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ABSTRACT

The development of methods to estimate rates of speciation and extinction from
time-calibrated phylogenies has revolutionized evolutionary biology by allowing
researchers to correlate diversification rate shifts with causal factors. A growing number
of researchers are interested in testing whether the evolution of a trait or a trait variant
has influenced speciation rate, and three modelling methods—BiSSE, MEDUSA and
BAMM—have been widely used in such studies. We simulated phylogenies with a single
speciation rate shift each, and evaluated the power of the three methods to detect these
shifts. We varied the degree of increase in speciation rate (speciation rate asymmetry),
the number of tips, the tip-ratio bias (ratio of number of tips with each character state)
and the relative age in relation to overall tree age when the rate shift occurred. All
methods had good power to detect rate shifts when the rate asymmetry was strong
and the sizes of the two lineages with the distinct speciation rates were large. Even
when lineage size was small, power was good when rate asymmetry was high. In our
simulated scenarios, small lineage sizes appear to affect BAMM most strongly. Tip-ratio
influenced the accuracy of speciation rate estimation but did not have a strong effect
on power to detect rate shifts. Based on our results, we provide suggestions to users of
these methods.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies

Keywords Diversification, BiSSE, BAMM, MEDUSA, Rate shift, Phylogenetics, Key innovation,
Macroevolution, Simulation, Speciation rate

INTRODUCTION

Much as the advent of methods to infer phylogenies (Edwards ¢ Cavalli-Sforza, 1963;
Sokal & Sneath, 1963; Camin ¢ Sokal, 1965; Hennig, 1965) led to a spectacular revolution
in evolutionary biology, the arrival of mathematical methods to estimate divergence times
from molecular phylogenies has offered unprecedented novel insights into macroevolution.
More recently, a seminal innovation has been the development of tools to estimate rates
of speciation and extinction from time-calibrated phylogenies (Nee, May ¢» Harvey, 1994).
Until such methods became available, our understanding of macroevolutionary patterns
and processes of diversification largely relied on the fossil record, which is incomplete
for most taxa (Benton, Wills & Hitchin, 20005 Quental & Marshall, 2010) and virtually
non-existent for many soft-bodied life forms (Dornoghue & Purnell, 2009). However, the
possibility of using dated phylogenies of extant taxa to shed light on macroevolutionary
history is appealing, and there has been a phenomenal interest in applying these methods to
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understand fundamental questions such as how the mode and tempo of diversification have
been influenced by causal factors, for instance, ‘key innovations’ (e.g., Hunter ¢ Jernvall,
1995; Hodges & Arnold, 1995; Near et al., 2012; Rainford et al., 2014; Pefia ¢ Espeland,
20155 Sahoo et al., 2017), biogeography (e.g., Kozak, Weisrock ¢ Larson, 2006; Wahlberg et
al., 2009; Dunn et al., 2010; Sanders, Mumpuni & Lee, 2010; Sundue Michael, Testo Weston
¢ Ranker Tom, 2015) and climate change (e.g., Jansson & Davies, 2008; Dunn et al., 2010;
Arakaki et al., 2011; Ezard et al., 2011; Near et al., 2012; Xiang et al., 2014).

The diversification rate of a lineage is the difference between its speciation rate A and
extinction rate w. Testing hypothesis of diversification rate variation is underpinned
by the ability to decouple and accurately estimate these rates. Estimates of extinction
rates from phylogenies of extant taxa appear to be error prone (Rabosky, 2010; Laurent,
Robinson-Rechavi & Salamin, 2015; May & Moore, 2016; but see Stadler, 2013; Beaulieu &
O’meara, 2016). On the other hand, speciation rate estimates are generally considered to
be more robust. One of the most common themes in macroevolutionary studies over the
last decade has been to test whether a trait (or trait variant) has increased speciation rates
(e.g., Sundue Michael, Testo Weston ¢ Ranker Tom, 2015; Claramunt et al., 2012; Escudero
et al., 2012; Litsios et al., 2012; Horn James et al., 2014; Rainford et al., 2014; Xiang et al.,
2014; Gubry-Rangin et al., 2015; Igea et al., 2017; Wiens, 2017; Sahoo et al., 2017; Seeholzer,
Claramunt & Brumfield, 2017), with a suite of analytical tools providing the framework to
infer speciation rate variation across the phylogeny.

Historically, analyses testing the effect of a trait on diversification relied on comparisons
of species richness of sister clades (e.g., Mitter, Farrell & Wiegmann, 1988; Zeh, Zeh &
Smith, 1989). This method cannot distinguish between A and u, is prone to Type II error
(non-detection of significant diversification rate differences), and does not effectively
utilize information from clades with mixed character states (Maddison, Midford ¢ Otto,
2007). The most recent methods aim to utilize information in the branching patterns of
dated phylogenies to decouple A from p (Stadler, 2011). The BiSSE (Binary State Speciation
and Extinction) (Maddison, Midford ¢ Otto, 2007) modelling approach has been especially
popular for hypothesis testing because it estimates A and p associated with character states,
i.e., state-dependent diversification rates. BISSE specifies a stochastic model where A and
can depend on the character state of a lineage at each time point, and the rates of character
state change are allowed to vary (Maddison, Midford ¢ Otto, 2007; FitzJohn, Maddison
& Otto, 2009). Inferences about speciation and extinction rates in relation to character
state are made by comparing the maximum likelihood scores of competing models using
likelihood ratio tests or AIC (Akaike Information Criterion) scores. BISSE requires a
completely resolved dated phylogeny with information on character states of tips as input,
and can take into account incomplete sampling (Fitz/ohn, Maddison ¢ Otto, 2009).

While BiSSE only models binary discrete character states (for example presence or
absence of a trait; two states of a trait), extensions of BiSSE can handle other types of data.
MuSSE (Multiple SSE; FitzJohn, 2012) can deal with multiple discrete character states,
while QuaSSE (Quantitative SSE; FitzJohn, 2010) allows testing the effect of quantitative
traits. GeoSSE (Geographic SSE; Goldberg, Lancaster & Ree, 2011) tests region-dependent
diversification, while BiSSE-ness (BiSSE-node enhanced state shift; Magrnuson-Ford &
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Otto, 2012) and Cladogenetic SSE (ClaSSE; Goldberg ¢ Igic, 2012) integrate cladogenetic
and anagenetic trait evolution. Beaulieu ¢ O’meara (2016) proposed the HiSSE (Hidden
States SSE) model, which attempts to account for unmeasured (‘hidden’) factors impacting
diversification rates of a known trait or character state.

In contrast to the BiSSE family of methods, character-independent diversification
methods attempt to identify the number and location of rate shifts in speciation and
extinction across the tree, without a priori information on the mechanism of rate variation.
Once the locations of rate shifts are found, the researcher can test for associations with
traits of interest. MEDUSA (Modeling Evolutionary Diversification Using Stepwise Akaike
Information Criterion; Alfaro et al., 2009), is one such framework that has been very
popular. MEDUSA incrementally assigns rate shifts to all branches of the tree, and uses
stepwise AIC to determine the number and location(s) of rate shifts that best fit the data.
Rate shift estimates are thus agnostic of the cause of rate variation among lineages.

BAMM (Bayesian Analysis of Macroevolutionary Mixtures; Rabosky, 2014) is the most
widely used character-independent diversification method. BAMM assumes that A and
w are heterogeneous across the phylogeny, and that changes in these parameters across
branches occur under a compound Poisson process. It uses reversible-jump Markov
chain Monte Carlo to explore models varying in the number of shifts in diversification
parameters. Estimates of A and w, and inferences on the number of rate shifts are based
on posterior distributions. Both BAMM & MEDUSA require a dated phylogeny and can
accommodate incomplete sampling.

Although BiSSE, BAMM and MEDUSA have been very popular, recent critical
evaluations of their performance have highlighted potential shortcomings particular
to each method. Using empirical datasets, Rabosky ¢» Goldberg (2015) found that BiSSE
is prone to high Type I error rates, wherein diversification-neutral traits are often found
to be significantly associated with speciation rate. Surprisingly, such false associations
appear to be detected even for traits with weak phylogenetic signal (Rabosky ¢ Goldberg,
2015). The ability of the BiSSE method to detect state-specific diversification rates has
been shown to be affected by factors such as tree size (number of tips) (Davis, Midford ¢
Maddison, 2013; Gamisch, 2016), tree age (Simpson et al., 2018) and tip-ratio bias (i.e., ratio
of tips with one character state versus another) (Davis, Midford ¢ Maddison, 2013): the
method appears to perform better with large trees and low tip-ratio biases. May ¢» Moore
(2016) used extensive simulations to understand the statistical behavior of MEDUSA,
and showed that the method is prone to a very high rate of false inferences of rate shifts
(ca. 30% on average), and that the estimated diversification parameters are biased. The
probability of rate shift detection in MEDUSA depends on the number of terminals in
the tree (Laurent, Robinson-Rechavi ¢ Salamin, 2015). Moore et al. (2016) showed that the
accuracy of BAMM is strongly affected by the priors specified, and that the estimates
diversification rate parameters are unreliable (although see Rabosky, Mitchell ¢» Chang,
2017). Meyer & Wiens (2018) found that BAMM underestimated the number of rate shifts,
and overestimated diversification rates for small clades.

Analyses of simulated phylogenies have proved to be a valuable tool to assess the
performance of the various modelling approaches. We simulated phylogenies with a single
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Figure 1 Flowchart of the simulation process. Flowchart of the simulation process used to generate a
composite tree with a single speciation rate shift. A basetree with a target age (B,g) and speciation rate A,
was simulated using TESS, and pruned at a target subtree age (Sig). A subtree with speciation rate A; and
the target S,q was simulated independently and grafted on to the basetree at the pruned node.

Full-size & DOI: 10.7717/peerj.5495/fig-1

speciation rate shift each, and evaluated the power of BiSSE, BAMM & MEDUSA to detect
these shifts. We varied the degree of increase in speciation rate, the number of tips, the
tip-ratio bias and the relative age in relation to tree age when the rate shift occurred. We
found that all methods have good power to detect rate shifts under many conditions, but
also identified some scenarios under which these methods have low power.

MATERIALS AND METHODS

Simulation of phylogenetic trees with single diversification rate shifts
General procedure

The basic workflow of the simulation process is outlined in Fig. 1. To obtain a phylogeny
with a single shift in speciation rate, we first simulated two trees—a basetree and a subtree
wherein the subtree had a greater speciation rate (1) compared to that of the basetree (1).
We used the package TESS (Hohna, May & Moore, 2015) to simulate trees in R (Team,
2016). The package implements tree simulation based on a global, time-dependent birth-
death process conditioned either on number tips or age (Hohna, May ¢ Moore, 2015).
We generated phylogenetic trees, both basetree and subtree, under a constant birth-death
process by conditioning on age using the function fess.sim.age, which simulates trees given
the age (Bage Or Sage) and diversification rate parameters (A and ). A subtree of a given age
(Sage) Was grafted onto the basetree following pruning of a randomly chosen basetree clade
with approximately the same age (Sage +2.5%) (Fig. 1), using a custom written function
(available in Figshare). This generated a composite tree with a single speciation rate shift
(Ao to A1). The relative age of the subtree in relation to that of the overall tree was varied
by varying the age of the subtree. We ran two simulation sets, each with different goals.

Simulation Set 1: Effects of speciation rate asymmetry, overall tree size and
relative subtree age

Simulation Set 1 aimed to test the relative effects of speciation rate asymmetry (A1/ X),
relative subtree age (100*S,ge/Bage) and overall tree size (Table 1), and therefore these three
parameters were varied. Tree size variation was incorporated by defining specific target
overall tree size classes (50 & 10, 100 & 10, 150 & 10, 200 & 10, 300 & 10 and 500 = 10) a
priori, and for each tree size class, simulating trees with all combinations of relative subtree
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Table 1 Parameter values of variables in the simulations. Range of parameter values of variables used
for simulation of trees for Simulation Sets 1 and 2.

Variable Values in simulation set 1 Values in simulation set 2
Basetree age (Byg) 3-35 3-35

Subtree age (Syge) 20, 40, 60% of basetree 30-70% of basetree

Basetree speciation rate (i) 0.20 0.20, 0.26, 0.28

Speciation rate asymmetry (A /Ao) 1.5, 2.5, 3.5, 4.5, 5.5 2

Basetree extinction rate (JLo) 0.05 0.05

Subtree extinction rate (Ju;) 0.05 0.05

Overall tree size class 50 £+ 10, 100 & 10, 150 +£ 10, 50 4+ 10, 100 + 10, 200 + 10,

200 =+ 10, 300 £ 10 and 500 £ 10 400 % 10 and 800 + 10

age (20%, 40% and 60%) and speciation rate asymmetries (1.5X, 2.5X, 3.5X, 4.5X and
5.5X). Speciation rate asymmetry was varied by altering X, while keeping extinction rates
constant (po=p1). Thus, higher asymmetry values indicate a greater degree of speciation
rate increase in the subtree. Pilot runs indicated that a A value of 0.2 and Byg. values
between 5 and 35 units generated trees with the required parameters. Details of the pilot
runs are described in Supplemental Information 1. We simulated 50 composite replicate
trees each for all combinations of tree size class, relative subtree age and speciation rate
asymmetry (Table 1). Details of how each replicate tree was simulated are described in
Supplemental Information 1. Thus, this simulation set comprised 1,500 trees each for
three relative subtree ages. Simulated trees were subsequently used in the diversification
analyses where BAMM, MEDUSA and BiSSE were used to detect the simulated rate shifts
(see ‘Estimation of diversification rate parameters and power of modelling methods’).

Simulation Set 2: effects of tip-ratio and number of tips in basetree and
subtree

Simulation Set 2 aimed to test the relative effects of tip-ratio bias (basetree:subtree number
of tips), basetree size and subtree size. We simulated trees with three tip-ratio values (1:9,
9:1 and 1:19), all with a 2X speciation rate asymmetry. We chose 2X because our pilot
simulations indicated that power was neither very high nor very low. For each tip-ratio
value, we simulated trees with different overall tree sizes (50 & 10, 100 = 10, 200 =& 10, 400
+ 10 and 800 =% 10). In order to achieve the target tip numbers and tip-ratios, Byge was
allowed vary between 5 and 35 units and relative subtree age between 30 and 70%, while A,
had values 0.2, 0.26 or 0.28 (Table 1). These ranges were decided based on pilot simulations
described in Supplemental Information 1. Hundred replicate trees were generated for each
parameter combination (overall tree size class, tip-ratio value), with all replicates for a
given tip-ratio plus tree size combination having the same B,ge, Ao and relative subtree age
(see Supplemental Information 1). We were unable to simulate trees with 1:9 ratio for the
100 =+ 10 size class, and therefore used a 1:8 ratio as an approximation.

Kodandaramaiah and Murali (2018), PeerJ, DOI 10.7717/peerj.5495 519


https://peerj.com
http://dx.doi.org/10.7717/peerj.5495#supp-1
http://dx.doi.org/10.7717/peerj.5495#supp-1
http://dx.doi.org/10.7717/peerj.5495#supp-1
http://dx.doi.org/10.7717/peerj.5495#supp-1
http://dx.doi.org/10.7717/peerj.5495

Peer

Estimation of diversification rate parameters and power of modelling
methods

We used BiSSE, MEDUSA and BAMM to estimate diversification rate parameters (Ao, o,
A1 and ;) of the simulated composite trees and detect rate shifts. Power was calculated for
each parameter combination as the proportion of the replicate trees in which a significant
rate shift was detected at the node where the subtree was attached to the basetree.

BiSSE

For the BiSSE analysis, a character was assigned to be present in all subtree tips, but absent
in all basetree tips. Therefore, diversification rate estimates of the BiSSE model will reflect
the speciation and extinction rate estimates of the subtree (i.e., A; and 1) and basetree
(Ao and o). We recorded AIC scores and the maximum likelihood values for all possible
BiSSE models for a given tree:

L A1 # Ao, U1 Z o> Go1 Z 10 (All rates unequal; full model)

II. Ay = Ao, (1 7 Kos Go1 7 10 (Only speciation rates equal)

L. Ay # Ao, 1 = o> o1 7 10 (Only extinction rates equal)

IV. Xy # ho, 1 7 o> Go1 = qi1o (Only transition rates equal)

V. A1 = X0, 1 = Mo> go1 7 q10 (Only speciation and extinction rates equal)

VI Ay # Xo, 41 = Ko> go1 = q10 (Only extinction and transition rates equal)

VIL X = Ao, i1 # 140> o1 = q10 (Only speciation and transition rates equal)

VIIL X = o, 41 = o> Go1 = q10 (All rates equal; null model)

Because we were interested in testing whether speciation rates differ between basetree
and subtree, we chose the best among the models where the speciation rates are unequal
(model I, IIL, IV and VI) based on the minimum AIC score, and compared this with the best
model (selected based on minimum AIC score) where speciation rates are equal (model
I1, V, VII and VIII) using a likelihood ratio test. If P < 0.05, the rate shift was considered
to have been detected, while the rate shift was not considered detected if P >0.05. Our
motivation was to mirror how a typical researcher may infer a speciation rate shift using
BiSSE on empirical data sets. Using the approach outlined above, a user will infer a shift in
speciation rate, disregarding whether or not there are changes in extinction and transition
rates. In the Results section, we refer to this approach of model selection as the ‘approach
I

Because the true model, especially with respect to transition rates, is unclear, we also
calculated power by comparing models III with V (referred to as ‘approach 2), as well as
VI with VIII (referred to as ‘approach 3’).

MEDUSA

We performed MEDUSA analyses using the function MEDUSA (available from GitHub
as an R package https://github.com/josephwb/turboMEDUSA, downloaded August 2017).
We specified the model of tree evolution to be a birth-death process to estimate the
diversification rate parameters. We recorded the node where the rate shift was detected and
the estimated diversification rates. The diversification rate shift in a tree was considered to
be correctly detected if a model with >1 diversification rates was chosen as the best model,
and the rate shift was located at the node where the subtree was attached to the basetree.
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BAMM
We performed BAMM analyses with the default parameter settings using the control file
available from the BAMM website (http://bamm-project.org/quickstart.html#control-file
accessed: August 2017). The priors used to estimate the speciation and extinction rates
were generated using the setBAMMpriors for each tree using the BAMMtools package
(Rabosky et al., 2014) in R. We ran the MCMC analysis for 2 million iterations and checked
for convergence using ESS metrics (>200). The bammadata object was generated using
the getEventData function from the BAMMTtools package after discarding the first 10% of
samples as burnin. The bammadata object was then used to calculate the diversification rates.
We estimated speciation and extinction rates for the subtree (A and ;) as the
average rate of the clade using the function getCladeRates from the BAMMtools package
(Rabosky et al., 2014). We estimated Ao and o using the same function by specifying
the common ancestor node of the composite tree, but excluding the rates of the
subtree. The best diversification rate shift configuration was identified using the function
getBestShiftConfiguration with the expected number of shifts set to 1. The diversification
rate shift was considered to have been correctly detected if the best rate shift configuration
included a rate shift at the node where the subtree was attached to the basetree.

Accuracy of estimated asymmetry and speciation rates

To compare the difference between the true and estimated asymmetry in Simulation Set 1,
we calculated the estimated asymmetry as the median of the A; /Ao values of the 50 replicate
trees for a given parameter combination, and error was calculated as.

Error in estimation of asymmetry = (Estimated asymmetry-True asymmetry)/True
asymmetry.

Thus, a value of 0 represents no error, values <0 represent underestimation and those
>0 represent overestimation.

We calculated error in estimation of Ay and A1 for trees in Simulation Set 2 as the median
of estimated/true A for the 100 replicate trees of each combination of tree size class and
tip-ratio. This was done independently for subtree and basetree. Thus, a value of 1 represents
no error, values >1 indicate overestimation of A, and values <1 indicate underestimation.

RESULTS

Effect of speciation rate asymmetry, overall tree size and relative sub-
tree age on power

In analyses of trees from Simulation Set 1, power tended to increase both with asymmetry
and tree size across all three subtree ages (Fig. 2), but the overall effect of asymmetry and
tree size depended on subtree age (Syge).

For BiSSE, when using ‘approach 1’ model selection, power was generally high (>0.75)
for all combinations except when tree size was 50, and 1.5X was in combination with 20%
Sage (Figs. 1A, 1D 1G). A tendency for increase in power with increasing tree size was most
apparent when S,g.was 60%. Results were similar when power was calculated using two
additional approaches of model selection (approaches 2 & 3; Supplemental Information
2).
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Figure 2 Effect of speciation rate asymmetry, relative subtree age and overall tree size. Power, mea-
sured as the proportion of shifts detected, for BiSSE (A, D, G), MEDUSA (B, E, H) and BAMM (C, F, I), in
trees from the Simulation Set 1. For BiSSE, the depicted results are when power was measured using ‘ap-
proach 1’ (see Materials and Methods, ‘BiSSE’). All trees had the same basetree speciation rate of A4, but
subtree speciation rate Ay, Sag, and tree size differed. Trees were of the following size classes: 50 % 10, 100
=+ 10, 150 =£ 10, 200 = 10, 300 = 10 and 500 = 10. Speciation rate asymmetry varied from 1.5X to 5.5X.
Sage Was 20% (Row 1), 40% (Row 2) or 60% (Row 3).

Full-size &l DOI: 10.7717/peerj.5495/fig-2

In the case of MEDUSA and BAMM, for Sges 20% and 40%, power was close to zero
for an asymmetry of 1.5X irrespective of tree size, while power was very high (nearly 1) for
all tree sizes when asymmetry was 4.5X or 5.5X (Figs. 2B, 2C, 2E, 2F). The exceptions were
the set of BAMM analyses on trees of Syge 40% (Fig. 2I), where 4.5X and 5.5X asymmetries
had low power (less than 0.5) for very small tree sizes. For intermediate asymmetries (2.5X
and 3.5X), power correlated strongly with tree size for both methods. At S,ge 60%, no
asymmetry level resulted in uniformly high or low power across all tree sizes. Rather, there
was a strong association between power and tree size for all asymmetries (Figs. 2H, 2I).

The number of basetree tips, subtree tips and the ratio of basetree:subtree tips (tip-ratio)
for a given tree size class depended on S,ge (Supplemental Information 3). Both the number
of basetree tips and tip-ratio bias decreased, but subtree size increased, with increasing Syge.
The effect of these three parameters was explored further in Simulation 2.
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Figure 3 Error in estimation of speciation rate asymmetry. Relationship between true and estimated
speciation rate asymmetry for trees from Simulation Set 1: BiSSE (A, D, G), MEDUSA (B, E, H) and
BAMM (G, F, ). Error = (Estimated asymmetry-True Asymmetry)/True Asymmetry. A value of 0
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Full-size . DOI: 10.7717/peerj.5495/fig-3

Error in estimated speciation rate asymmetry in Simulation Set 1
Figure 3 depicts the relationship between true (i.e., simulated) and estimated asymmetry
ratios. BAMM had a strong tendency to underestimate asymmetry (negative error values),
whereas BiSSE tended to overestimate asymmetry (positive error values). MEDUSA
generaly overestimated asymmetry, but tended to underestimate this when the true
asymmetry was low and for lower tree sizes.

Effect of tip-ratio bias and the number of tips in the basetree and
subtree on power

Figure 4 depicts results from analyses of trees simulated in Set 2, all of which had a 2X
asymmetry, overall size ranging from 50 to 800, and one of three tip-ratios, either biased
towards the basetree (9:1) or the subtree (1:9 and 1:19).
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Figure 4 Effect of lineage size, tree size and tip-ratio. Power, measured as the proportion of shifts de-
tected, for BiSSE (A), MEDUSA (B) and BAMM (C), in trees from the Simulation Set 2. All trees had a 2X
asymmetry, but belonged to one of five size classes (50 = 10, 100 % 10, 200 £ 10, 400 £ 10 and 800 % 10)
and three tip-ratios, i.e., basetree:subtree tips. Bars are colour coded based on the tip-ratio. X axis labels
indicate overall tree size and number of tips in the basetree (above) and subtree (below). Numbers above
the bars indicate total tree size. The second and third rows depict error in estimation of basetree speciation
rate 1o (D—F) and subtree speciation rate A; (G-I). Error was the ratio of estimated/true A. A value of 1
represents no error, values >1 indicate overestimation and values <1 indicate underestimation of A. Note:
We were unable to simulate trees with 1:9 ratio for 100 & 10 size class, and therefore used a 1:8 ratio as an
approximation.

Full-size & DOLI: 10.7717/peerj.5495/fig-4

BiSSE

(Figure 4A): We present only the results from ‘approach 1’ of model selection because all
three approaches produced similar results. Power was nearly 1 for all tree sizes with 9:1 ratio
(blue bars), but ranged from ca. 0.7 to 1 among trees of 1:9 tip-ratio (red bars) and from
ca. 0.60 to ca. 0.9 among trees with 1:19 tip ratio (green bars). For the latter two tip-ratios,
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power tended to increase when basetree size (5, 10, 20, 40 or 80) increased, but did
not increase when basetree size remained constant and only the subtree size increased
(comparisons between adjacent green and red bars). Power was nearly 1 for all tree sizes
when tip-ratio was basetree biased (9:1 tip-ratio, blue bars). Thus, power was generally
higher for tip-ratio 9:1 than for 1:9 for the same overall tree size (comparison of adjacent
blue and red bars).

MEDUSA

(Figure 4B): Power was strongly correlated with overall tree size for all three tip-ratios.
Power ranged from ca. 0.2 to 1 for the 1:9 tip-ratio (red bars), and from ca. 0.5 to 1 for
the 1:19 tip-ratio (green bars). For smaller tree sizes, power increased when basetree size
remained constant and subtree size increased, for e.g., comparison of trees with 5-45 and
5-90 basetree-subtree tips, or 20—180 and 20-380. Power ranged from ca. 0.1 to ca. 1 for
the basetree biased tip-ratio (blue bars), and was overall higher for 1:9 compared to 9:1
(comparison of adjacent blue and red bars).

BAMM

(Figure 4C): Power remained at ca. 0.25 for both subtree biased tip-ratios when tree size
<200 tips (red and green bars). For trees of the 400 size class, power was ca. 0.4 when there
were 20 subtree tips, but increased to ca 0.5 when there were 40 subtree tips. Power was
low (>0.25) for the basetree biased tip-ratio irrespective of tree size (blue bars). Power was
highest for trees with 800 tips and subtree biased tip-ratios (0.75 or 1). Power was overall
higher for tip-ratio 1:9 than for 9:1 (comparison of adjacent blue and red bars).

Error in speciation rate estimates in simulation set 2

BiSSE had a tendency to underestimate Ay and A (error values <1) at ratios 1:19 (green
bars) or 9:1 (blue bars), and overestimate these two parameters at 1:9 (red bars; Figs. 4D,
4G). MEDUSA had a tendency to underestimate Ao and A; (error values <1) at 1:19 (green
bars) and to overestimate A for the smallest trees at 1:9 ratio (red bars; Fig. 4E). At 1:9
ratio, Ao tended to be overestimated, while A; tended to be underestimated. BAMM tended
to overestimate ) for all tree sizes and tip-ratios, and this effect was strongest at the 1:9
tip-ratio (red bars; Fig. 4F). All three methods tended to overestimate A; when the tip-ratio
was 1:9 (red bars), and underestimate this for the 9:1 (blue bars) and 1:19 (green bars)
tip-ratios (Figs. 4G—41I).

DISCUSSION

Previous studies have identified shortcomings specific to particular modelling approaches
for estimation of rate shifts in phylogenies (e.g., Rabosky, 2010; Davis, Midford ¢ Maddison,
2013; Laurent, Robinson-Rechavi & Salamin, 2015; Rabosky & Goldberg, 2015; Gamisch,
2016; Moore et al., 2016; Kozak & Wiens, 2016; May ¢ Moore, 2016; Wiens, 2017; Burin

et al., 2018; Simpson et al., 2018). We simulated large sets of trees where speciation and
extinction rates remained constant throughout the tree (basetree), apart from an increase
in speciation rate at a single node (subtree), and analyzed these trees using three widely
used modelling approaches. We are therefore able to assess the relative performance of the
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three methods, and identify issues that are common to these methods. We find that power
to detect speciation rate shifts is strongly influenced by rate asymmetry and tip number for
all methods.

Effect of rate asymmetry

Not surprisingly, power increased as the speciation rate asymmetry increased, which
has also been reported in other studies (e.g., Davis, Midford ¢ Maddison, 2013; Laurent,
Robinson-Rechavi ¢ Salamin, 2015). All methods performed poorly when the subtree
speciation rate increased by only 50% (1.5X) relative to the basetree, suggesting that
moderate rate increases are difficult to detect. However, even with a high asymmetry
of 5.5X, a significant proportion of rate shifts were undetected by all methods (Type II
error), especially in smaller trees (Fig. 2). Davis, Midford ¢ Maddison (2013) and Gamisch
(2016) simulated complex evolutionary scenarios with multiple increases and decreases
in diversification parameters at random points across the tree, and assessed the effect of
overall tree size. They showed that BiSSE analyses on small trees are prone to high Type
IT error. Laurent, Robinson-Rechavi & Salamin (2015) tested the performance of MEDUSA
for both simple scenarios with a single speciation rate shift and more complex scenarios
with multiple shifts and mass extinctions. Interestingly, they found that overall tree size
increased power in the complex scenarios (their Figure 5a), but not for the single rate shift
scenario (their Fig. 3B). In their single rate shift scenario, power increased with the size
of the lineage in which the rate shift occurred (i.e., the subtree). This suggests that power
may be affected not by the overall tip number, but by the number of tips in the basetree or
the subtree, both of which are correlated with overall tip number. We discuss this in more
detail in the section ‘Effects of lineage tip number and tip-ratio bias’.

The performance of all three methods was generally similar at high asymmetry values,
although BAMM tended to have lower power at Sy, 60% even with high asymmetry.
Overall, BiSSE appears to perform better than other two —power tended to be high except
when the lowest asymmetry was combined with the lowest S;ge. MEDUSA appears to
perform better than BAMM when asymmetry is low. When S, was 20%, BAMM rarely
detected a rate shift at 2.5X asymmetry even in the largest trees. At 40% S,ec, BAMM
had lower power than the other two methods at 2.5X asymmetry, irrespective of tree
size. Furthermore, BAMM performed worse than the other two when the second set of
simulations with 2X asymmetry were analyzed (Fig. 4). Power was negligible for both
BAMM and MEDUSA at the weakest asymmetry (1.5X) in Simulation Set 1.

Power should increase if the speciation rate asymmetry is more accurately estimated. This
was apparent for BAMM and MEDUSA, which both strongly underestimated asymmetry
for smaller trees and at lower asymmetry values (Fig. 3). BiSSE, on the other hand, tended
to overestimate asymmetry (Fig. 3), but there was no clear relationship between error and
power for this method.

Effect of subtree age
The power of all methods was lower at S;ge 60% compared to Syges 40% and 20%. This is
not due to tree size, because the simulated tree sizes were the same for all S4c. However,
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for a given asymmetry value and overall tree size, subtree sizes are necessarily larger for
higher Sges (Supplemental Information 3), and therefore basetree sizes need to be smaller
to accommodate the larger subtrees. Thus, subtree size, basetree size and tip-ratio bias
were all influenced by Sage, and one or all of these factors may explain why power was
compromised at S,ge 60% compared to the younger Syges.

Effects of lineage tip nhumber and tip-ratio bias

The second set of simulations explicitly attempted to tease apart the effects of overall tree
size, subtree size, basetree size and tip-ratio. We simulated three tip ratios, two of which
were subtree biased (1:9 and 1:19) and the third, basetree biased (9:1). We varied basetree
and subtree size from 5-720, and the overall tree size from 50-800. We were thus able to
not only test whether tip-ratio bias affected power, but also compare power for trees with
the same subtree or basetree size, but varying overall tree size. As expected, overall tree size
generally correlated positively with power for all methods. However, although both 1:9 and
9:1 tip ratios had the same tip-ratio bias, these ratios differed in power within the same tree
size class; this was the case for all methods (Figs. 4A—4C; comparison of red and blue bars).
For BiSSE, there was either no difference in power between these two tip-ratios or power
tended to be greater at 9:1, but power was always greater at 1:9 for MEDUSA and BAMM.
Furthermore, power varied significantly among tree sizes for any given tip-ratio. This was
so even when tree sizes were very large, and therefore when power may be expected to
be uniformly high. This indicates that the number of tips in the lineages with distinct
speciation rates (i.e., basetree and subtree) may play a stronger role than tip-ratio bias per
se. Indeed, both subtree and basetree sizes independently had a strong effect on power for
all three methods.

However, the methods differed in terms of how influential subtree and basetree size were.
For BiSSE, power did not increase when tree size doubled at the same basetree size, for e.g.,
when basetree was 10 and subtree size changed to 190 from 90. If lineages on a tree differ in
speciation rates, estimates of these rates should be more error prone in the case of smaller
trees, because these lineages will be smaller. Generally, if lineages differ in diversification
rates, the size of such lineages with distinct diversification parameters will be larger in
larger trees. This may explain why power increases with tree size, as has been found here
and in other studies (e.g., Davis, Midford ¢ Maddison, 2013; Laurent, Robinson-Rechavi
& Salamin, 2015; Gamisch, 2016). The effect of lineage size also explains results in Davis,
Midford & Maddison (2013), where power initially increased with increasing asymmetry
but later decreased with further asymmetry increase, and this pattern was consistent for
all overall tree sizes (their Fig. 1A). They concluded that the positive effect of asymmetry
was counteracted by the negative effect of increasing tip-ratio bias as asymmetry increased.
However, at higher asymmetries (and thus at stronger tip-ratios bias), the number of tips
available for parameter estimation is likely to have been the limiting factor. For e.g., a tree
with 500 tips (the largest tree size they simulated) and an asymmetry of 10X had a tip-ratio
of 90:1, and thus one of ‘character states’ (i.e., all lineages sharing the same diversification
rate parameter) would have been represented by <six tips. Therefore, we suggest that their
results are better explained by the effect of the number of tips in each state rather than
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tip-ratio per se (although we do not argue that tip-ratio has no effect), and that stronger
asymmetries will always improve power of detection by BISSE as long as there are enough
tips of every character state.

For MEDUSA, there was a tendency for increase in power when subtree size increased
without a change in basetree size (Fig. 4B; comparison of red and green bars), indicating
that overall tree size may partially offset the deleterious effect of small lineage size. This
effect was also seen in the BAMM analyses, where the basetree remained at 40, but subtree
size doubled.

Inferences can be drawn about the relative importance of subtree and basetree sizes by
comparing 9:1 and 1:9 tip-ratios (Fig. 4; comparison of red and blue bars for the same
tree size). For BiSSE, power tended to be higher for 9:1 (blue bars), suggesting that small
basetree size is more detrimental compared to small subtree size. On the other hand,
power was higher at 1:9 (red bars) than at 9:1 (blue bars) for both MEDUSA and BAMM,
indicating that the three methods are differently affected by basetree and subtree sizes. Both
BAMM and MEDUSA performed poorly at 9:1—while BAMM rarely detected rate shifts
at this tip-ratio even in the largest trees, MEDUSA had very low power when trees had
less than 400 tips. The low power maybe related to the fact that both methods strongly
underestimated subtree speciation rates (Figs. 4H, 41).

Given that BiSSE had the best power and BAMM the worst, it was not surprising
that BiSSE had the lowest error and BAMM the highest. One may perhaps expect that
speciation rates are more accurately estimated in the monophyletic subtree compared to
the paraphyletic basetree. However, we found no strong differences in error between subtree
and basetree. An exception was BAMM at 1:9, where error was clearly much higher for the
basetree (comparison of red bars in Figs. 4F and 41).

Recommendations

In practice, a researcher intending to analyze diversification rate shifts may only have
information about overall tree size, and not the sizes of lineages with distinct rates. In
such cases, we agree with recommendations of Davis and colleagues (Davis, Midford ¢
Maddison, 2013) who suggested that inferences based on BiSSE analyses of trees with fewer
than 300 tips should be made very cautiously. We extend the same recommendation to
BAMM and MEDUSA. Thus, if no rate shift is detected when using BiSSE, BAMM or
MEDUSA on small phylogenies, users should be careful when concluding that speciation
rate has been constant.

Davis and colleagues (Davis, Midford ¢ Maddison, 2013) recommended cautious
interpretation when analyzing datasets where <10% of species are of one character state.
We conclude that the number of tips with a particular character state are a better predictor
of power, rather than proportion, especially when using BiSSE. For instance, if 5% of the
tips have a character state (i.e., 1:20 tip-ratio when there are only two character states),
power of detection may not be compromised as long as there is strong rate asymmetry, there
are at least 100 tips with the character state and the character state is not phylogenetically
overdispersed. Generally, we suggest that tip-ratio may not be a big problem when analyzing
very large trees (>1,000 tips).
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