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ABSTRACT
Chemerin is an adipocyte derived signallingmolecule (adipokine) that serves as a ligand
activator of Chemokine-like receptor 1(CMKLR1). Chemerin/CMKLR1 signalling is
well established to regulate fundamental processes in metabolism and inflammation.
The composition and function of gut microbiota has also been shown to impact the
development of metabolic and inflammatory diseases such as obesity, diabetes and
inflammatory bowel disease. In this study, we assessed the microbiome composition
of fecal samples isolated from wildtype, chemerin, or CMKLR1 knockout mice using
Illumina-based sequencing.Moreover, the knockoutmice and respective wildtypemice
used in this study were housed at different universities allowing us to compare facility-
dependent effects on microbiome composition. While there was no difference in alpha
diversity within samples when compared by either facility or genotype, we observed
a dramatic difference in the presence and abundance of numerous taxa between
facilities. There were minor differences in bacterial abundance between wildtype and
chemerin knockout mice, but significantly more differences in taxa abundance between
wildtype and CMKLR1 knockoutmice. Specifically, CMKLR1 knockoutmice exhibited
decreased abundance ofAkkermansia and Prevotella, which correlated with body weight
in CMKLR1 knockout, but not wildtype mice. This is the first study to investigate
a linkage between chemerin/CMKLR1 signaling and microbiome composition. The
results of our study suggest that chemerin/CMKLR1 signaling influences metabolic
processes through effects on the gut microbiome. Furthermore, the dramatic difference
in microbiome composition between facilities might contribute to discrepancies in the
metabolic phenotype of CMKLR1 knockout mice reported by independent groups.
Considered altogether, these findings establish a foundation for future studies to
investigate the relationship between chemerin signaling and the gut microbiome on
the development and progression of metabolic and inflammatory disease.
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INTRODUCTION
The human body is host to a vast number of microbes that include bacteria, fungi,
protozoan cells, and viruses, which live in a symbiotic manner encompassing commensal,
mutual, and sometimes parasitic relationships, and are collectively termed the microbiota.
The healthy human microbiota is comprised of approximately 1013 microorganisms
that colonize the oral and nasal cavities, the skin surface, and the gastrointestinal (GI)
and urogenital tracts (Barlow, Yu & Mathur, 2015; Sender, Fuchs & Milo, 2016; Whitman,
Coleman &Wiebe, 1998). Together, the microbiota encode 150 times more genes than the
human genome (Qin et al., 2010) and perform a number of functions that are important
to human metabolism, energy homeostasis, neuro-hormonal function, and development
of the immune system (Barlow, Yu & Mathur, 2015). In return, the microbiota benefit
from the protective and nutrient-rich environment of the host. The composition of the
gut microbial community co-develops with the host and is strongly influenced by several
genetic and environmental factors. These include mode of birth, genotype, age, diet,
antibiotic treatment, and exposure to factors such as pathogens and chemicals (Barlow,
Yu & Mathur, 2015; Cox & Blaser, 2015; Marchesi et al., 2015). Disruption in the normal
balance of gut microbial populations, or dysbiosis, results in profound changes in both
the activity and function of intestinal microbiota. Increasing evidence from both animal
models and human observational studies suggest that gut microbial dysbiosis is associated
with a wide range of pathological conditions. These include obesity, diabetes, inflammatory
bowel disease (IBD), liver disease, cancer, allergy and autoimMune diseases (Barlow, Yu &
Mathur, 2015; Marchesi et al., 2015; Zhang et al., 2015).

Chemerin is a potent chemoattractant and adipokine that has been shown to play
important roles in both metabolic and inflammatory diseases (for review, see Rourke,
Dranse & Sinal, 2013; Zabel et al., 2014). Clinical studies have demonstrated that chemerin
levels are positively associated with BMI and deleterious changes in glucose, lipid, and
cytokine homeostasis (for review, see Rourke, Dranse & Sinal, 2013). Consistent with this,
animal models have demonstrated that chemerin signaling through both chemokine-like
receptor 1 (CMKLR1) and G protein coupled receptor 1 (GPR1) influence adiposity and
glucose homeostasis (Ernst et al., 2012; Gruben et al., 2014; Rouger et al., 2013; Rourke et
al., 2014; Takahashi et al., 2011; Wargent et al., 2015). Additionally, studies investigating
the role of chemerin signaling in IBD pathogenesis have demonstrated that local chemerin
expression, secretion, and activation increase in the colon and are positively associated
with severity of inflammation (Dranse et al., 2015; Lin et al., 2014; Weigert et al., 2010).
Together, this data suggests that chemerin serves as a link between obesity, inflammation,
and other disorders that have previously been associated with changes in microbiome
composition and activity.

In addition to these roles in metabolism and inflammation, two chemerin isoforms
(chemerin-157 and chemerin-125) have been shown to exhibit potent antimicrobial
activity against the growth of Escherichia coli and Klebsiella pneumoniae (Kulig et al., 2011).
More recently, chemerin was demonstrated to act as an anti-microbial agent in human skin
and provide protection against E. coli, Staphylococcus aureus, P. aeruginosa, and Candida
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albicans growth, which was directly mediated through an increase in bacterial lysis (Banas et
al., 2013). In addition, Staphopain B, a S. aureus-derived cysteine protease, has been shown
to act as a potent activator of chemerin (Kulig et al., 2007). This suggests that in addition
to chemerin modulating microbial growth, the microbiota may also exert an influence
on chemerin bioactivity. Based on these overlaps between chemerin signaling, metabolic
and inflammatory disease, and known interactions with microbiota, we hypothesized
that chemerin plays a role in regulating gut microbiome composition. The objective of
this study was to investigate the diversity and relative abundance of microbiota in the
lower GI tract in the presence or absence of chemerin/CMKLR1 signaling. To do this, we
performed Illumina-based sequencing of the hypervariable V6-8 region of the bacterial
16s ribosomal (rRNA) gene on DNA extracted from stool samples obtained from healthy
wildtype, chemerin knockout (KO), and CMKLR1 KOmice and examined changes in taxa
abundance between genotypes.

MATERIALS AND METHODS
Animals
Wildtype (WT) C57Bl/6 mice (Christopher Sinal (CS) colony) and CMKLR1 knockout
(KO) mice were maintained in the Carlton Animal Care Facility at Dalhousie University
(Halifax, NS, Canada). C57Bl/6 mice (CS) were obtained from the Jackson Laboratory
(Bar Harbor, ME). CMKLR1 KO mice were originally created by Deltagen and were fully
backcrossed onto the C57Bl/6 (CS) background as previously described (Ernst et al., 2012;
Graham et al., 2009). WT C57Bl/6 mice (Brian Zabel (BZ) colony) were obtained from
Jackson laboratory. Chemerin KOmice raised on aC57Bl/6 backgroundweremaintained in
VeterinaryMedical Unit at the Veterans Affairs Palo Alto Health Care Systems (VAPAHCS,
Palo Alto, CA, USA). Animals were housed in micro-isolator cages under specific pathogen
free conditions (Helicobacter-, norovirus-, and parvovirus-free) and all mice had free access
to food and water in home cages. Mice at Dalhousie University received Prolab RMH 3000
(LabDiet, St. Louis, MO, USA) and mice at Stanford University received Teklad 18%
protein rodent diet (Harlan Laboratories, Madison, WI, USA). All WT and KO animals
were generated from WT x WT or KO x KO breedings. At weaning (approximately 3
weeks of age), 2 WT and 2 KO female mice were co-housed in a single cage to remove any
possible differences in microbiome resulting from ‘‘cage effects’’. Female mice were used
to comply with animal protocol relating to the co-housing of mice and aggression. In total,
18 WT (CS), 18 CMKLR1 KO, 18 WT (BZ) and 18 chemerin KO mice were used in the
study. Animal protocols were approved by Dalhousie University Committee on Laboratory
animals (14-064) in accordance with the Canadian Council on Animal Care guidelines and
the Institutional Animal Use and Care Committee at the Veterans Affairs Palo Alto Health
Care System.

Genotyping
Ear punches were collected from WT (CS) and CMKLR1 KO animals and digested in
proteinase K buffer (0.1MTris pH 8.0, 5mMEDTA, 0.2%SDS, 0.2MNaCl, and 100µg/mL
proteinase K) at 55 ◦C for 120 min. DNA was isolated with isopropanol precipitation,
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washed in 70% ethanol, and resuspended in distilled water. Samples were genotyped using
Taq polymerase (Invitrogen, Burlington, ON) with primers specific for the CMKLR1 locus
(Primer 1: TACAGCTTGGTGTGCTTCCTCGGTC; Primer 2: TGATCTTGCACATGGC-
CTTCC; Primer 3: GGGTGGGATTAGATAAATGCCTGCTCT). Each PCR consisted of
30 cycles of 95 ◦C for 30 s, 60 ◦C for 30 s, and 72 ◦C for 30 s with standard PCR reagent
conditions (200 mM Tris-HCl pH 8.4, 500 mM KCl, 2.5 mM MgCl2, 0.1 mM dNTPs,
and 0.2 µM each primer). Products were visualized by ethidium bromide staining after
electrophoresis on a 2.5% agarose gel using a DyNA Light UV transilluminator (Mandel,
Guelph, ON), ESAS 290 electrophoresis analysis system (Kodak, Rochester, NY, USA), and
1D image analysis software (Kodak, Rochester, NY, USA). Genotyping of WT (BZ) and
chemerin KO mice was performed as previously described (Banas et al., 2015).

Fecal sample collection
Following 3 weeks of co-housing (at approximately 6 weeks of age), fecal samples were
collected from each mouse. Mice were placed into an empty sterile cage and left until
stool samples were produced (maximum 10 min). 3–4 pellets were collected per animal
(approximately 100 mg dry weight per collection period). Samples were transferred with
sterile forceps to a clean microcentrifuge tube and frozen immediately at −80 ◦C until
DNA isolation was performed. Fecal samples from WT (BZ) and chemerin KO mice were
shipped on dry ice to Dalhousie University. Fecal samples fromWT (CS) and CMKLR1 KO
mice were also collected at 8 weeks of age. In total, 108 samples were collected. In addition,
WT (CS) and CMKLR1 KOmice were weighed using a bench-top balance (Mettler Toledo,
Mississauga, ON) at the time of stool collection.

DNA isolation, library preparation, and 16S sequencing
Genomic DNA was isolated from fecal samples using the PowerFecal DNA Isolation Kit
(MO BIO Laboratories, Carlsbad, CA, USA). Approximately 2–3 pellets of stool from
each mouse were processed in batches of 24 over 5 consecutive days as per manufacturer’s
instructions. Isolated DNA was eluted in 100 µL of Solution C6 and stored at −80 ◦C.
16S ribosomal RNA gene fragments were amplified and sequenced as previously described
(Comeau, Douglas & Langille, 2017). Briefly, duplicate dilutions of each DNA sample were
amplified using a high-fidelity polymerase and full fusion primers (Illumina adapters,
indices and specific regions) targeting the V6–V8 region of the 16S rRNA gene. The
duplicate PCR products (438 bp of usable sequence) from each sample were pooled,
verified via high-throughput gels, then purified and normalized as previously described
(Comeau, Douglas & Langille, 2017). The final pooled library was concentrated using the
DNA Clean & Concentrator-5 kit (Zymo Research, Irvine, CA, USA) and DNA was
quantified using a Qubit fluorimeter (Invitrogen, Burlington, ON). The library was loaded
into a MiSeq Sequencer (Illumina, San Diego, CA, USA) at 20 pM with a 5% PhiX spike-in
and sequenced using a 600 cycle v3 kit (300+300 bp) according to the standard protocol
recommended by the manufacturer.
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Data analysis
Data analysis was performed according to the workflow outlined in Microbiome
Helper (Comeau, Douglas & Langille, 2017) using the indicated programs (Andrews, 2010;
Caporaso et al., 2010;Kopylova, Noe & Touzet, 2012; Langille, 2015;Parks et al., 2014;Zhang
et al., 2014). Overall quality assessment of the sequencing runwas performed on rawFASTQ
files using FASTQC (Andrews, 2010). Paired-end reads were stitched together to produce
the full amplicon sequence using PEAR (Zhang et al., 2014). Reads with an ‘N’, a length
of less than 400 bp, or a quality score of less than 30 over 90% of the bases were removed
from further analysis.

Taxonomic analysis and visualization
Sequencing reads were clustered into operational taxonomic units (OTU) with a 97%
identity threshold using QIIME (Caporaso et al., 2010). An open-reference OTU picking
protocol (Rideout et al., 2014) was performed using GreenGenes as a reference database
of known sequences (DeSantis et al., 2006). All samples were normalized to a sequence
depth of 15,000. All further analysis was first performed for all 108 samples combined, and
then individually for all samples within a particular facility using QIIME (Caporaso et al.,
2010 and references within). To visualize diversity within samples, alpha rarefaction plots
were generated using a minimum of 1,000 sequences and a maximum of 15,000 sequences
per sample over 15 steps. To examine differences between samples, both unweighted and
weighted UniFrac beta diversity plots were generated using principal coordinate analysis
(PCoA). Additional analysis of Akkermansia and Prevotella abundances (sums of observed
sequences within each genus) was performed by dividing the samples into groups (high/low
abundance) using the mean abundance of each genus as a threshold.

Statistical analysis
Total weight and weight gain data was graphed using GraphPad Prism (version 5.0b, La
Jolla, CA, USA) and assessed using an unpaired Student’s t -test. Data (mean ± standard
deviation) for alpha rarefaction plots generated through the pipeline described above
was graphed using GraphPad Prism. STAMP (Parks et al., 2014) was used to determine
statistically significant differences within taxonomic ranks between samples. Two-sample
comparisons were performed using a two-sided Welch’s t -test. Abundance values reported
are the minimum, maximum, median, average number, and standard deviation of the
number of sequences observed for a particular taxon within a single sample. Box plots of
bacterial abundance were created using GraphPad Prism using the Tukey method to plot
whiskers and outliers. The line and cross represent the median and mean, respectively,
and outliers are represented as dots. Correlations between total weight and abundance
values were determined using PAST (Hammer, Harper & Ryan, 2001) and significance was
calculated using the Pearson’s r correlation test or the Spearman rank-order correlation
test when data was not normally distributed (as determined by the Shapiro–Wilk normality
test). Abundance values were represented as log(abundance) and abundance values of 0
were excluded in the analysis (one sample in the g_Akkermansia KO comparison). The
significance of clustering within PCoA plots was statistically tested using an Adonis, a
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Figure 1 Species richness is similar across both facility and genotype. Alpha rarefaction plot
demonstrating the number of observed OTUs (mean± standard deviation) at the indicated number
of 16S sequences sampled per group (minimum 1,000, maximum 15,000 sequences).

Full-size DOI: 10.7717/peerj.5494/fig-1

nonparametric multivariate method, within the QIIME package using the default 999
permutations. For all data, significance was reported as p< 0.05 and when appropriate was
corrected for multiple testing using Benjamini–Hochberg false-discovery rate (FDR).

RESULTS
To investigate the impact of a loss of chemerin or CMKLR1 expression on microbiome
composition, 16S sequencing was performed on DNA isolated from fecal samples collected
from female WT (BZ and CS colonies), chemerin KO, and CMKLR1 KO mice. There
were no apparent differences between WT and KO mice in terms of general health and
wellness. Overall, sequences were clustered into a total of 27,323 operational taxonomic
units (OTUs) at a 3% identity threshold among all samples.

Species richness is similar between facilities and genotypes
We first examined alpha-diversity using the number of observed OTUs for wildtype (CS
and BZ), CMKLR1 KO, and chemerin KO mice (Fig. 1). Overall there was no significant
difference in alpha-diversity between both facility and genotype. However, there was a
trend for slightly higher diversity in samples collected from VAPAHCS (WT (BZ): 1,467
± 162; Chemerin KO: 1,517± 159) compared to Dalhousie University (WT (CS): 1,313±
157; CMKLR1 KO: 1,315 ± 201) at a depth of 15,000 reads.
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Table 1 Significant differences in the abundance of bacteria between wildtype mice housed at VAPAHCS (BZ) and Dalhousie University (CS).
Statistical analysis of 16S sequences isolated from the stool of wildtype mice housed in the two different facilities was performed. Significant differ-
ences at each taxonomic rank are indicated. Abundance values are shown for both groups of WT mice and represent the number of sequences iden-
tified out of a total of 15,000 sequences analyzed per sample. ‘‘Unclassified’’ denotes OTUs that do not have a specific classification but are known
to be within the level specified. For simplicity, unclassified ranks are removed from further levels in the table. Taxonomic ranks are represented as k,
kingdom; p, phylum; c, class; o, order; f, family; g, genus; and s, species. The minimum (min), maximum (max), median (med), and mean number
of observed sequences in a single sample are shown. SD, standard deviation.

Wildtype (CS) Wildtype (BZ)

Feature Min Max Med Mean SD Min Max Med Mean SD p-value

Phylum:
p__Actinobacteria 1 29 10 10.8 6.9 27 139 44 58.7 36.0 2.87e−05
p__Cyanobacteria 1 59 15.5 20.9 17.9 0 8 3.5 3.2 2.4 1.05e−06
p__Verrucomicrobia 10 4,027 195 483 747 0 3 0 0.6 0.9 4.39e−04
Unclassified k__Bacteria 0 40 2 5.0 7.9 0 1 0 0.1 0.3 7.20e−04
Class:
c__4C0d-2 1 59 14.5 20.6 17.9 0 8 3 2.9 2.3 1.08e−06
c__Actinobacteria 0 2 0 0.1 0.4 11 122 35 47.3 33.8 1.64e−05
c__Alphaproteobacteria 2 32 14.5 14.3 8.1 1 31 6.5 8.6 7.8 0.017
c__Chloroplast 0 2 0 0.2 0.5 0 0 0 0 0 0.033
c__Erysipelotrichi 1 61 12.5 16.7 14.9 10 214 80 86.2 56.9 7.50e−05
c__Flavobacteriia 0 27 2.5 4.6 6.4 0 2 0 0.3 0.5 2.96e−04
c__Gammaproteobacteria 0 10 1 2.3 2.9 0 3 0 0.5 0.8 1.49e−03
c__Verrucomicrobiae 10 4,027 195 484 747 0 3 0 0.7 0.9 4.39e−04
Order:
o__Alteromonadales 0 5 0 0.6 1.2 0 1 0 0.1 0.3 0.036
o__Anaeroplasmatales 0 42 2 8.5 11.4 0 4 0 1.0 1.4 3.96e−04
o__Bacillales 0 3 0 0.3 0.8 0 4 1 1.3 1.3 8.15e−03
o__Bifidobacteriales 0 1 0 0.03 0.2 11 122 35 47.3 33.8 1.62e−05
o__Enterobacteriales 0 3 0 0.4 0.8 0 1 0 0.06 0.2 7.99e−03
o__Erysipelotrichales 1 61 12.5 16.7 14.9 10 214 80 86.2 56.9 7.50e−05
o__Flavobacteriales 0 27 2.5 4.6 6.4 0 2 0 0.3 0.6 2.96e−04
o__RF32 0 20 5.5 7.3 5.6 0 0 0 0 0 3.90e−09
o__Rhodobacterales 0 22 2.5 4.4 5.2 0 3 0.5 0.7 0.9 1.95e−04
o__Rickettsiales 0 9 2 2.4 2.2 0 9 1.5 2.3 2.4 0.021
o__Turicibacterales 0 5 0 0.3 0.9 0 7 2 2.6 2.2 3.43e−04
o__Verrucomicrobiales 10 4,027 195 484 747 0 3 0 0.7 0.9 4.39e−04
o__YS2 1 59 14.5 20.6 17.9 0 8 3 2.9 2.3 1.08e−06
Unclassified c__Alphaproteobacteria 0 2 0 0.2 0.5 0 30 4.5 6.6 7.5 2.38e−03
Unclassified c__Bacilli 0 9 0 0.4 1.7 3 14 5.5 6.8 3.2 7.40e−08
Family:
f__Alteromonadaceae 0 3 0 0.3 0.7 0 0 0 0 0 0.027
f__Anaeroplasmataceae 0 42 2 8.5 11.4 0 4 0 1.0 1.4 3.96e−04
f__Bacillaceae 0 1 0 0.1 0.2 0 3 1 1.1 1.2 2.02e−03
f__Bacteroidaceae 0 67 12.5 16.5 18.3 95 462 175 201 90.5 1.09e−07
f__Bifidobacteriaceae 0 1 0 0.03 0.2 11 122 35 47.3 33.8 1.62e−05

(continued on next page)

Dranse et al. (2018), PeerJ, DOI 10.7717/peerj.5494 7/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.5494


Table 1 (continued)

Wildtype (CS) Wildtype (BZ)

Feature Min Max Med Mean SD Min Max Med Mean SD p-value

f__Clostridiaceae 0 59 8.5 14.6 14.7 1 609 170 207 203 8.55e−04
f__Cryomorphaceae 0 2 0 0.3 0.5 0 0 0 0 0 4.95e−03
f__Enterobacteriaceae 0 3 0 0.4 0.8 0 1 0 0.1 0.2 7.99e−03
f__Erysipelotrichaceae 1 61 12.5 16.7 14.9 10 214 80 86.2 56.9 7.50e−05
f__Flavobacteriaceae 0 27 2 4.0 5.9 0 2 0 0.2 0.5 4.69e−04
f__Halomonadaceae 0 4 0 0.5 1 0 1 0 0.1 0.3 0.039
f__ [Odoribacteraceae] 0 3 0 0.1 0.5 58 385 147 171 86.4 1.93e−07
f__ [Paraprevotellaceae] 0 1 0 0.1 0.3 0 2,080 582 657 491 2.75e−05
f__Pelagibacteraceae 0 9 2 2.3 2.2 0 5 1 1.2 1.3 0.027
f__Peptostreptococcaceae 0 1 0 0.03 0.2 0 61 0 12.1 20.4 0.022
f__Porphyromonadaceae 5 220 35 52.3 46.2 45 338 105 113 62.4 1.26e−03
f__Rhodobacteraceae 0 22 2.5 4.3 5.2 0 3 0.5 0.7 0.9 2.11e−04
f__Rikenellaceae 45 1,125 222 254 186 93 350 131 149 60.6 3.31e−03
f__S24-7 4,965 1.3e4 1.1e4 1.1e4 1,607 8,390 1.1e4 9,994 9,831 989 0.036
f__Staphylococcaceae 0 3 0 0.3 0.7 0 0 0 0 0 0.048
f__Turicibacteraceae 0 5 0 0.3 0.9 0 7 2 2.6 2.2 3.43e−04
f__Verrucomicrobiaceae 10 4,027 195 484 747 0 3 0 0.7 0.9 4.39e−04
Unclassified o__Bacillales 0 0 0 0 0 0 1 0 0.2 0.4 0.042
Unclassified o__Bacteroidales 0 25 9.5 10.6 5.9 3 18 9.5 10.3 4.7 9.78e−08
Unclassified o__Lactobacillales 0 7 1 1.3 1.5 0 13 7 6.2 3.7 3.05e−05
Unclassified o__RF32 0 20 5.5 7.3 5.6 0 0 0 0 0 3.90e−09
Unclassified o__YS2 1 59 14.5 20.6 17.9 0 8 3 2.9 2.3 1.08e−06
Genus:
g__AF12 0 2 0 0.3 0.6 6 54 18 19.2 11.1 1.50e−06
g__Akkermansia 10 4,027 195 484 747 0 3 0 0.7 0.9 4.42e−06
g__Allobaculum 0 4 0 0.1 0.7 4 155 74 75.7 47.9 3.82e−06
g__Anaeroplasma 0 42 2 8.5 11.4 0 4 0 1.0 1.4 3.96e−04
g__Bacteroides 0 66 12 16.2 18.1 95 462 174 200 90.5 1.07e−07
g__Bifidobacterium 0 1 0 0.03 0.2 11 120 34 46.6 33.2 1.57e−05
g__Bilophila 0 0 0 0 0 0 19 1 2.7 4.7 0.024
g__Candidatus Arthromitus 0 53 7 11.9 13.7 0 11 0 1.5 6.6 9.77e−05
g__Clostridium 0 10 1 2.2 2.8 0 38 5.5 8.8 10.1 0.014
g__Desulfovibrio 13 301 77.5 114 89.1 0 204 37.5 63.0 59.6 0.017
g__ [Eubacterium] 0 2 0 0.3 0.5 0 0 0 0 0 2.57e−03
g__Fluviicola 0 1 0 0.1 0.3 0 0 0 0 0 0.044
g__Lawsonia 0 6 1.5 1.6 1.4 0 1 0 0.1 0.3 1.36e−07
g__Odoribacter 0 3 0 0.2 0.5 58 385 147 171 86.4 1.93e−07
g__Parabacteroides 5 220 35 52.3 46.2 45 338 105 112 62.4 1.26e−03
g__Polaribacter 0 8 0 1.1 1.9 0 0 0 0 0 1.73e−03
g__ [Prevotella] 0 1 0 0.1 0.3 0 2,077 582 657 491 2.73e−05
g__Rikenella 0 0 0 0 0 0 39 10 11.2 12.1 1.14e−03
g__ [Ruminococcus] 17 545 78.5 134 151 16 113 49 49.8 29.6 2.62e−03

(continued on next page)
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Table 1 (continued)

Wildtype (CS) Wildtype (BZ)

Feature Min Max Med Mean SD Min Max Med Mean SD p-value

g__Staphylococcus 0 3 0 0.3 0.7 0 0 0 0 0 0.048
g__Turicibacter 0 5 0 0.3 0.9 0 7 2 2.6 2.2 3.43e−04
g__Ulvibacter 0 4 0 0.7 1.0 0 1 0 0.1 0.2 1.72e−03
Unclassified f__Bacillaceae 0 1 0 0.1 0.2 0 3 1 1.1 1.2 2.02e−03
Unclassified f__Bacteroidaceae 0 1 0 0.2 0.4 0 0 0 0 0 6.30e−03
Unclassified f__Bifidobacteriaceae 0 0 0 0 0 0 3 0 0.8 1.1 8.75e−03
Unclassified f__Clostridiaceae 0 3 0 0.6 0.8 1 589 164 194 191 4.86e−04
Unclassified f__Coriobacteriaceae 0 7 2 2.0 1.9 0 2 1 0.7 0.8 7.48e−04
Unclassified f__Desulfovibrionaceae 0 0 0 0 0 0 154 2.5 22.9 40.4 0.028
Unclassified f__Enterobacteriaceae 0 2 0 0.4 0.7 0 0 0 0 0 1.73e−03
Unclassified f__Flavobacteriaceae 0 10 1 1.5 2.3 0 1 0 0.1 0.3 8.03e−04
Unclassified f__Pelagibacteraceae 0 9 2 2.3 2.2 0 5 1 1.2 1.3 0.027
Unclassified f__Peptostreptococcaceae 0 1 0 0.03 0.2 0 61 0 12.1 20.4 0.022
Unclassified f__Rhodobacteraceae 0 11 1 1.7 2.4 0 3 0 0.4 0.9 1.51e−04
Unclassified f__Rikenellaceae 45 1,123 221 252 185 72 260 102 117 47.8 1.70e−04
Unclassified f__S24-7 4,965 1.3e4 1.1e4 1.1e4 1,608 8,390 1.1e4 9,317 9,832 989 0.036

Mice housed in the two different facilities have dramatically altered
microbiome profiles
We next investigated differences in the taxonomic composition of the microbiome between
the four groups of mice. Principal coordinate analysis (PCoA) using both unweighted
and weighted (Fig. 2) UniFrac demonstrated significant separation by facility (Adonis:
p < 0.001). Principal coordinate 1 (PC1, percent variation explained: 13.69%) of the
unweighted UniFrac distinctly separated mice between the two facilities indicating
substantial differences in the presence/absence of OTUs between facilities. However,
the weighted UniFrac explained a larger amount of variation between facilities (∼63%)
after the introduction of PC2 (15.92%) and PC3 (15.16%). This demonstrates that a
significant proportion of the difference in microbiome composition between facilities
is related to the abundance of overlapping OTUs. Importantly, there was no observable
separation between genotypes at either facility using both the unweighted and weighted
UniFrac analysis when all four groups of mice were considered together.

To further explore differences in microbiome composition between facilities, we
compared the abundance of different OTUs in fecal samples isolated from WT mice at
Dalhousie University (CS) and VAPAHCS (BZ). All significant differences between the two
facilities at each taxonomic level are highlighted in Table 1. There were several differences at
the phylum level, including increased abundance of Cyanobacteria and Verrucomicrobia,
and decreased abundance of Actinobacteria, in CS mice compared to BZ. Analysis of the
abundance table revealed that significant differences at a single genus level were responsible
for most differences at higher taxonomic ranks. For example, the difference in phylum
Verrucomicrobia was entirely due to increased abundance of Akkermansia in CS mice,
and Bifidobacterium comprised most differences in the Actinobacteria phylum between
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Figure 2 Microbiome diversity and abundance is dramatically different betweenmice housed at VA-
PAHCS and Dalhousie University, but not between genotypes within a facility. (A) Principal coordi-
nate analysis (PCoA) of 16S sequences sampled from all four groups of mice using both unweighted and
weighted UniFrac. Each point represents a different sample. (B) Changes in the abundance of different
bacterial genera between wildtype mice housed at Dalhousie or VAPAHCS. Genera that composed more
than 1% of sequences sampled and had significant differences in abundance between the two facilities are
shown.

Full-size DOI: 10.7717/peerj.5494/fig-2
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facilities. As a result, we focused our analysis on differences at the genus level in order
to gain the highest resolution when identifying microbial differences between Dalhousie
University and VAPAHCS. There were changes in 22 different identified genera as well
as 13 groups that were unclassified at the genus level, but associated with known families
(Table 1). Many of these taxa comprise a very minor proportion of the total microbiome
community. For instance, one Fluviicola sequence was identified in samples from CS mice
but not in samples from BZ mice. Therefore, only changes in which the abundance of
each genus was greater than 1% of total sequences sampled from at least one facility are
shown in Fig. 2B. The abundance of Akkermansia, Desulfovibrio, and Ruminococcus was
significantly higher in CS vs. BZ mice, while the abundance of Bacteroides, Bifidobacterium,
Odoribacter, Parabacteroides, [Prevotella], and unclassified bacteria of the Clostridiaceae
family was significantly lower in CS vs. BZ mice. Notably, CS mice had significant
amounts of Akkermansia (∼3% of the total microbiome) whereas Akkermansia was
nearly undetectable in BZ mice. In contrast, Bacteroides, Bifidobacterium, Odoribacter,
[Prevotella], and unclassified members of the Clostridiaceae family were prevalent in
BZ mice, compromising ∼8.5% of the gut microbiome, but these microorganisms were
detected at extremely low abundance levels in CS mice. Altogether, these results confirm
our earlier findings that differences in the microbiome composition between the two
facilities is due to both the presence/absence of certain bacteria as well as the proportion
of overlapping OTUs.

WT (BZ) and chemerin KO mice have differences in
Desulfovibrionaceae, Rhodobacteraceae, and Rikenellaceae
abundances
To determine the impact of a loss of chemerin expression on the mouse gut microbiome,
we compared the taxonomic profiles between WT (BZ) and chemerin KO mice, which
were both housed at VAPAHCS. Principal coordinate analysis of both unweighted (PC1
6.65%, PC2 5.46%, PC3 5.18%) and weighted UniFrac revealed a lack of distinct separation
between WT (BZ) and chemerin KO mice (Adonis: p= 0.33; Fig. 3A). However, weighted
UniFrac explained more of the separation between WT (BZ) and chemerin KO mice (PC1
35.91%, PC2 15.39%, PC3 10.68%) suggesting that differences between the two genotypes
are related to changes in the relative abundance of OTUs versus their presence or absence.
Further analysis of differences in the abundance of different taxonomic ranks revealed a
very modest number of changes between WT (BZ) and chemerin KO mice (3 significant
differences at the genus level). The majority of these comprised a very minor percentage
of total sequences sampled and are shown in Table 2. The largest differences between WT
(BZ) and chemerin KO mice comprised ∼0.02–1.5% of total sequences and are shown in
Fig. 3B. These include an increase in the abundance of Desulfovibrionaceae and unclassified
members of the Rhodobacteraceae family, and a decrease in the abundance of Rikenella,
in chemerin KO mice compared to WT (BZ). Considered together, this data indicates that
the microbiome, in terms of relative community abundance, is not substantially altered
between healthy WT (BZ) and chemerin KO mice at 6 weeks of age.
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Figure 3 Wildtype and chemerin KOmice exhibit similarities in microbiome composition. (A) Prin-
cipal coordinate analysis (PCoA) of 16S sequences sampled fromWT (BZ) and chemerin KO mice us-
ing weighted UniFrac. Each point represents a different sample. (B) Changes in the abundance of differ-
ent taxonomic ranks between wildtype and chemerin KO mice. Families or genera that had significant dif-
ferences in abundance between the two genotypes are shown. ‘‘Unclassified’’ denotes OTUs that have not
been assigned to a specific genus but are known to be within the family specified.

Full-size DOI: 10.7717/peerj.5494/fig-3
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Table 2 Significant differences in the abundance of bacteria between wildtype mice (BZ) and chemerin KOmice. Statistical analysis of 16S se-
quences isolated from the stool of wildtype (BZ) and chemerin KO mice was performed. Significant differences at each taxonomic rank are indi-
cated. Abundance values are shown for both genotypes and represent the number of sequences identified out of a total of 15,000 sequences analyzed
per sample. ‘‘Unclassified’’ denotes OTUs that do not have a specific classification but are known to be within the level specified. For simplicity, un-
classified ranks are removed from further levels in the table. Taxonomic ranks are represented as k, kingdom; p, phylum; c, class; o, order; f, fam-
ily; g, genus; and s, species. The minimum (min), maximum (max), median (med), and mean number of observed sequences in a single sample are
shown. SD, standard deviation.

Wildtype (BZ) Chemerin KO

Feature Min Max Med Mean SD Min Max Med Mean SD p-value

Phylum:
p__Cyanobacteria 0 8 3.5 3.2 2.4 0 4 1 1.4 1.3 0.01
p__Proteobacteria 20 214 102 97.8 58.5 30 402 91 164 109 0.03
Class:
c__4C0d-2 0 8 3 2.9 2.3 0 4 1 1.3 1.2 0.015
c__Deltaproteobacteria 19 212 83 88.8 59.9 22 392 74 152 112 0.043
c__Flavobacteriia 0 2 0 0.3 0.6 0 12 0 2.4 3.3 0.016
Order:
o__Desulfovibrionales 19 212 83 88.7 60.0 22 392 74 152 112 0.044
o__Flavobacteriales 0 2 0 0.3 0.6 0 12 0 2.4 3.3 0.016
o__Rhodobacterales 0 3 0.5 0.7 0.9 0 22 1 4.4 6.5 0.028
o__YS2 0 8 3 2.9 2.3 0 4 1 1.3 1.2 0.015
Family:
f__Cryomorphaceae 0 0 0 0 0 0 1 0 0.2 0.4 0.042
f__Desulfovibrionaceae 19 212 83 88.7 60.0 22 392 74 152 112 0.044
f__Flavobacteriaceae 0 2 0 0.2 0.6 0 11 0 1.8 3.1 0.041
f__Rhodobacteraceae 0 3 0.5 0.7 0.9 0 22 1 4.4 6.5 0.028
Unclassified o__YS2 0 8 3 2.9 2.3 0 4 1 1.3 1.2 0.015
Genus:
g__Lactococcus 0 3 0 0.5 0.9 0 0 0 0.00 0.00 0.035
g__Rikenella 0 39 10 11.2 12.1 0 24 1 3.7 6.2 0.028
Unclassified f__Rhodobacteraceae 0 3 0 0.7 0.9 0 20 1 4.3 6.1 0.024

CMKLR1 KO mice have an increased abundance of Akkermansia and
Prevotella compared to WT (CS)
We next examined differences in gut microbiome profiles between WT (CS) and CKMLR1
KO mice housed at Dalhousie University. Notably, there was no significant difference in
body weight at the times of fecal sample collection between wildtype (6 weeks, 18.0 ±
0.4 g; 8 weeks 19.1 ± 0.5 g) and CMKLR1 KO (6 weeks, 17.1 ± 0.4 g; 8 weeks 18.2 ±
0.5 g) mice. Principal coordinate analysis of the unweighted UniFrac revealed no obvious
pattern of separation between wildtype and CMKLR1 KO mice, and only explained a
relatively minor proportion of the separation between samples (PC1 5.11%, PC2 4.48%,
PC3 3.00%). However, principal coordinate analysis of the weighted UniFrac (Fig. 4A)
explained a higher amount of variability between samples (PC1 37.64%, PC2 21.94%, PC3
6.95%). There was a trend for a left-shift in CMKLR1 KO mice on PC3, suggesting that
PC3 explains a small amount of separation between genotype, although not statistically
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Figure 4 Wildtype and CMKLR1 KOmice exhibit a modest separation in bacterial diversity. Princi-
pal coordinate analysis (PCoA) of 16S sequences sampled fromWT (CS) and CMKLR1 KO mice using
weighted UniFrac. Each point represents a different sample. (B) Changes in the abundance of different
bacteria at various taxonomic ranks between wildtype and CMKLR1 knockout mice. Bacterial ranks that
composed more than 1% of sequences sampled and had significant differences in abundance between the
two genotypes are shown. ‘‘Unclassified’’ denotes OTUs that have not been assigned to a specific genus
but are known to be within the family specified.

Full-size DOI: 10.7717/peerj.5494/fig-4
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significant (Adonis: p= 0.1). Further analysis of OTU abundances revealed a number of
significant differences between WT (CS) and CMKLR1 KO mice (Table 3). Importantly,
the phylum Firmicutes made up a considerable proportion of all sequences in WT mice
(∼18%) and was significantly higher in CMKLR1 KO mice (∼20%; Fig. 4B). However, it
is unclear which bacteria make up this difference as there were no differences in Firmicutes
at lower taxa levels. The majority of other significant differences occurred at lower levels,
including 8 different taxa at the genus level (Table 3). A number of these differences made
up a relatively minor proportion of total sequences (less than 0.2% of total sequences),
although there were several differences that comprised >1% of total sequences. These
include Akkermansia, which comprised∼3-5% of the microbiome in WT animals but only
∼1% in CMKLR1 KO animals (Fig. 4B). Additionally, Prevotella (note this is a different
genus from [Prevotella] discussed earlier with reference to Fig. 2B, where both are classified
in the order Bacteroidales, but Prevotella is a member of the family Prevotellaceae, whereas
[Prevotella] is a member of the family [Paraprevotellaceae]) and unclassified members of
the Rikenellaceae family decreased ∼1.5-fold in CMKLR1 KO animals compared to WT
(CS) (Fig. 4B).

Akkermansia and Prevotella abundance are negatively associated
with body weight and exhibit similar patterning to WT (CS) and
CMKLR1 KO mice
Previous studies have established that Akkermansia abundance is negatively correlated with
body weight and glucose tolerance in rodent and humans (Everard et al., 2011; Qin et al.,
2012; Santacruz et al., 2010). Studies have also shown that a high abundance of Prevotella
is correlated with obesity and impaired glucose tolerance (Ellekilde et al., 2014; Okeke,
Roland & Mullin, 2014). Consistent with this, we observed a negative correlation between
the weight of each mouse at the time of stool collection (6 or 8 weeks) and Akkermansia
(R=−0.361) or Prevotella (R=−0.395; Fig. 5) abundance within each stool sample.
However, this was significant only for CMKLR1 KO mice, but not WT (CS).

Finally, as significant differences in abundance of Akkermansia and Prevotella were
observed in samples from WT (CS) and CMKLR1 KO mice, we investigated whether
differences in these genera explained the separation between genotypes observed earlier.
We categorized samples as having a low or high abundance of Akkermansia or Prevotella
based on the average sequence count. A high abundance of either Akkermansia (Adonis:
p= 0.007) or Prevotella (Adonis: p= 0.002) separated the samples towards the right on PC3
(Fig. 6). Interestingly, this pattern is similar to that seen between WT (CS) and CMKLR1
KO animals (Fig. 4A).

DISCUSSION
Over the past 10–15 years, convergent lines of investigation have implicated both gut
dysbiosis and chemerin signaling with the development of metabolic and inflammatory
disorders. In this study, we investigated the relationship between the two by comparing
the diversity and composition of the gut microbiome in fecal samples obtained from mice
with normal or reduced levels of chemerin/CMKLR1 signaling. These findings provide an
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Table 3 Significant differences in the abundance of bacteria between wildtype mice (CS) and CMKLR1 KOmice. Statistical analysis of 16S se-
quences isolated from wildtype (CS) and CMKLR1 KO mice was performed. Significant differences at each taxonomic rank are indicated. Abun-
dance values are shown for both genotypes and represent the number of sequences identified out of a total of 15,000 sequences analyzed per sam-
ple. ‘‘Unclassified’’ denotes OTUs that do not have a specific classification but are known to be within the level specified. For simplicity, unclassified
ranks are removed from further levels in the table. Taxonomic ranks are represented as k, kingdom; p, phylum; c, class; o, order; f, family; g, genus;
and s, species. The minimum (min), maximum (max), median (med), and mean number of observed sequences in a single sample are shown. SD,
standard deviation.

Wildtype (CS) CMKLR1 (KO)

Feature Min Max Med Mean SD Min Max Med Mean SD p-value

Phylum:
p__Cyanobacteria 1 59 15.5 20.9 17.9 1 54 7 12.7 12.6 0.025
p__Firmicutes 1,052 5,147 245 274 1,093 868 5,614 324 334 115 0.022
p__Verrucomicrobia 10 4,027 195 484 747 0 774 41 148 229 0.013
Unclassified k__Bacteria 0 40 2 5 7.9 0 12 1 2 2.9 0.035
Unclassified unassigned 97 483 200 213 69.3 75 318 175 183 49.0 0.031
Class:
c___4C0d-2 1 59 14.5 20.6 17.9 1 54 7 12.5 12.6 0.027
c___Verrucomicrobiae 10 4,027 195 484 747 0 774 41 148 229 0.013
Order:
o__Anaeroplasmatales 0 42 2 8.5 11.3 0 45 1 3.4 7.4 0.026
o__Thiotrichales 0 0 0 0 0 0 1 0 0.1 0.3 0.023
o__Verrucomicrobiales 10 4,027 195 484 747 0 774 41 148 229 0.013
o__YS2 1 59 14.5 20.6 17.9 1 54 7 12.5 12.6 0.027
Family:
f__Anaeroplasmataceae 0 42 2 8.5 11.4 0 45 1 3.4 7.4 0.026
f__Bacteroidaceae 0 67 12.5 16.5 18.3 0 42 6 9 10.7 0.036
f__Piscirickettsiaceae 0 0 0 0.00 0.00 0 1 0 0.1 0.3 0.023
f__Prevotellaceae 18 995 376 436 254 10 1,050 224 303 252 0.026
f__Rikenellaceae 45 1,125 222 254 186 35 485 171 181 92.2 0.039
f__Verrucomicrobiaceae 10 4,027 195 484 747 0 774 41 148 229 0.013
Unclassified o__Bacteroidales 0 25 9.5 10.6 6 1 20 4.5 5.6 4.4 9.33e−05
Unclassified o__YS2 1 59 14.5 20.6 17.9 1 54 7 12.5 12.6 0.027
Genus:
g__Akkermansia 10 4,027 195 484 747 0 774 40.5 148 229 0.013
g__Anaeroplasma 0 42 2 8.47 11.3 0 45 1 3.38 7.4 0.026
g__Bacteroides 0 66 12 16.2 18.1 0 42 6 8.9 10.7 0.039
g__Coprococcus 0 121 14 26.3 29.4 1 35 10 11.8 7.62 6.67e−03
g__Prevotella 18 955 376 436 254 10 1,050 224 303 252 0.026
Unclassified f__Peptococcaceae 0 3 0 0.5 0.8 0 4 1 1.1 1.2 0.014
Unclassified f__Piscirickettsiaceae 0 0 0 0 0 0 1 0 0.1 0.3 0.023
Unclassified f__Rikenellaceae 45 1,125 222 254 185 35 485 171 181 92.2 0.039
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Figure 5 Changes in Akkermansia and Prevotella abundance are negatively correlated with total
body mass in CMKLR1 KOmice. The body weight of each WT (CS; A and C) or CMKLR1 KO (B and D)
mouse at the time of fecal sample collection was plotted against the abundance of Akkermansia (A and B)
or Prevotella (C and D) within each sample.

Full-size DOI: 10.7717/peerj.5494/fig-5

essential assessment of themicrobiome profile in healthy chemerin and CMKLR1 KOmice.
We discovered several key differences in microbiota composition that have implications
for the study of metabolic and inflammatory diseases discussed in further detail below.

The environment is a significant factor in the composition of gut
microbiota
The most striking result from this study was a dramatic difference in gut microbiome
composition between Dalhousie University and VAPAHCS. The animals used in this
experiment were identical in terms of background strain, vendor source of C57/Bl6 mice,
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Figure 6 Separation along the PC3 axis is explained by differences in Akkermansia and Prevotella
abundance. Principal coordinate analysis (PCoA) of 16S sequences sampled fromWT (CS) and CMKLR1
KO mice using weighted UniFrac. Each point represents a different sample. Samples with a high or low
abundance of Akkermansia (A) or Prevotella (B) are indicated with different colors.

Full-size DOI: 10.7717/peerj.5494/fig-6

age, sex, breeding strategy, and pattern of co-housing. In addition, DNA isolation from fecal
samples and subsequent 16S rRNA sequencing was performed for samples obtained from
both facilities at the same time, eliminating any potential differences in sample preparation
or sequencing bias. The only notable differences in study design included the type of
rodent chow used and the physical location where the mice were housed. However, despite
attempts to keep study conditions as similar as possible, there was a trend for increased
species richness at VAPAHCS and a large number of differences in bacterial abundance
identified between the two facilities. Both unweighted and weighted UniFrac metrics
explained a relatively high percentage of variation between the two facilities, indicating that
the differences in microbiota composition were due to changes in the presence of particular
bacterial species as well as the abundance of common species. These include increased
levels of Bifidobacterium, Clostridium, Bacteroides, Prevotella, Odoribacter, and decreased
abundance of Akkermansia, Ruminococcus, and Desulfovibrio in VAPAHC compared to
Dalhousie University. It is unclear what factors are responsible for the differences in
microbiome profile between facilities. The rodent chow used at VAPAHCS excludes alfalfa,
which may explain a decrease in photosynthesizing Cyanobacteria compared to mice at
Dalhousie University. Other dietary factors, such as the percentage of calories from fat
(18% versus 14%) might influence the composition of other gut bacteria. Additionally,
differences in the cleanliness of the rooms or exposure to pathogens might influence
microbial composition. Further identification of the environmental factors that influence
microbiome composition will be essential in order to increase reproducibility and recognize
potential confounding factors in future studies.
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These results are consistent with previous studies that have demonstrated that the
microbiome of mice used in biomedical research is greatly influenced by environment.
For example, studies have shown that genetically similar mice obtained from different
commercial vendors have profound differences in the richness and diversity of fecal
microbial populations (Ericsson et al., 2015). Consistent with this, environmental
reprogramming of microbiota can ameliorate or accelerate the development of diseases
such as obesity and T2D (Ussar et al., 2015). Notably, the abundance of several genera that
were identified to be significantly different between Dalhousie University and VAPAHCS
(e.g., Bifidobacterium, Clostridium, Bacteroides, Prevotella, and Akkermansia) have been
associated with changes in adiposity, T2D, and/or IBD (Barlow, Yu & Mathur, 2015;
Keeney et al., 2014; Zhang et al., 2015). This might have important implications for studies
that investigate the role of chemerin signaling in vivo. For instance, multiple groups have
presented conflicting results on the adipose and glucose phenotype of CMKLR1 KO mice.
For example, previously we reported that CMKLR1 KO mice have reduced adiposity but
worsened glucose tolerance when challenged with a high fat diet (Ernst et al., 2012). In
contrast, other independent research groups published findings indicating that CMKLR1
KO mice are more susceptible to weight gain (Rouger et al., 2013; Wargent et al., 2015).
However, these studies also provided disparate findings with one reporting worsened, and
the other reporting unchanged, glucose tolerance. A further study reported no impact of
CMKLR1 loss on either weight gain or glucose tolerance (Gruben et al., 2014). Interestingly,
the source, and presumably genetics, of the transgenic mouse line used is identical in three
of these studies (Ernst et al., 2012; Rouger et al., 2013; Wargent et al., 2015), making the
reasons for such discrepancies in the phenotype of CMKLR1 KO mice unclear. Given
the profound effect of the environment on microbiome composition, and the known
influence of the microbiome on the pathogenesis of disease, it is possible that differences
in microbiome composition confounded the results of these studies. It would be valuable
to collect stool samples from CMKLR1 KO mice from each of the different facilities used
and compare the microbiome composition between the different mouse colonies. Of note,
it would also be interesting to compare levels of total and bioactive circulating chemerin in
mouse colonies from different animal facilities. Together, this information would be useful
not only for studies involving obesity and T2D, but also other diseases that are known to
be influenced by the microbiome.

Changes in microbiome composition with a loss of chemerin
signaling
As a result of the differences in microbiome composition between Dalhousie University
and VAPAHCS, we were limited to comparing chemerin and CMKLR1 KO mice to their
respectiveWTmice within each facility. For both genotypes, there were no changes in alpha
diversity compared to wildtype. In contrast to the comparison between the two facilities,
there was very little variability between WT and KO mice explained using unweighted
UniFrac metrics. An increased amount of variability was explained by the weighted
UniFrac, suggesting that differences in microbiome composition between both chemerin
and CMKLR1 KO mice compared to their respective WT mice are due to differences
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in the abundance of common taxa. Within VAPAHCS, there were very few changes in
microbiome composition between chemerin KO and WT mice. These included changes
in Rikenella, Lactococcus, and members of the Desulfovibrionaceae and Rhodobacteraceae
families, which have been linked with both metabolic and inflammatory diseases (Keeney
et al., 2014; Okeke, Roland & Mullin, 2014). There were significantly more differences in
the abundance of microbiota identified between WT and CMKLR1 KO mice at Dalhousie
University, including a relatively high number of differences at the genus level. The largest
differences in the abundance of bacteria were inAkkermansia and Prevotella, which together
comprised ∼3–8% of the total bacteria isolated from the gut of WT mice and explained
∼6% of variability between WT and CMKLR1 KO mice.

It was not possible to directly compare differences between CMKLR1 and chemerin KO
mice because of the differences in microbiome composition observed between facilities.
However, both chemerin and CMKLR1 KO mice exhibited decreases in the abundance
of Rikenella compared to WT. A previous study identified that Rikenella was 1 of 10
genera to be affected by genotype in the feces of obese diabetic db/db mice compared
to lean controls (Geurts et al., 2011). This suggests a potential link between chemerin
and metabolic disease. It was surprising that there were more differences in bacterial
abundance identified between CMKLR1 KO and WT mice compared to chemerin KO
mice. It is possible that this is an artifact from the differences in environment. For example,
Akkermansia was nearly undetectable in mice housed at VAPAHCS, so it is difficult to
predict whether the abundance of Akkermansia would be altered in chemerin KOmice in a
manner similar to CMKLR1 KOmice if the genus were present in the bacterial community.
Alternatively, ligands other than chemerin, including resolvin E1 and beta-amyloid, have
been reported to act as agonists at CMKLR1, although these remain to be confirmed
by independent groups (Arita et al., 2005; Peng et al., 2015). As such, it is possible that
chemerin-independent CMKLR1 signaling contributed to differences in the abundance of
microbial populations between chemerin and CMKLR1 KOmice. Future studies that house
all groups of mice in the same facility will enable the direct comparison of microbiome
profiles between chemerin, CMKLR1, and WT mice.

Relationship between the microbiome and CMKLR1 signaling in
adiposity
Chemerin signaling has been positively associated with obesity and T2D. In addition
to the increased Rikenella abundance in chemerin and CMKLR1 KO mice discussed
above, the abundance of several bacteria that are known to correlate with adiposity and
glucose tolerance were altered between wildtype and CMKLR1 KO mice. These include
Akkermansia, Bacteroides, and Prevotella. Recent studies have highlighted a direct role for
Akkermansia, a mucin-degrading bacterium, in obesity, where treatment of mice with
Akkermansia has been shown to reduce high fat diet (HFD)-induced metabolic disorders
including fat mass gain, metabolic endotoxemia, adipose tissue inflammation, and insulin
resistance (Everard et al., 2013). This demonstrates that specific bacteria that have been
identified to correlate with body weight are able to exert direct metabolic effects on the host.
Similar to previous reports (Everard et al., 2011; Qin et al., 2012; Santacruz et al., 2010), we
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identified a negative relationship between both Akkermansia and Prevotella abundance
and total body weight. Interestingly, this relationship was only significant for CMKLR1
KO mice. A higher abundance of Akkermansia and Prevotella populations over a small
weight range might explain the lack of significant correlation in WT mice. Alternatively,
the influence of a loss of CMKLR1 on the abundance of these genera, or the effect of
these genera on the body weight of CMKLR1 KO mice, might be differentially regulated.
A differential effect of Akkermansia or Prevotella populations on CMKLR1 KO mice
would help to explain previously-reported differences in adiposity and glucose tolerance
in the absence of CMKLR1 signaling (Ernst et al., 2012; Rouger et al., 2013; Wargent et al.,
2015). Of note, it would be interesting to analyze the correlation between fecal microbiota
abundance and adipokine levels associated with adiposity such as leptin and adiponectin.
Future studies that directly address the role of Akkermansia and Prevotella in CMKLR1
KO mice, including more time points to observe mice over a longer period of time, DEXA
analysis for body composition, and the effect of a high-fat diet (HFD), will prove useful
in further examining the relationship between the gut microbiome on the adiposity and
glucose tolerance phenotype of CMKLR1 KO mice.

Relationship between the microbiome and CMKLR1 signaling in IBD
Previous studies have demonstrated a relationship between the abundance of a number
of bacterial populations on the development of IBD (Keeney et al., 2014). In general, these
studies tend to associate a pro-inflammatory microbial population with an increased risk
for the development or increased severity of IBD. Increases in the abundance of Bacteroides,
Bifidobacterium,Clostridium, and a decrease inAkkermansia levels were observed in samples
from VAPAHCS compared to Dalhousie University. These species have been correlated
with the prevalence of IBD, suggesting that mice at the two facilities might have altered
susceptibility to IBD. Consistent with this, conflicting results have been presented regarding
the effect of systemic chemerin injection on the development of IBD (Dranse et al., 2015;
Lin et al., 2014). Within Dalhousie University, CMKLR1 KO mice exhibited a decrease in
Akkermansia and Prevotella species. There are a number of studies that associate both of
these taxa with the severity of IBD. In particular, it has been suggested that changes in
mucin degradation resulting from altered Akkermansia abundance influence epithelial cell
layer integrity and the pathogenesis of IBD. Consistent with this, Akkermansia abundance
is reduced in patients with both UC and CD (Png et al., 2010) and administration of
Akkermansia has been shown to protect against the progression of DSS-induced colitis
(Kang et al., 2013). In contrast, other groups have shown that Akkermansia exacerbates the
severity of disease in mouse models of Salmonella typhimurium-induced gut inflammation
and inflammation-associated colorectal cancer in mice (Ganesh et al., 2013; Zackular et
al., 2013). We previously demonstrated that CMKLR1 KO mice develop clinical signs of
DSS-induced colitis more slowly than wildtype mice (Dranse et al., 2015), which supports
the latter findings. Additionally, a high abundance of Prevotella is correlated with the
prevalence of UC in humans and increased epithelial inflammation in a colitis mouse
model (Lucke et al., 2006; Scher et al., 2013), which is consistent with CMKLR1 KO mice
exhibiting slower disease progression. However, it is important to note that we did
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not observe any changes in key bacteria associated with IBD such as Faecalibacterium.
Based on this observation, and the correlative nature of our findings, future studies that
directly examine the relationship between chemerin signaling and the microbiome on the
pathogenesis of IBD are warranted.

Influence of chemerin as an antibacterial agent on the microbiome
Previous studies have demonstrated that chemerin acts as an antimicrobial agent and
prevents the growth of E. coli, K. pneumoniae, and S. aureus (Banas et al., 2013; Kulig et al.,
2011). In this study, we did not observe any of these species, which is not surprising as these
pathogenic species would not normally be present in the healthy gastrointestinal tract. An
extremely limited number of unclassified Enterobacteriaceae and Staphylococcus sequences
(maximum 5 sequences out of 15,000 total), for which E. coli and S. aureusmay have been
classified under, were identified in samples from Dalhousie University and VAPAHCS. In
the absence of these species, we are unable to determine whether the antimicrobial effects
of chemerin are occurring in the mouse gut. However, due to the very low number of
differences in gut microbiota between chemerin KO and WT mice, it seems unlikely that
chemerin is exerting an antimicrobial effect under healthy conditions. This is consistent
with the low basal expression of chemerin in the gut (Dranse et al., 2015). It seems more
likely that chemerin plays an antimicrobial role to protect against pathogen invasion
and exhibits increases in expression and activation in disease states when required. This
concept is supported by evidence that pathogen-derived enzymes such as S. aureus-derived
Staphopain B are able to elevate levels of bioactive chemerin (Kulig et al., 2007). Future
studies that directly examine the susceptibility of chemerin KO animals following infection
with pathogenic bacteria, compare the microbiome profiles of chemerin KO animal in
challenged conditions, and investigate chemerin isoform distribution in the gastrointestinal
tract following changes in microbiota composition, will provide further insight into the
role of chemerin as an antibacterial agent.

Future studies
It is important to note that this study was performed using healthy, young mice; however,
both CMKLR1 and chemerin KO mice exhibit differences in phenotype under stressed
conditions. For example, chemerin KO mice exhibit exacerbated glucose intolerance on
an HFD (Takahashi et al., 2011) and CMKLR1 KO mice exhibit differences in adiposity
and glucose tolerance when fed an HFD compared to a low-fat diet (Ernst et al., 2012).
Additionally, CMKLR1 KO mice develop signs of clinical illness more slowly in an
experimentally-induced colitis model (Dranse et al., 2015). As the microbiome is associated
with the development of these disorders, it will be interesting to examinewhether differences
in microbiome composition in chemerin and CMKLR1 KOmice under stressed conditions
such as a HFD or chemically-induced colitis influence the development of inflammatory
and metabolic diseases. Additionally, in the current study we co-housed wildtype and KO
mice at weaning, and it is possible that transfer of microbes occurred between genotypes
in the same cage as previously demonstrated (Yoshimura et al., 2018). Therefore, future
studies that compare the microbiota composition of mice housed alone versus with a
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different genotype may identify further differences in microbiome profiles. Furthermore,
studies that directly investigate the role of chemerin on the growth and/or survival of
particular microbiota in diseased states will be valuable. For example, chemerin is secreted
at nearly undetectable levels in the colon under basal conditions, but levels of chemerin
secretion and activation increase dramatically when inflamed (Dranse et al., 2015). This
suggests that the impact of increased chemerin secretion in the colon on the microbiome
might be more important in a disease context than in normal physiology. Additionally,
in this study, we investigated the microbiome in fecal samples. As changes in microbiota
composition and activity have been shown to vary throughout the length of the GI tract
(Gu et al., 2013), analysis of samples from the small intestines and cecum may provide
further information on the gut microbiome. Finally, future studies that directly test the
influence of microbial species on chemerin-related functions will be essential to determine
the direct role of the microbiome in relation to chemerin signaling.

CONCLUSIONS
In conclusion, this is the first study that investigates the link between chemerin/CMKLR1
and microbiome composition. The information gained from these studies will be
valuable in the development of studies that directly investigate the relationship between
chemerin signaling and the microbiome in the pathogenesis of multiple disease states.
Despite attempts to maintain similar experimental conditions between different facilities,
these results highlight the impact of the environment on microbiome composition.
Importantly, changes in bacteria that are known to influence chemerin-associated diseases
were differentially present between facilities, highlighting that the microbiome might
be a confounding factor when studying the role of chemerin signaling in obesity and
inflammation in vivo. Additionally, we demonstrated that differences in the abundance of
Akkermansia and Prevotella, both established to impact adiposity and glucose tolerance, are
correlated with body weight and are decreased in CMKLR1 KO mice. This indicates that
the microbiome might influence the development of metabolic and inflammatory diseases
in relation to chemerin signaling. This has potential implications for the development of
novel methods to modify disease risk through lifestyle changes such as dietary intervention,
exercise, use of probiotics, or fecal transplantation. Future studies that house mice in the
same environment, focus on other methods to modify chemerin signaling, incorporate
disease models, and predict functional changes in microbial activity, will be informative to
fully elucidate the relationship between chemerin signaling and the microbiome on health
and disease.
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