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ABSTRACT
Grassland is one of the most represented, while at the same time, ecologically
endangered, land cover categories in the European Union. In view of the global climate
change, detecting its change is growing in importance from both an environmental
and a socio-economic point of view. A well-recognised tool for Land Use and Land
Cover (LULC) ChangeDetection (CD), including grassland changes, is Remote Sensing
(RS). An important aspect affecting the accuracy of change detection is finding the
optimal indicators of LULC changes (i.e., variables). Inappropriately selected variables
can produce inaccurate results burdened with a number of uncertainties. The aim of
our study is to find themost suitable variables for the detection of grassland to cropland
change, based on a pair of high resolution images acquired by the Landsat 8 satellite
and from the vector database Land Parcel Identification System (LPIS). In total, 59
variables were used to create models using Generalised Linear Models (GLM), the
quality of which was verified through multi-temporal object-based change detection.
Satisfactory accuracy for the detection of grassland to cropland change was achieved
using all of the statistically identified models. However, a three-variable model can
be recommended for practical use, namely by combining the Normalised Difference
Vegetation Index (NDVI), Wetness and Fifth components of Tasselled Cap. Increasing
number of variables did not significantly improve the accuracy of detection, but rather
complicated the interpretation of the results and was less accurate than detection based
on the original Landsat 8 images. The results obtained using these three variables are
applicable in landscapemanagement, agriculture, subsidy policy, or in updating existing
LULC databases. Further research implementing these variables in combination with
spatial data obtained by other RS techniques is needed.

Subjects Natural Resource Management, Spatial and Geographic Information Science
Keywords Change detection (CD), Grassland, Tasseled Cap (TC), Cropland, Normalized
Difference Vegetation Index (NDVI), Variables

INTRODUCTION
Land Use and Land Cover (LULC) techniques form an integral part of many studies
(Kindu et al., 2013; Gupta & Shukla, 2016; Chaudhuri & Mishra, 2016) overlapping with
other research fields (Cardinale et al., 2012). LULC is considered an important factor
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influencing the environment and its changes have a demonstrable impact on climate
change (Tasser, Leitinger & Tappeiner, 2017). Among the land cover types in the European
Union (EU), grassland and cropland are the most prominent, accounting for 44% of the
total area (Eurostat, 2017). Since the 1990s, the main LULC change trends in most post-
communist Central European countries are afforestation, grassing over, intensification,
and urbanisation. Even though the change of grassland to cropland is not as frequent
a transition as it was during the communist era (Kupková & Bičík, 2016), it still elicits a
significant impact on the ecosystem. Grassland plays an irreplaceable role as a natural
habitat of many organisms, helps with the accumulation of greenhouse gases, prevents
erosion, keeps water in the landscape and reduces pollution (European Union, 2016).
However, these benefits are easily disrupted by ploughing the grassland, thus turning
it into cropland. It is, therefore, important to detect such changes, quantify them and
continuously monitor the developments. The occurrence of new cropland at the expense
of grassland is especially prominent in post-communist states that have recently joined
the EU and started to receive agricultural subsidies (Pazúr et al., 2014). This process is
also affected by a number of national and European agricultural policies and initiatives
(Sklenicka et al., 2014), such as the Good Agricultural and Environmental Conditions
(GAEC) (Sklenicka et al., 2015). Change data acquired from remote sensing based models
can, therefore, serve both as a basis for decision-making in the landscape management and
have a socio-economic application in agriculture and its subsidy policy (Esch et al., 2014).

The primary data source for LULC Change Detection (CD) is Remote Sensing (RS).
Multi-spectral satellite images are one of the most commonly used types of RS data, among
which Landsat satellites images stand out due to long-term imaging, a suitable compromise
between spectral, spatial and temporal resolution and free availability (Wulder et al., 2008;
Xian, Homer & Fry, 2009; Chen et al., 2012; Roy, Ghosh & Ghosh, 2014). LULC change
detection using RS data is based on the theoretical assumption that each LULC type has
its own typical spectral signatures. If an LULC type changes, so will its spectral signatures
(Hussain et al., 2013). In practice, it is often difficult to distinguish the signal of true changes
from the false signals arising from external factors (different atmospheric conditions, soil
moisture, or the phenological stage) (Jensen, 1996), the selection of RS data (Lu, Li &
Moran, 2014), pre-processing (Dai, 1998) and atmospheric corrections (Song et al., 2001),
the choice of the change detectionmethod, the selection of the variables or the inexperience
of the analyst (Lu et al., 2003). The significance of these uncertainties is even greater in
LULC objects with very similar spectral signatures, which is exactly the case in croplands
with a high degree of heterogeneity and significant effects of different phenological phases
of individual crops and plants (Lu et al., 2003).

Some studies dealing with the classification and change detection of grassland and
cropland have been published (Chen & Rao, 2008; Esch et al., 2014). These categories
are often a part of a comprehensive change detection study (Mas, 1999; Bergen et al.,
2005; Wondrade, Dick & Tveite, 2014; Vorovencii, 2014). We can also find studies aimed
at a more detailed classification on the level of individual croplands (Wardlow, Egbert
& Kastens, 2007; Turker & Ozdarici, 2011) or on grassland change detection (Weeks et
al., 2013). Studies focusing specifically on grassland to cropland change are, however,

Klouček et al. (2018), PeerJ, DOI 10.7717/peerj.5487 2/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.5487


still exceedingly rare (Tarantino et al., 2016). Among the studies closest to the topic of our
study, the papers by Tarantino et al. (2016), who achieved 86.91% accuracy in the detection
of semi-natural grassland to cropland changes in Italy using a cross-correlation analysis
of Landsat 8 OLI images, and by Weeks et al. (2013), who used NDVI differencing for the
change of ‘‘indigenous’’ grasslands in New Zealand and achieved 56% accuracy, can be
mentioned.

Many papers have been published that reviewed the methods and techniques used for
the detection of LULC changes (Singh, 1989; Lyon et al., 1998; Lu et al., 2003; Coppin et al.,
2004; Berberoglu & Akin, 2009; Bhandari, Kumar & Singh, 2012; Hussain et al., 2013; Lu,
Li & Moran, 2014; Tewkesbury et al., 2015), in forest ecosystems (Coppin & Bauer, 1996;
Woodcock et al., 2001; Lu, Batistella & Moran, 2008), urban areas for building detection
(Liu & Zhou, 2004; Sohn & Dowman, 2007; Aleksandrowicz et al., 2014) or for the detection
of imperious surfaces (Xian, Homer & Fry, 2009). Other studies focus on the problem of
mapping the general land use change (Yin et al., 2014) or on agricultural land specifically
(Weeks et al., 2013; Müller et al., 2015; Tarantino et al., 2016). The application of RS in
agriculture is summarised, for example, in a review by Atzberger (2013). The current trend
uses a time series for agricultural change detection (for example, all the available Landsat
imagery), which provides additional phenological information (Müller et al., 2015). In
many cases, an insufficient number of satellite images is available due to cloud cover and,
therefore, bi-temporal change detection is still needed. The alternative approach uses
imagery from two dates, for which the time of the acquisition and the variable selection are
crucial. The potential usefulness of various CD variables and their impact on LULC CDs
has not been sufficiently studied either.

Variables used for CD may be divided into three categories. One category consists of
spectral variables that include spectral bands and derived vegetation indices, transformed
images, segments, sub-pixel features, and classification results. The second category
includes spatial variables such as textures, different scales, the complexity of the landscape
or topography. The temporal variables comprise the third category (Lu, Li & Moran, 2014).
With more than 40 modifications, vegetation indices form the most numerous group of
variables (Bannari et al., 1995). Significant variability and the amount of RS data, as well as
the choice of variables, are very likely to affect the LULC CD, as was shown in other spatial
analyses (Barry & Elith, 2006; Moudrý & Šímová, 2012; Klouček, Lagner & Šímová, 2015).
Using a large number of variables can potentially improve the accuracy of the CD. On the
other hand, such an approach can introduce a number of uncertainties into the detection
and make the interpretation of obtained results difficult (Lu &Weng, 2007).

Despite the fact that LULC change detection has been one of the most discussed RS
topics for decades, to the best of our knowledge, few studies have focused their attention
on selection of appropriate variables for detection of changes in croplands. The aim of
our study is to find the optimal variable(s) for grassland to cropland detection based on
the Landsat 8 OLI high resolution data and the vector database, called the Land Parcel
Identification System (LPIS), and to test the results for the 2013-2016 period on the
selected territory. We hypothesised that (1) it is possible to find a suitable variable or group
of variables capturing the change of the grassland to cropland due to different spectral
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Figure 1 The study area is (located in the Czech Republic, specifically) comprising a part of Landsat 8
scene Path 192 Row 25.

Full-size DOI: 10.7717/peerj.5487/fig-1

profiles; (2) the greater the amount of the incorporated variables, the more accurate the
CD would be; (3) spectral variables would be more significant than textural ones; (4) an
important aspect of the grassland to cropland change detection would be the time of the
acquisition input satellite data.

MATERIALS AND METHODS
Study area
The study area is located inCentral Europe, namely in thewestern part of theCzechRepublic
intersecting with Landsat 8 scene No. 192/25 with centre point coordinates approximately
50◦22′N, 13◦41′E, see Fig. 1. The study area is on a regional scale (approx. 36,260 km2) and is
characterised by notable variability (topographical, landscape ecology as well as vegetational
variability). This scale and localisation therefore warrants the occurrence of a sufficient
number of both grassland to cropland changes and of no-change areas. The expected
occurrence of changes was manually verified prior to the analysis using freely available
CORINE Land Cover data (http://land.copernicus.eu/pan-european/corine-land-cover/).

Input data
The main data source was a pair of high resolution images taken by the Landsat 8 OLI on
August 3rd, 2013 and August 27th, 2016. The images downloaded from the US Geological
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Figure 2 An example of used datasets. Landsat 8 images, NDVI vegetation index, and (no-)change
grassland to cropland plots (LPIS database) from 2013 and 2016. (A) Landsat 8 image from 2013.
(B) Landsat 8 image from 2016. (C) NDVI RGB composite (R= NDVI 2013, G= NDVI 2016, B= NDVI
2013). (D) (No-)change grassland to cropland plots from LPIS database.

Full-size DOI: 10.7717/peerj.5487/fig-2

Survey (http://earthexplorer.usgs.gov/) contain nine spectral bands with a resolution of
30 m (multi-spectral) and 15 m (panchromatic), respectively. Detailed specifications of
the OLI sensor can be found in Roy et al. (2014). At the time of the image selection, the
chosen images were the only ones available for a pair of scenes that, besides being almost
cloudless, also met the other criteria including the suitable extent, the sufficient temporal
distance between the imaging data, and acquisition at the suitable phenological stage. The
most suitable period for the grassland to cropland change detection is the period shortly
after harvest (late summer, early autumn) (Esch et al., 2014).

As a source of reference data on the use of the agricultural land, we used the Land
Parcel Identification System and its vector database containing the land use data for the
entire territory of the Czech Republic from 2004. The basic unit of LPIS is a group of
adjacent plots representing a continuous area farmed by a single farmer with a single crop
plant. The database classifies the agricultural land into 11 land use categories. Data from
years corresponding with the Landsat images, i.e., 2013 and 2016, were used, see Fig. 2. In
accordance with LPIS classification, cropland is defined as a ‘‘farmed land producing crop
plants requiring annual replanting, which is not grassland’’ in this study. Grassland, on the
other hand, is defined as a ‘‘farmed land under permanent pasture or, where appropriate,
contiguous vegetation dominated by grass, used predominantly for feeding or technical
purposes’’ (The Ministry of Agriculture of the Czech Republic, 2016).

Klouček et al. (2018), PeerJ, DOI 10.7717/peerj.5487 5/20

https://peerj.com
https://doi.org/10.7717/peerj.5487/fig-2
http://earthexplorer.usgs.gov/
http://dx.doi.org/10.7717/peerj.5487


Figure 3 A scheme of the study methods describing data processing workflow. For validation of models
multi-temporal change detection based on object-based classification using Support Vector Machine algo-
rithm was used.

Full-size DOI: 10.7717/peerj.5487/fig-3

Images and data pre-processing
Landsat 8 OLI images were obtained at a Level-1T processing level, which includes standard
radiometric, geometric and terrain correction using Ground Control Points and the Digital
Elevation Model. The results of this step were visually inspected for accuracy with regard to
the geometric overlay of the images and the LPIS database. No additional image to image
registration was needed. The raw Digital Number data was converted to surface reflectance
(Song et al., 2001) using FLAASH (Fast Line-of-sight Atmospheric Analysis of Hypercubes)
in ENVI software (version 5.4), and any areas obscured by clouds were manually removed
from the image.

From the LPIS database, both plots with grassland to cropland change and those on
which the grassland remained were extracted. Plots detected as croplands in both time
points (information acquired from LPIS also) were removed from the calculation. In the
area of interest, 570 changed LPIS plots and 33,196 no-change LPIS plots were identified.
To minimise the mixed pixel effect, only plots larger than 1 hectare with a non-elongated
shape were selected. A non-elongated shape was defined as the proportion between the
shape area (ha) and the shape length (m), which had to be greater than 0.045. This threshold
value was expertly set based on the visual inspection and knowledge of the LPIS database.
On the acquired sample, a visual check that focused on the homogeneity of the selected
plots was carried out based on the freely available orthophotos of the Czech Republic. See
Fig. 3 for data processing workflow.

Selection and calculation of the variables
For each scene, 59 LULC change detection variables were calculated. Specifically, the
calculated variables included 36 vegetation indices, 10 textural characteristics, seven
components of Principal ComponentAnalysis, and six TasselledCap components (Table 1).
The numbers of variables represent, in our opinion, potentially used spectral and spatial
indicators for change detection in the ENVI software by a common user. The calculation of
the variables was performed by algorithms implemented in ENVI. Spectral-based variables
were calculated from pre-processed spectral bands, while textural variables were calculated
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Table 1 Fifty-nine change detection variables used in the study for detection of (no-)change from
grassland to cropland. Specifically, 36 vegetation indices, 10 texture characteristics, seven components of
Principal Component Analysis and six components of Tasseled Cap were used. Numbers represent almost
all available variables in ENVI software. For details see external links.

Group Change detection variables

Vegetation Indices Atmospherically Resistant Vegetation Index, Burn Area
Index, Clay Minerals, Difference Vegetation Index,
Enhanced Vegetation Index, Ferrous Minerals, Global
Environmental Monitoring Index, Green Atmospherically
Resistant Index, Green Difference Vegetation Index,
Green Normalized Difference Vegetation Index, Green
Ratio Vegetation Index, Green Vegetation Index,
Infrared Percentage Vegetation Index, Iron Oxide, Leaf
Area Index, Modified Non Linear Index, Modified
Normalized Difference Water Index, Modified Simple
Ratio, Modified Triangular Vegetation Index, Modified
Triangular Vegetation Index, Improved Non-Linear Index,
Normalized Burn Ratio, Normalized Difference Built Up
Index, Normalized Difference Snow Index, Normalized
Difference Vegetation Index, Optimized Soil Adjusted
Vegetation Index, Red Green Ratio Index, Renormalized
Difference Vegetation Index, Simple Ratio, Soil Adjusted
Vegetation Index, Structure Insensitive Pigment Index,
Sum Green Index, Transformed Difference Vegetation
Index, Visible Atmospherically Resistant Index, WorldView
Improved Vegetative Index, WorldView Water Index

Texture Contrast, Correlation, Data Range, Dissimilarity, Entropy,
Homogeneity, Mean, Skewness, Second Moment, Variance

Principal Component Analysis PCA 1, PCA 2, PCA 3, PCA 4, PCA 5, PCA 6, PCA 7
Tasseled Cap Brightness, Greenness, Wetness, Fourth, Fifth, Sixth

Notes.
For more information about the variables visit http://www.harrisgeospatial.com/docs/alphabeticallistspectralindices.html or
http://www.harrisgeospatial.com/docs/backgroundtexturemetrics.html.

from the panchromatic band (see ENVI help in Table 1). For each variable, the mean value
for every plot of the LPIS-acquired database was obtained using the ArcGIS (version 10.4)
Zonal Statistics tool for both 2013 and 2016.

Statistical assessment
To determine the optimal set of variables for grassland to cropland change detection, we
first excluded the highly correlated ones (r > 0.9) from the full correlation matrix (see
Supplemental Information 1). Where correlations were detected, only the variable most
frequently used in the available literature was included into the subsequent analysis. From
the original set of 59 variables, 41 were eliminated in preselection due to high correlation
and the uncorrelated variables are presented in Table 2.

The best set of variables was found using logistic regression specifically based on the
lowest AIC (Akaike Information Criterion) (deLeeuw, 1992) using Generalised Linear
Models (GLM) with a defined binominal distribution of errors (more about GLM can be
found, e.g., in Dobson & Barnett, 2008). Models, from one to seven members, were found
by permutation of all the combinations of variables with the ‘glmulti’ package in R (version
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Table 2 Non-correlated variables used for detecting grassland to cropland (no-)changes.

Group Not correlated variables

Vegetation indices Normalized Difference Vegetation Index, Simple Ratio,
Sum Green Index

Texture Contrast, Data Range, Entropy, Homogenity, Mean, Second
Moment, Skewness

Principal component analysis PCA 1, PCA 2, PCA 3, PCA 4, PCA 7
Tasseled cap Brightness, Wetness, Fifth

3.3.2). Models with a higher number of variables than seven were best found by AIC in a
Stepwise Algorithm in R because of the time-consuming nature of the previous method.
The calculated AIC values for the models based on two - 14 variables were very similar
(only one-variable model using AIC values was significantly different), so only the models,
where the AIC values are at least slightly changed (one, three, five, seven, 14), were chosen
for the accuracy assessment.

Classification and accuracy assessment
A practical accuracy assessment of the created models and the Landsat 8 images only
(Table 3) was undertaken using the object-based multi-temporal change detection. The
variables of the models from both years were merged, based on statistic calculation, into a
single image (Layer stacking tool). The training data for classificationwas selected fromall of
the 33,766 plots frompre-prepared LPIS database (‘Images and data pre-processing’). Based
on stratified random sample design, 300 plots with change and 1200 without change were
chosen (Congalton & Green, 2009). Borders of selected plots from LPIS database were used
as the segments of the object-based classification. Using slides consisting of variables and
training data, changemaps were created in ENVI software. Due to non-normal distribution
of the input data, the non-parametric Support Vector Machine (SVM) classifier (Lu &
Weng, 2007) was used for classification. The settings of the SVM algorithm was set as the
default. The Kernel type: Radial Basic Function; Gamma in Kernel Function: the inverse
of the number of bands in the input image; The Penalty Parameter: 100; The Pyramid
Levels: 0; and the Classification Probability Threshold: 0. The same methodology was used
for the change detection based only on the Landsat 8 images (the amount of training and
validation samples, classification algorithm, etc.).

Finally, the accuracy of the change maps was calculated by comparison with stratified
random validation (testing) samples extracted from the pre-prepared LPIS database
(excluding the training data) using an confusion matrix. The sampling design was inspired
by Zhen et al. (2013) and Olofsson et al. (2014). The assessment was based on evaluating
the number of correctly classified 200 change and 800 no-change plots into change maps
with validation plots from the LPIS database. A 95% confidence interval was calculated
from the overall accuracy of the models. The models, accuracy has been tested with a
homogeneity test of binominal distribution. The models have been tested against each
other using Holm’s p-value adjustment for multiple comparisons.
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Table 3 Summary of the validated models for the grassland to cropland change detection based on dif-
ferent set of variables. The value of AIC specifies the information potential of models.

No. of variables Change detection model AICa

One Normalized Difference Vegetation Index 5,633.39
Three Normalized Difference Vegetation Index, Wetness, Fifth 4,592.41
Five Normalized Difference Vegetation Index, Wetness, Fifth,

Brightness, Sum Green Index
4,263.74

Seven Normalized Difference Vegetation Index, Wetness, Fifth,
Brightness, Sum Green Index, Second Moment, PCA 2

4,060.35

Fourteen Normalized Difference Vegetation Index, Wetness, Fifth,
Brightness, Sum Green Index, Second Moment, PCA
2, PCA 1, PCA 3, PCA 4, PCA 7, Data Range, Contrast,
Skewness

3,950.90

Notes.
aAIC (Akaike Information Criterion).

Table 4 The accuracy of models (%) calculated based on different sets of variables by non-parametric
classifiers Support Vector Machine (SVM).

No. of
variables/model

Change
PA

No-change
PA

Change
UA

No-change
UA

OA 95%CI

One 46.00 98.63 89.32 87.96 88.10 86.09–90.11
Three 49.50 98.88 91.67 88.68 89.00 87.07–90.94
Five 46.50 99.00 92.08 88.10 88.50 86.52–90.48
Seven 52.00 98.25 88.14 89.12 89.00 87.06–90.94
Fourteen 55.50 98.38 89.52 89.84 89.80 87.93–91.68
Landsat image 59.00 98.25 89.39 90.55 90.40 88.57–92.23

RESULTS
Models for change detection
The lowest AIC was obtained from the model with 14 variables (3950.90), the highest
from the model using a single variable (5633.39). The single most significant variable
was the NDVI (Normalised Difference Vegetation Index), which was represented in all
the models. In the models with a lower number of variables, variables based on spectral
information were predominantly used. The separability of the model with one variable
(NDVI) is demonstrated by Fig. 4. With additional variables, textural variables began
to play a greater role, see Table 3. The summary of calculated models can be found in
Supplemental Information 2.

Change maps evaluation
The overall accuracy of the change maps generally increases with the increasing number
of variables in the models. The best change map was created from the highest number of
variables (89.80% accuracy, Kappa 0.63), however classification based on a single variable
provided only slightly inferior results (88.10% accuracy, Kappa 0.55) as illustrated in
Table 4. These findings were statistically confirmed by the homogeneity test for binominal
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Figure 4 2D scatter plot created fromNDVI average values of change and no-change plots. Points rep-
resent training data (300 change, 1,200 no-change plots). X-axis belongs to NDVI 2016 and Y -axis be-
longs to NDVI 2013 (one-variable model).

Full-size DOI: 10.7717/peerj.5487/fig-4

distribution. So, we cannot conclude (on a 95% confidence level), that one of the models
is more accurate, see Fig. 5.

Looking more closely, the improvement in accuracy with an increasing number of
variables is associated only with the increasing Producer’s Accuracy (PA) of the change
class (one-variable model 46.00% and fourteen-variable model 55.50%). As shown in
Table 4, there is an improvement in the change class PA quality of the model between the
models using one and three variables. The rest of the confusion matrix parameters (User’s
Accuracy, Commission and Omission) were very similar in all the cases. Contrary, the
no-change detection did not show any notable improvement with an increasing number
of variables (PA 98.25–99.00%). All change maps, however, underestimated the number
of change plots and overestimated the number of grassland to cropland no-change plots
(Fig. 6). The results indicate that classification of the change and no-change plots has
achieved sufficient accuracy. If we compare the accuracy of the change maps based on a
statistically selected set of variables with change maps created from the Landsat images
(OA 90.40%, Kappa 0.66), there is not any significant difference. The detailed confusion
matrices are available in Supplemental Information 3.

DISCUSSION
In accordancewith the results, it is possible to use statistically selected variables for detection
of grassland to cropland land cover changes. At first sight, it could be apparent that it is
sufficient to only use the NDVI vegetation index for this type of analysis. However, based
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Figure 5 Overall accuracy (%) of calculated models with 95% confidence intervals.
Full-size DOI: 10.7717/peerj.5487/fig-5

on the visual inspection of the misclassification in all the change maps and the confusion
matrix (Supplemental Information 3), it is clear that the largest change detection inaccuracy
is in a case when differentiating grassland and cropland plots with green plants. The largest
number of these plots were poorly classified in the case of using only a one-variable model
based on NDVI (the lowest Producer’s Accuracy). This result is not surprising because
the surface reflectance of both categories is, in the spectral range of the Landsat 8 bands,
almost identical and the NDVI index even uses two spectral bands (Red and Near Infrared).
Only the NDVI variable can be used in the situation, when almost all plots are in the same
phenological phase. However, this is not the case of our study and it is not common in the
most of analyses, where some parts of the area (mountains vs. lowlands) are in different
phenological phases. Therefore, the addition of some variables based on another spectral
band is needed.

In our study, almost all vegetation indices were significantly correlated. The NDVI
variable was chosen as the most appropriate because of its frequency of use in research.
The statistical evaluation, however, indicates that very similar results would be achieved
with any of the other vegetation indices closely correlated with the NDVI one, see the
correlation matrices in Supplemental Information 1.

A good compromise among improving the accuracy of detection, the demands for
computational time and complications of the interpretation of the obtained results,
seems to be supplied by NDVI with the Wetness and Fifth components of Tasselled
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Figure 6 Comparison of created change maps with Landsat 8 images and LPIS database. (A) One-
variable model. (B) Three-variable model. (C) Fourteen-variable model. (D) Landsat 8 images only
model. (E) Landsat 8 image from 2013. (F) Landsat 8 image from 2018 with (no-)change plots from LPIS
database.

Full-size DOI: 10.7717/peerj.5487/fig-6

Cap (three-variable model in the study). These variables are more sensitive to different
conditions of the grassland plots and cropland plots with the green plants. The advantage
of the three-variable model is also the relatively small number of variables, allowing the
utilisation ofmethods based on the determination of an optimal change detection threshold
(Chen & Rao, 2008; Otukei & Blaschke, 2010). These findings related to crop phenology,
besides other conclusions, point an importance of appropriate time acquisition of satellite
images. It also confirms the hypothesis about an importance of this aspect for the grassland
to cropland change detection.

The suitability of NDVI for the classification and change detection has been
demonstrated in several studies (Lunetta et al., 2006; Wardlow, Egbert & Kastens, 2007;
Pu et al., 2008; Bhandari, Kumar & Singh, 2012; Esch et al., 2014; Aleksandrowicz et al.,
2014; Gandhi et al., 2015; Nagendra et al., 2015) as well as in those studies successfully
combining NDVI with Tasselled Cap (e.g., Chen & Rao, 2008).

Introducing too many variables into a model does not necessarily lead to achieving
better results (Lu &Weng, 2007), which underlines the importance of selecting the most
appropriate variables for change detection. In this case, the best accuracy was achieved
by using directly bands of Landsat image instead of calculated models due to almost all
variables (outside the spatial variables) were based on similar spectral bands.

The study results could have been, theoretically, influenced by a number of uncertainties
that we, however, strived to eliminate, e.g., through the pre-processing of the satellite images
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(atmospheric correction, registration of images and its visual verification). No object is
shifted by more than 1/2 a pixel between two frames (Dai, 1998). The selection of the
Landsat 8 OLI pairs was predominantly limited by the launch of the satellite mission
(2013) and by the cloud cover. Still, a suitable pair of pictures in a suitable phenological
phase according to the recommendations (Coppin et al., 2004; Hájková et al., 2012; Esch
et al., 2014; Tarantino et al., 2016) was found. The selection of the suitable acquisition
period depends on the geographical conditions (especially longitude, latitude or altitude)
of the observed area. From this point of view, the presented methods and results are
relevant for similar environmental conditions in central Europe. Another uncertainty is
a possible error in the LPIS reference database as the land use data is entered directly by
the farmers themselves. Also, the information in the LPIS differs slightly from the date
of acquisition of the satellite imagery, as it refers to the end of the particular year. No
better reference database covering the entire territory of the Czech Republic on such a
detailed scale is available however. Moreover, using such a high number of individual
plots combined with suitable statistical methods ensured that even if the information was
inaccurate by a small fraction, it should not have any significant impact on the results
of our study. The accuracy of the resulting change maps could have been affected by
selection of the change detection method also. An object-based classification was used
in the multi-temporal change detection as it is, according to literature, a more suitable
approach for high resolution data, when the pixels are significantly smaller than the object.
In this case, grouping pixels into segments is needed (Blaschke, 2010). The ratio of change
to no-change units in our study is approximately 1:50 and, therefore, the stratified random
sampling design with a proportion of 1:4 (change vs. no-change) for the training and
validation data was used.

LULC change detection most commonly employs Post-Classification Comparison
(PCC) (Otukei & Blaschke, 2010), it is, therefore, rather a classification than a pure change
detection task. For many applications, it is important to describe the trajectory of the
change. On the other hand, the knowledge about the occurrence of (no-)change (so-called
pre-classification, or bi-temporal change detection) (Coppin et al., 2004) is sufficient for
many other tasks. If this is the case, the choice of suitable variables is the key to acquiring
quality results, and this is where the contribution of our study can be deemed significant.
The methods used here can be applied to CDs of other LULC categories as well. It is a
well-known fact that finding suitable variables streamlines analyses, while at the same time
improves the results (Lu, Li & Moran, 2014).

Our results indicate that we are nearing a maximum accuracy of the grassland to
cropland change detection achievable from a pair of high resolution multi-spectral images.
Possible improvements could be brought about by implementing new data into themodels.
Examples of such supplementary data could include a time series of high resolution images,
e.g., Landsat or Sentinel-2 (Esch et al., 2014), very high resolution data (Tarantino et al.,
2016), data with a different resolution (Lu, Batistella & Moran, 2008; Turker & Ozdarici,
2011), data captured by other RS methods (Smith & Buckley, 2011), for example radar
(Sentinel-1) and thermal data (Landsat 8 TIRS) or the incorporation of an existing GIS
database (Hussain et al., 2013). Hussain et al. (2013) and Lu et al. (2003) both state that
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hybrid methods of change detection combining multiple approaches can increase the
accuracy of change detection.

The variables selected in this study can be used with sufficient precision as a source
of data for updating existing LULC databases or as a tool for setting agricultural subsidy
policies and their implementation. As the reference dataset used in the presented study
was quite large, it is relatively safe to assume the applicability of using the results for other
studies addressing this change detection problem in the whole of Central Europe. The
results are relevant for areas with similar geographical conditions, especially regarding the
latitude. However, the selected statistical methods and classification algorithms should be
robust due to the fact that the used images (full scene of Landsat 8) covered a large area
with topographical variable conditions (lowlands, highlands, mountains).

CONCLUSIONS
This study provides an analysis of the utilisation of selected remote sensing variables
(vegetation indices, textures, Principal Component Analysis, and Tasselled Cap analysis)
for grassland to cropland change detection based on a pair of Landsat 8 OLI images and
the Land Parcel Identification System (LPIS) vector database. The results confirm the
principal hypotheses that (1) there are suitable variables usable for grassland to cropland
change detection; (2) increasing the number of variables used in a model leads to increased
accuracy of the change detection, but to achieve the highest accuracy, it is necessary to use
original Landsat 8 bands; (3) spectral variables play a more important role than textural
variables in the change detection; (4) the appropriate time of the acquisition satellite images
is important for grassland to cropland change detection. In view of the accuracy of the
created change maps, which was verified using the reference database, we consider a model
utilising three variables (namely NDVI, Wetness and Fifth components) the most suitable.
Incorporation of additional variables into the model does not significantly improve the
accuracy of the change map. By analogy, the methods used in this study can be applied
for the CD of other LULC categories than solely those based on grassland to cropland
change. The models prepared in this way can serve as data sources for updating the current
LULC databases or as a tool for creating agricultural subsidy policies. As the selection of
variables was based on a large dataset of reference data on grassland to cropland change
detection, the applicability for other studies can be safely assumed. Our conclusions are
valid for analyses on a regional scale in Central Europe using high resolution data. To
further improve the grassland to cropland change detection using RS, research combining
our variables with spatial data acquired using other RS techniques is needed.
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