
taxon with marked geographical variation; it comprises up to 17 subspecies, (https:
//avibase.bsc-eoc.org/avibase.jsp?lang=EN) most of which were described based on
the variation in the hue and intensity of plumage coloration (Hilty, 2011). Its current
distribution ranges from central Mexico to north-eastern Argentina and southeastern
Brazil, and encompasses regions with very different ecological conditions and/or separated
by recognized biogeographical barriers (Hilty, 2011). A previous phylogeographic survey
(Lavinia et al., 2015) suggested that this species originated in South America, where it bears
at least two clearly differentiated clades, one in the Atlantic Forest of Brazil and another in
the rainforests of the Amazon basin. However, a limited sampling precluded the authors to
explore the colonization and diversification within Central America and Southern Mexico.

The objective of this paper is to evaluate the nature and geographic structuring of
genetic variation within and among populations of H. rubica, using both nuclear and
mitochondrial genetic markers in order to provide a phylogenetic hypothesis about the
evolutionary history of the species. We used Bayesian and coalescent methods to generate
a phylogeny and estimate divergence times between clades, to assess the validity of the
genetic groupings identified, using species delimitation methods (Rannala & Yang, 2003;
Yang & Rannala, 2010). Emphasis was made on the missing parts of the biogeographical
history of the species.

MATERIAL & METHODS
Taxon sampling and laboratory procedures
We sequenced 125 individuals of H. rubica species that covered the species distribution,
including samples from Mexico (using field collection on permit from Instituto Nacional
de Ecología, SEMARNAT: FAUT-0169), Guatemala, El Salvador, Honduras, Nicaragua,
Costa Rica, Panama, Peru, Bolivia, Paraguay, Brazil, Argentina and Venezuela (Fig. 1A).
We also included 16 samples from the genus Chlorothraupis (C. olivacea, C. carmioli and
C. stolzmanni), the sister group of H. rubica (Klicka, Burns & Spellman, 2007), and three
congeneric samples that were used as outgroups (H. fuscicauda, H. atrimaxillaris, and
H. gutturalis; see Table S1).

We isolated genomic DNA from tissues using Qiagen DNAeasy kit (Qiagen, Valencia,
CA, USA) following the manufacturer’s protocol. We amplified five molecular markers
via the polymerase chain reaction (PCR) in 12.5 µl volumes. The mitochondrial marker
ND2 (1,041 bp), was generated for all individuals (n = 144) using the primers L5219
and H6313 (Sorenson et al., 1999). We then amplified four nuclear markers for a subset of
individuals with the highest DNAquality (n= 37). These nuclear loci included two Z-linked
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Figure 1 Geographical distribution, phylogenetic consensus tree and haplotypes network. (A) Geo-
graphical distribution (indicated by pink shading) and sampling points of the H. rubica species; the mito-
chondrial DNA sampling is represented by dots color and the nuclear DNA sampling is highlighted with
a black dot on the dots color. ArcGIS (ArcMAP 10.2.2; Esri, Redlands, CA, USA). (B) Phylogenetic con-
sensus tree representing the relationship among populations from H. rubica, based on Bayesian inference
from a multilocus dataset. Values above branches denote posterior probabilities (PP). (C) Haplotypes net-
work, where the phylogroup ‘‘D’’ corresponds with individuals from Chiapas-Yucatan peninsula to Costa
Rica and ‘‘d’’ corresponds with individuals from Guatemala and El Salvador (the number inside of circles
indicate the number of individuals that shared each haplotype).

Full-size DOI: 10.7717/peerj.5496/fig-1

introns, the aconitase I gene (ACOI -I9, 852 bp) amplified using the primers ACOI-I9F
and ACOI-I9R (Kimball et al., 2009), and the receptor of the tyrosine kinase MUSK gene
(MUSK, 576 bp) amplified using the primers MUSK-I3F and MUSK-I3R (Kimball et al.,
2009). We also amplified two autosomal loci, a beta-fibrinogen gene (FGB-I5, 577), using
the primers Fib5 and Fib6 (Kimball et al., 2009) plus the Ornithine Decarboxylase ODC
gene (ODC, 711 bp) using the primers ODCF and ODCR (Primmer et al., 2002). We used
the following annealing temperatures: 54 ◦C (ND2), 56 ◦C (MUSK), 60 ◦C (ACOI and
FGB-I5) and 65 ◦C (ODC). PCR success was verified on 1% agarose gels.

DNA sequencing was performed in the High Throughput Genomic Unit Service of the
University of Washington. We edited and aligned chromatograms with Sequencher v4.8
(GeneCodes Corporation, Ann Arbor, MI, USA). We corroborated the origin of all of our
sequences by combining at least two of the followingmethods: amplifying overlapping gene
segments, amplifying or sequencing one region with different primer sets, sequencing both
DNA strands for all amplified fragments, or using multiple individuals of a single species.
No evidence of NUMT contamination was found (Zhang & Hewitt, 1996; Sorenson &
Quinn, 1998; Bensasson et al., 2001), and all nuclear sequences could be easily aligned with
the corresponding genes from other avian species. The overall length of the concatenated
mitochondrial and nuclear sequences was ∼3,800 bp. All sequences were deposited in
FigShare (https://figshare.com/s/fe9f9f6fed1686782f62).

Phylogenetic analyses
Phylogenies were constructed from two different matrices; the first matrix included
144 sequences of the mitochondrial marker ND2 (hereafter referred to as the mtDNA
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dataset), and the second matrix included 37 concatenated sequences of the mitochondrial
marker ND2 plus the four nuclear markers describe above (hereafter referred to as
multilocus dataset). Phylogenetic analyses were performed for eachmatrix using a Bayesian
Inference method (BI), with independent partitions and evolutionary rates defined for
each gene region. The model parameters of nucleotide evolution for each DNA region
were obtained with jModeltest v3.8 (Posada, 2008) using the Akaike Information Criterion
(Akaike, 1973). Analyses were conducted in MrBayes v3.2 (Ronquist et al., 2012), and
consisted of four MCMC chains of 50 million generations each, starting from random
trees and using a uniform prior distribution of parameters. Trees were sampled every
250 generations, using Tracer v1.6.0 (Rambaut & Drummond, 2013), after discarding
the initial 20% as burn-in. The remaining trees were used to construct a majority rule
consensus tree with a posterior probability distribution. The final tree was visualized in
FigTree v1.2.3 (http//tree.bio.ed.ac.uk/software/figtre/). Finally, we usedMEGAv7 (Kumar,
Stecher & Tamura, 2016) to estimate the pairwise genetic distances between lineages from
mitochondrial and nuclearmarkers, applying a bootstrap of 1,000 iterations; this allowed us
to indirectly determine the relative amounts of information provided by the mitochondrial
and nuclear markers.

Diversity and genetic structure
A haplotype network was obtained for the mtDNA dataset with the Median-Joining
algorithm available in Network v4.6 (Bandelt, Foster & Röhl, 1999). We used DnaSP v5.0
(Librado & Rozas, 2009) for estimating the number of haplotypes (H ) and segregating sites
(S), the haplotype (Hd) and nucleotide (π) diversities, and the Tajima’s D (Tajima, 1989)
and Fu’s F (Fu, 1997) values for the genetic clusters recovered in the BI mitochondrial
phylogeny mentioned above. Significance for the last two summary statistics was inferred
from 1,000 replicates of the coalescent algorithm.

Species delimitation
The phylogeny obtained from themultilocus dataset was used to assess species delimitations
under the Bayesian framework implemented in BP&P (Yang & Rannala, 2010). This
method allows the estimation of posterior distributions of competing models with differing
number of species. It incorporates a reversible-jumpMarkov chainMonte Carlo (rjMCMC)
algorithm and a user-specified tree, where it assigns speciation probability values (Rannala
& Yang, 2003; Yang & Rannala, 2010). BP&P assumes constant population sizes, no gene
flow among lineages, and no population structure within lineages after speciation occurred.
It furthers includes divergence time (τ ) and mutation-scaled effective population size (θ)
parameters. We first performed several preliminary runs with the two available algorithms
(0: fixed tree, and 1: tree as guide tree) and different seed numbers to confirm consistency
and fine-tuning the priors (ε and τ ). After selecting algorithm 0, we conducted a first set
of analyses allowing the program to make automatic adjustments to the priors (finetune
= 1). Because different values of τ and θ can affect the model posterior probabilities for a
same guide tree (Leaché & Fujita, 2010;McKay et al., 2013), and to explore a wide range of
speciation histories, we performed a series of simulations using three different parameter
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combinations: 1) large population size/deep divergence [G (1, 10) for both θ and τ ], 2)
small population size/ shallow divergence [G (2, 2000) for both θ and τ ], and 3) large
population size/shallow divergence [G (1, 10) for θ and G (2, 2000) for τ ] (Leaché & Fujita,
2010; Smith et al., 2013). We then performed a final set of analyses that incorporated the
finetune parameters determined in the previous analysis (finetune= 0) with the same three
different combinations for θ and τ parameters described above. Each set was composed of
100,000 generations, and samples were taken every 5 steps after discarding the initial 50,000
iterations as burn-in. All analyses were performed on the BPPX graphics user interface
(http://abacus.gene.ucl.ac.uk/software) using the command line.

Tests of divergence times
Divergence times were inferred from the multilocus dataset. Analyses were performed in
Beast v1.7 (Drummond et al., 2013) using the previously defined gene partitions with the
corresponding evolutionary rates and models as estimated above (Ellegren, 2007; Smith
& Klicka, 2010) and the seven phylogroups identified with the multilocus dataset. Clade
divergence was simulated as a Yule’s first tree (Yule, 1924) with a lognormal relaxed
molecular clock (Drummond et al., 2006). Analyses included 100 million iterations, with
samples taken every 1,000 generations after eliminating 25% of the trees as burn-in. Mixing
and likelihood stability were confirmed with TRACER v1.6 (Rambaut & Drummond, 2013)
to make sure that the appropriate effective sample size (ESS) was over 200 units for
each parameter (Drummond & Rambaut, 2007). The best supported tree was chosen with
TreeAnnotator 1.8.0 (Drummond & Rambaut, 2007) through Maximum Clade Credibility.

Given the absence of fossils for H. rubica, or any close relatives, two calibrations based
on geological data were used. First, the closing of the Isthmus of Panama, estimated
between 3.1 and 4.0 Ma (Daza, Castoe & Parkinson, 2010; Smith & Klicka, 2010), was used
for the separation of South and Central American populations; and second, the uprising
of the Talamanca Cordillera near the Costa Rica–Panama border, estimated to have
occurred between 2.5 to 3.9 Ma (Marshall & Liebherr, 2000; Daza, Castoe & Parkinson,
2010), was employed as the time of divergence between populations in Panama and those
occurring elsewhere throughout Mesoamerica. In addition, as estimating divergence times
based on external event that could be unrelated to a species biology can result in wrong
inferences and circular reasoning, we estimated divergence dates a second time but using
only the mtDNA dataset (which has a higher sample size) and no calibration points. This
could be seen as an independent test of confidence for the estimates obtained for the
multilocus analysis with geological constraints. We assumed a mutation rate of 1.25×10−2

substitutions/site/lineage/Myr (Smith & Klicka, 2010), other parameters and priors were
kept identical.

RESULTS
Phylogenetic analyses
We obtained mitochondrial (1,041 bp) and concatenated (3,757 bp) datasets. The best-fit
models for each molecular markers were follows: ND2, TrN+I+G; ACOI-I9, TIM2+G;
MUSK, TrN+G; FGB-I5, HKY+G and ODC, TrN.
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The phylogenies obtained with mitochondrial and multilocus dataset revealed well-
supported topologies, independently of the method employed. Both topologies are
composed of three main clades with seven and eight subclades (considered here as
‘‘phylogroups’’) for the multilocus and mitochondrial datasets, respectively. The first
clade in the multilocus phylogeny (I) is comprised of two phylogroups with an apparent
separation between populations occupying the western (A; Fig. 1B) and southern
(B; Fig. 1B) Pacific coast of Mexico. The second clade (II) was composed of three
well-supported phylogroups distributed from eastern Mexico to Panama. The first
includes all individuals from the Mexican Gulf Coast, west of the Isthmus of Tehuantepec
(C; Fig. 1B); the second one comprised samples collected east of this Isthmus and southward
into Nicaragua (D; Fig. 1B); and the third one was composed by samples from Panama
(E; Fig. 1B). The last clade (III) was composed of (at least) two phylogroups, one with
individuals from the Amazon basin (F; Fig. 1B) and another one with birds from eastern
South America (G; Fig. 1B). A single sample from Venezuela appears distinctive and is
sister to this eastern clade. However, additional samples from Venezuela will be required
for a proper systematic assessment.

The mitochondrial phylogeny, although based on many more samples, was almost
identical to the one obtained with the multilocus dataset (Fig S1); it did however, show that
phylogroup D was composed of two subgroups: one comprised of individuals from the
Yucatan Peninsula, Honduras, Nicaragua and Costa Rica, and the other one of individuals
from Guatemala and El Salvador.

The pairwise genetic distances showed significant genetic differentiation in the
mitochondrial but not in the nuclear markers (Table 1). That is, the genetic distances
were smaller for nuclear than for mitochondrial markers (Table 1). This implies that the
mitochondrial marker provides larger amounts of relative information than the nuclear
gene-regions (Table 2).

Diversity and genetic structure
The haplotype mtDNA network (Fig. 1C) revealed the same eight groups obtained with BI
phylogeny (Fig S1). A high number of haplotypes had to be reconstructed to link some of
these groups. For instance, 30 mutational steps separated the two groups from the Mexican
Pacific coast from the other clusters, 45 more steps were needed to link the clades from
South and Central America, while the two groups from South America were 41 steps apart;
an additional 29 mutations were necessary to join the lone sample from Venezuela to the
southeastern South America clade.

Overall, diversity estimates differed greatly between mtDNA phylogroups, with the
South American and Panamanian ones being the more diverse, and the groups from the
Mexican Pacific coast the least genetically rich. Tajimas D and Fu’s F values were negative
in all phylogroups, excepting phylogroup D (easternMexico to northern Central America).
However, these values were significant only for the two South American Clades (F & G;
Fig. S1); thus suggesting recent population expansions (Table S2).
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Table 1 Corrected pairwise genetic p-distances between lineages ofH. rubica based onmitochondrial
and nuclear markers.

Phylogroups A B C D E F G

mtDNA
A
B 0.7**

C 4.1* 4.4*

D 4.1* 4.5* 1.7**

E 5.1* 5.5* 2.7** 2.4**

F 6.4* 6.4* 5.7* 5.8* 6.6*

G 6.8* 6.6* 5.7* 5.8* 6.7* 5.4*

nDNA
A
B 0.0**

C 0.1** 0.1**

D 0.1** 0.1** 0.1**

E 0.1** 0.1** 0.1** 0.1**

F 0.2** 0.2** 0.1** 0.2** 0.2**

G 0.6** 0.6** 0.5** 0.6** 0.6** 0.4**

Notes.
*<0.05.
**<0.005.

Table 2 Relative amounts of information in the mitochondrial and nuclear DNA.

Molecular marker Samples Sequences Bases pair Monomorphic
sites

Polymorphic
sites

More than
two variants

Gaps Missing data

Mitochondrial
DNA

125 125 1,041 782 259 229 – –

ACOI-I9 38 76 852 452 112 8 7 281
MUSK 39 78 576 181 54 2 4 337
FGB-I5 38 76 577 236 60 4 2 279
ODC 39 78 711 584 46 1 8 73
Nuclear DNA 37 74 2,716 1,733 268 17 20 695

Species delimitation
Considering a hypothesis of seven species for this taxon, the Bayesian species delimitation
supported the guide tree displaying speciation probabilities of 1.0 in most nodes, indepen-
dently of the finetune parameter used (finetune = 1 or 0, Figs. 2A and 2B respectively).
Seven species were supported with high speciation probabilities (0.97 to1.0) on the tree
guide. These species corresponded to the lineages A, B, C, D, E, F and G. The different
prior distributions for θ and τ had no effect on most nodes, the only exception being
that of lineages A and B which were influenced by at least one of the prior combinations
(from 0.37 to 0.97). However, while these and other analyses with similar topologies and
highly supported clades suggest a multi-species complex within H. rubica, other types of
data are still necessary to support this hypothesis (Sukumaran & Knowles, 2017; see below).
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Figure 2 Bayesian species delimitation. (A) Bayesian species delimitation results assuming seven species
(lineages) from multilocus phylogeny of H. rubica (Finetune= 1). (B) Bayesian species delimitation re-
sults assuming seven species (lineages) from multilocus phylogeny of H. rubica (Finetune= 0, parameters
estimated previously). The speciation probabilities are provided for each node under each combination of
priors for τ and θ : top, priors θ ∼ G(1, 10) and τ0∼ G(1, 10); middle, priors θ ∼ G(2, 2000) and τ0∼
G(2, 2000); bottom, priors θ ∼ G(1,10) and τ0∼ G(2, 2000). We consider speciation probability values
>0.95 as strong support for a speciation event.

Full-size DOI: 10.7717/peerj.5496/fig-2

Tests of divergence times
According the multilocus dataset, the divergence between H. rubica and Chlorothraupis
dated back to the late Neogene, between 6.65 and 3.91 Myr ago (Fig. 3A), and the ensuing
diversification of H. rubica was rather rapid. The first split was estimated some 3.75 to
3.35 Myr, between the South American (clade III) and Central/Mesoamerican lineages
(clades I and II); these two groups split again around 3 Myr ago. In Central America,
the first divergence event (3.4–2.7 Myr) occurred between the lineages from the Mexican
Pacific coast (Clade I) and the other phylogroups (Clade II). Within clade II, there was a
gradual and northward divergence of lineages from Panama to eastern Mexico; these three
diversification events during the last∼3Myr or∼2Myr. An independent analysis performed
on the mtDNA dataset and with no calibration constraints, produced an identical topology
with older mean divergence times (i.e., divergence withinH. rubica occurred during the last
5.6 Myr). However, as confidence intervals were much wider (Fig. 3B) and overlapped with
those obtained with the multilocus dataset, they provide support for the dates estimated
based on geological times.

DISCUSSION
Our results show that H. rubica has considerable geographic genetic structure. We found
seven lineages through its distribution; five of them are in Mesoamerica, where the
evolutionary history has been more dynamic and complex, and two in South America (this
last results is similar with was found by Lavinia et al., 2015). Most lineages are delimited
by recognized geographic and ecological barriers, like the Rio Balsas depression in Mexico,
the Central American Volcanic Arc, the Isthmus of Panama in Central America, or
the dry vegetation diagonal in South America. We recovered a reciprocally monophyletic
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Figure 3 Divergence times trees. (A) For multilocus dataset (confidence interval values are inside parentheses), calibration points are shown in the
time bar. (B) For ND2 dataset, we use sustitution rates of 2.5×10−2 substitutions/site/lineage/Myr.

Full-size DOI: 10.7717/peerj.5496/fig-3

relationship betweenH. rubica and the genusChlorothraupis, which coincides with previous
studies (Klicka, Burns & Spellman, 2007; Klicka, Johnson & Lanyon, 2000; Barker et al.,
2015; Lavinia et al., 2015); therefore the genus Habia must be considered paraphyletic.

Phylogeny, diversity and genetic structure
The mitochondrial DNA topology indicates that populations of Mexico, Central and
South America are profoundly differentiated. In this topology eight phylogroups were
identified, six in Mesomerica and two in South America (Fig S1). The relationship between
mitochondrial haplotypes could be determined by the action of various historical processes
that promoted a deep genetic structure in Mesoamerica, resulting in a clear example of
cryptic speciation. This complicated phylogenetic structure in Mesoamerica is consistent
with the complex geological and biogeographic history of the region (Coates & Obando,
1996), and the emergence of geographic features such as the Rio Balsas depression,
the Isthmus of Tehuantepec in southern Mexico, the Motagua-Polochic-Jocotán fault
system in the North of Central America, and the Talamanca Cordillera in Costa Rica,
which presumably played roles in shaping the observed geographic and genetic patterns
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(Daza, Castoe & Parkinson, 2010;Gutiérrez-García & Vázquez-Domínguez, 2012;Gutiérrez-
García & Vázquez-Domínguez, 2013; Suárez-Atilano, Burbrink & Vázquez-Domínguez,
2014). Our results together with the study of Lavinia et al. (2015) provide a robust
hypothesis of the evolutionary history of H. rubica. For instance, our study confirms
the main results of Lavinia et al. (2015) for South America, and improves the resolution
for Mesoamerica given our larger sample size and wider area covered.

In South America, our results, in combination with those of Lavinia et al. (2015),
showed two distinct phylogroups that reflected population divergence according to the
habitats preferred by H. rubica (Pennington et al., 2004; Pennington, Lavin & Oliveira-
Filho, 2009; Lavin, 2006; Smith et al., 2013; Smith et al., 2014; Pennington & Lavin, 2016):
one western phylogroup distributed in the mesic forest of the Amazon basin, and
another one in the seasonal forests of the eastern and northern parts of South America.
This last lineage included the single sample from Venezuela, instead of the western
clade that is geographically more proximate (Prates et al., 2016; Prates et al., 2017). This
could be indicating that the deep evolutionary history of the seasonal forests in South
America (Pennington et al., 2004; Pennington, Lavin & Oliveira-Filho, 2009) are driving the
divergence of other taxa. Additional sampling in this region is thus necessary to test this
hypothesis.

The multilocus DNA topology identified seven of the eight phylogroups found with
the mitochondrial DNA (Fig. 1B), in all cases the phylogroups are the same with the
exception of an additional separation of a Yucatan Peninsula and northern of Central
America clade identified using the more rapidly evolving mtDNA marker. All identified
phylogroups (mitochondrial and multilocus dataset) are consistent with clear geographical
discontinuities and are supported with high posterior probabilities.

Although, the haplotype network recovered the same groups identified in the
mitochondrial DNA phylogeny (Fig. 1C), it was necessary to invoke five hypothetical
haplotypes between Mexican and Central American groups. These results support the
idea about the complex geological history in Mesoamerica resulting in a high degree of
genetic structure in the northernmost distribution of this species. In South America, 12
hypothetical haplotypes were required, but unlike the previous case, this could be explained
by the lack of sampling in this specific area.

The genetic distances between phylogroups were relatively high and supported the
groups identified in our phylogenetic and BPP analyses. The largest difference found was
between the group from the Western Pacific Coast of Mexico (group A) and the group
from the Southeast of South America (group G) (Table 1). This result is not surprising
because the geographical distance between them is also the largest and is congruent with
the divergence date (Figs. 3A and 3B). On the other hand, the more similar phylogroups
were theWestern (A) and the Southern Pacific Coast of Mexco (B) groups, which represent
the most recent divergence event (Figs. 3A and 3B). As expected the mitochondrial DNA
provides more polymorphic sites because its rate of evolution is faster (Table 2) (Brown,
George Jr & Wilson, 1979).
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Species delimitation and divergence times
The deep divergence times among lineages estimated herein (Figs. 3A and 3B), most of
which dated back to Pleistocene and Pliocene, support the criticisms raised regarding the
allopatric speciation hypothesis that invoked the Pleistocene glacial cycles as the major
drivers of neotropical bird diversity and closing of the Isthmus of Panama (e.g., Moritz
et al., 2000; Cowling, Maslin & Sykes, 2001; Glor, Vitt & Larson, 2001; Mayle et al., 2004).
According to theND2divergence analyses, the first split was during theMiocene (5.69Myr),
and this is the main discordance with respect to the calibrated multilocus divergence
analyses (3.55 Myr). These dates are also consistent with the compelling evidence for
speciation drawn from the BP&P analyses, which suggest that enough differences have
accumulated between most of the H. rubica lineages to consider them a complex of cryptic
species (Fig. 2).

At present, intraspecific delimitation within H. rubica is based on geographic
variation in plumage color, with 17 subspecies currently recognized (https://avibase.bsc-
eoc.org/avibase.jsp?lang=EN). Many of these subspecies are not supported by the lineages
described herein (Fig. 2). For instance, the subspecies rosea and rubicoides are paraphyletic
(lineages A&B, and C&D, from BP&P analysis, respectively). The first taxon is further
intermingled with ssp. affinis individuals in lineage B, while the second one is combined
with individuals of ssp. holobrunnea and nelsoni in the lineages C and D. Some subspecies
also appear indistinguishable with the markers that we used (e.g., ssp. hesterna, peruviana
and rhodinolaema within lineage F). Overall, our results support a taxonomic revision of
H. rubica.

Our test for species delimitation suggests that H. rubica should minimally be split into
the following species: (1) H. rosea, distributed along the Pacific coast of western Mexico
(Jalisco, Nayarit and Colima; lineage A); (2) H. affinis, distributed along the Pacific coast
of southern Mexico (Michoacan, Guerrero and Oaxaca; lineage B); (3) H. holobrunnea,
distributed over the slope of Gulf of Mexico (lineage C); (4) H. rubicoides, distributed
from eastern Mexico to southern Nicaragua (lineage D); (5) H. vinacea, allopatric in
Panama (lineage E); (6)H. rhodinolaema, distributed in the Amazon basin (lineage F); and
(7) H. rubica, distributed in eastern Brazil, Argentina, and Paraguay (lineage G). Further
tests and sampling should be necessary for a more adequate description of the Venezuela’s
individuals, currently classified as spp. perijana (Hilty, 2011).

There are criticisms to the BP&P analysis implemented herein. For instance, simulation
data have shown that it tends to misidentify population structure as species boundaries
(Sukumaran & Knowles, 2017). However, it must be noted that our delimitation not
only detected genetics lineages, but lineages whose distribution coincides with the
geographical barriers and ecological differences (habitat preference) of each taxon. That
is, it highlights the role of other factors, like vicariance, dispersal and ecology, under
a framework of ecological allopatric speciation, which is one the drivers proposed for
generating bird species diversity in the neotropics (Hooghiemstra & Van der Hammen, 1998;
Hewitt, 2000; Bennett, 2004; Smith et al., 2013). It also shows that this bird diversity
is underestimated, and that species cannot be described or estimated based only
on morphological criteria. From this point of view, diversifying the techniques for
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species delimitation, like incorporating bioacoustics, high-throughput sequencing,
niche modelling and advanced statistical tools, will also help addressing consequential
questions in taxonomy and biogeography. For instance, such multifactorial data should
help determining operationally whether the H. rubica lineages inferred herein are indeed
evolving separately (see De Queiroz, 2007).

CONCLUSIONS
The phyogenies obtained independently with mitochondrial and multilocus datasets
revealed well-supported topologies for the polytypic taxon H. rubica. Both topologies are
composed of three main clades with eight and seven phylogroups (lineages), respectively.
The mtDNA haplotype network produced the same eight groups obtained with the
mitochondrial data. The Bayesian species delimitation analysis found seven species
highly supported: (1) H. rosea, distributed along the Pacific coast of western Mexico;
(2) H. affinis, distributed along the Pacific coast of southern Mexico; (3) H. holobrunnea,
distributed distributed over the slope of Gulf of Mexico; (4) H. rubicoides, distributed
from eastern Mexico to southern Nicaragua; (5) H. vinacea, allopatric in Panama;
(6) H. rhodinolaema, distributed in the Amazon basin and (7) H. rubica, distributed
in eastern Brazil, Argentina and Paraguay. Further tests and sampling should be necessary
for a more adequate description of the samples from Venezuela, currently classified as
spp. perijana. The species subdivision of H. rubica coincides with geographical barriers
and ecological differences between taxa, highlighting the role of vicariance, dispersal and
ecology in bird species diversification in the neotropics.
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