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ABSTRACT
The recreational bait trade is a potential pathway for pathogen introduction and
spread when anglers dump bait shop sourced water into aquatic systems. Despite
this possibility, and previous recognition of the importance of the bait trade in
the spread of aquatic invasive species (AIS), to date there has been no region wide
survey documenting pathogens in retail bait shops. In this study, we analyzed 96
environmental DNA samples from retail bait shops around the Great Lakes region
to identify pathogens, targeting the V4 hypervariable region of the 16S rRNA gene.
Additionally, we used samples from one site in Lake Michigan as a comparison to
pathogen diversity and abundance in natural aquatic systems. Our results identified
nine different groups of pathogens in the bait shop samples, including those that pose
risks to both humans and fish species. Compared towild sourced samples, the bait shops
had higher relative abundance and greater taxonomic diversity. These findings suggest
that the bait trade represents a potentially important pathway that could introduce and
spread pathogens throughout the Great Lakes region. Improving pathogen screening
and angler outreach should be used in combination to aid in preventing the future
spread of high risk pathogens.

Subjects Aquaculture, Fisheries and Fish Science, Genomics, Freshwater Biology
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INTRODUCTION
With over 30 million anglers in the United States and Canada, and with many of them
using live bait in the form small fish (USDI, 2011; DFO , 2012), there is a significant risk
of invasive species introduction and spread through the commercial bait trade vector
(Drake & Mandrak, 2014). This is particularly alarming when commercial bait retailers
are contaminated with invasive fish, such as Goldfish (Carassius auratus), Round Goby
(Neogobius melanostomus), Eurasian Rudd (Scardinius erythrophthalmus), and Silver Carp
(Hypophthalmichthys molitrix) (Nathan et al., 2015). Invasion risk significantly increases
when anglers dump unused bait and water into the lakes and rivers at the end of a
fishing day (Drake & Mandrak, 2014). However, this angling behavior has the potential to
introduce more than just invasive fish species into new areas. Smith et al. (2012) revealed
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the water in which ornamental fish are transported contains a unique biota of fish and
human pathogens beyond those found in the fish themselves. Additionally, the diversity of
pathogens within wild and cultured baitfish is well studied (Goodwin et al., 2004; Lowry &
Smith, 2007). As such, it is reasonable to suspect that water which contains bait fish could
also serve as a reservoir for pathogenic bacterial species. This raises the question, what
pathogens are found in the bait bucket water?

Pathogens have the potential to be very damaging to human and wildlife health (Daszak,
Cunningham & Hyatt, 2000) and economically costly (Jenkins, 2012). With respect to
fisheries, pathogens can be spread between commercial operations and wild populations,
resulting in costly damages. Such was the case with amplified sea lice densities from farmed
Atlantic Salmon leading to the decline of native Coho and Pink Salmon populations in
British Columbia, Canada (Krkošek et al., 2007; Krkošek et al., 2009; Krkošek et al., 2011).
The damages becomemore acute when the pathogens in question are generalists and spread
throughout a valuable fishery, such as with viral hemorrhagic septicemia virus (VHSV)
spread throughout the Laurentian Great Lakes (Rothlisberger et al., 2010; Escobar et al.,
2017). While VHSV is a known pathogen already in the Great Lakes region, the identities
and impact of other pathogens are largely unknown.

In the summers of 2012 and 2013, we visited over 500 bait shops across the U.S. Great
Lakes states of Minnesota, Wisconsin, Illinois, Indiana, Michigan, Ohio, Pennsylvania and
New York to collect water samples from commercial bait tanks for use in environmental
DNA (eDNA) screening of invasive species (Mahon, Nathan & Jerde, 2014; Nathan et
al., 2015). Our hypothesis was that if invasive species are in a bait tank, then the water
would contain DNA from sloughed tissue, cells, and organelles in the water, which could be
filtered, extracted, and screened usingmolecular tools to detect the invasive species (Ficetola
et al., 2008; Jerde et al., 2011; Simmons et al., 2016). Additional to our initial hypotheses,
these extracted eDNA samples also contain DNA from all organisms in the water, including
potential pathogens, similar to those evaluated by Smith et al. (2012) who screened water
samples for pathogens in the water of imported, ornamental fish.

Here, we repurpose the eDNA samples previously collected from commercial bait shops
in the search for Great Lakes invasive fish species and analyze them using similar methods
to those employed by Smith et al. (2012) to document putative pathogens. Our goal was to
identify pathogenic species present in the samples, compare the diversity and abudance of
bait shop sourced pathogens to Great Lake sourced pathogens, and evaluate the potential
threat of unique, bait sourced pathogens being spread in the Laurentian Great Lakes in a
manner similar to that documented for invasive species.

METHODS
Sample collection and DNA extraction
Two-liter water samples were collected from the bait holding tanks in commercial bait shops
from each of the states in the Laurentian Great Lakes basin (Table 1; Fig. 1; for additional
collection details see Nathan et al. (2015)). Samples were filtered through ∼1.5 µm glass
fiber filter paper within 24 h of their collection. DNA was extracted from filtered samples
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Figure 1 Map of collection locations for samples used in this study. Collection locations of bait water
samples collected from commercial vendors utilized in this study. Included are shop locations (black cir-
cles) and the sampling location for the Lake Michigan water sample (black star) included in the dataset.

Full-size DOI: 10.7717/peerj.5468/fig-1

Table 1 Sample collection locations. Collection location (by US state) and number of bait shop DNA
samples used in the study.

State Number of samples

IL 6
IN 7
MI 53
MN 4
NY 9
OH 7
PA 2
WI 8

using a MOBio PowerWater DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA,
USA) following manufacturer recommendations. All samples for this study were collected
and analyzed using previously described quality assurance protocols (Mahon et al., 2010;
Jerde et al., 2011; Mahon et al., 2013; Jerde et al., 2013; Nathan et al., 2015). Samples were
chosen for analyses based on two factors: (a) available DNA remaining from previous
studies (Mahon, Nathan & Jerde, 2014; Nathan et al., 2015) and (b) proportional number
of samples (out of 96 total) based on availability from each Great Lakes state where samples
were collected. Upon consideration of those factors, samples were then randomly chosen
for inclusion in this study. Total number of samples used in this study are listed in Table 1
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by collection location. Because our previous collection site numbers (i.e., bait shops)
were not equal from all Great Lakes states, proportionally, some states had more samples
included in this investigation than others (Table 1). We chose to restrict our location
information for individual bait shops (names, street addresses) where sample collections
were taken to the US state to conceal the identity of individual vendors.

Along with investigating water samples from commercial bait vendors, we included
sequence data collected from a location in northern Lake Michigan to provide a point
of comparison between water samples collected in commercial bait shops and in natural
Great Lakes ecosystems (Hengy et al., 2017; Fig. 1). Five samples from one collection site
were included in this study to serve as a comparison to our bait shop sequencing data.
Although the Lake Michigan samples likely do not represent the true pathogenic diversity
in the entire Great Lakes region, we included the wild samples to provide a comparison to
the potential differences between wild and bait sourced pathogens.

Genetic sequencing
Genomic DNA extracted from each of the 96 eDNA samples was sent to the Michigan
State University Research Technology Support Facility for microbial amplicon sequencing.
Amplicon sequencing libraries targeting the V4 hypervariable region of the 16S rRNA gene
(515f/806r) were made following the protocol described by Kozich et al. (2013). After PCR
amplification, resulting amplicon products were normalized using Invitrogen’s SequalPrep
DNA normalization plates, pooled and purified. Pooled amplicons were validated and
quantified using Qubit dsDNA, Caliper LabChipGX DNA, and Kapa Biosystems Illumina
Library Quantification qPCR assays. The pool of samples was then loaded on an Illumina
MiSeq flow cell (v2) and sequenced in a 2 × 250 bp paired end format with a 500 cycle v2
reagent cartridge. Base calling was done by Illumina Real Time Analysis (RTA) v1.18.54 and
the sequencing output was demultiplexed and converted to FastQ format using Bcl2fastq
v1.8.4.

Data filtering, QAQC, and analyses
Sequences were screened for quality using MOTHUR version 1.35.1 (Schloss et al., 2009)
following the MiSeq SOP (https://www.mothur.org). Paired-end reads were assembled
into contigs and were retained if they were between 251 and 254 bp in length, contained
≤ 8 homopolymers, and lacked ambiguous bases. Sequences were then aligned against
the Silva (v. 119) rRNA database (Quast et al., 2013) and chimeric DNA sequences were
screened for and removed with UCHIME (Edgar et al., 2011). Sequences were classified
using the Ribosomal Database Project (RDP) (training set v9; Cole et al., 2014). Reads
identified as chloroplast, mitochondrial, or eukaryotic DNA, as well as those with unknown
classifications, were removed from the dataset. Operational Taxonomic Units (OTUs) were
clustered using a threshold of 0.03 sequence dissimilarity. Additionally, any OTUs that
were represented less than twice in the dataset were removed as a conservative measure.
Following data processing, we then screened our results for a targeted group of potential
pathogens similar to those noted by Smith et al. (2012) (Table 2) using standard NCBI
BLAST searches (Altschul et al., 1990). The search for putative pathogens was limited to
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Table 2 Pathogens screened. List of bacterial pathogen groups that were searched for in our resulting
data. Note that while not all members of each group listed are known to cause the effects listed, these are
‘‘worst case’’ scenarios for that genus/group.

Pathogen Some harmful effects caused by members of group

Vibrio Some species can cause gastroenteritis, septicemia, cholera
Legionella Legionnaires disease, Pontiac fever
Mycobacterium Tuberculosis, leprosy
Coxiella Q fever
Campylobacter Campylobacteriosis (gastrointestinal infection)
Francisella Tularemia (rabbit fever), septicemia and invasive systemic infections
Plesiomonas Gasteroenteritis
Flavobacterium Bacterial cold water disease on salmonids, rainbow trout fry disease on rainbow

trouts, cotton-wool disease on freshwater fishes, the bacterial gill disease on trouts.
Salmonella Typhoid fever, paratyphoid fever, and food poisoning
Giardia Giardiasis
Shigella Shigellosis, dissentary
Aeromonas Gastroenteritis and wound infections, with or without bacteremia.

those that were used in the study, Smith et al. (2012). This is not an exhaustive list of
pathogens of concern in the Great Lakes, however, it allows for a comparison of putative
pathogens that are related to the unique ecosystem found in bait tank water. The search
did include some known fecal indicator bacteria, E. coli, Enterococcus, Staphylococcus, and
Bacteroides (see reviews, Sinigalliano et al., 2010; McLellan, Fisher & Newton, 2015). The
data described here did not contain any OTUs that had enough genetic resolution to be
classed as E. coli.

The same approach for processing and analyzing the dataset, from sample collection
through data filtering, was applied to samples collected from Lake Michigan (Hengy et al.,
2017). Briefly, five samples were collected and filtered (0.2 µm) from St. John’s Bay (Lake
Michigan), Beaver Island, Michigan, USA. DNA was extracted and sequenced targeting the
V4 region of the 16s rRNA gene as described above for the commercial bait shop samples.
This set of samples was chosen for a comparision site as it used the same amplicon region
and sequcing plateform as used in this study and was also available immediately for our use
in this study. Comparing different amplicon regions and sequencing plateforms have been
shown to be difficlult and could provide misleading information and conclusions (e.g.,
Claesson et al., 2010). Additionally, we used a Chi-square test to evaluate independence
between bait shop sourced and Lake Michigan sourced pathogen sequence counts. All tests
were performed in Mathematica (Wolfram Research Inc, 2017).

RESULTS
Sequence data associated with this study are available on the MG-RAST database (Meyer
et al., 2008) under accession numbers mgm4791794.3 –mgm4791986.3 and as referenced
in Hengy et al. (2017). From our resulting sequence data of the V4 hypervariable region
of the 16S rRNA gene (515f/806r), a total of 1,594,572 sequence reads (of 8,082,960
total assembled sequences) matched the nine targeted groups listed in Table 2. Of these,
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Table 3 Sequence reads bait shops. Reads and OTUs of targeted pathogen groups for bait sourced samples and their virulence/pathogenic effects
regardless of their origin. Note that Top/Notable matches from BLAST results were for all top matches >98% similar for the OTUs found.

Total reads
in all samples

Highest #
of reads in
single sample
(location)

Total OTUs
found in
dataset from
all shops

Present in # of
samples (and%
of samples)

Top/Notable matches (disease)

Vibrio 20,977 6,406 (MI) 1 65 (67.71%) V. cholerae (cholera) , V. anguillarum (cultured salmon
pathogen)

Legionella 26,419 7,264 (WI) 141 86 (89.58%) L. maceachernii (pneumonia), L. pneumophilia (Legionnaires
disease), L. micdadei (Pontiac fever), L. longbeachae (Pontiac
fever)

Mycobacterium 164,190 51,052 (WI) 37 93 (96.88%) M. tuberculosis (tuberculosis),M. bovis (TB in cattle),
M. lepromatosis (leprosy),M. microti (other mammal TB),
M. tusciae (chronic fibrosis from tap water),M. mucogenicum
(BSL 2, skin infections)

Coxiella 95 37 (IN) 6 7 (7.29%) Q fever (closest at 95% match)
Campylobacter 1,414 503 (WI) 2 5 (5.21%) C. consisus (intestional disease), C. gracilis (intestional disease)
Francisella 1,164 485 (MI) 1 17 (17.71%) F. philomiragia (rare human infection)
Plesiomonas 17 17 (MI) 1 1 (1.04%) Unknown strain.
Flavobacterium 1,173,491 64,265 (MN) 400 100 (100%) F. psychrophilum (bacterial cold water disease in salmonids,

rainbow trout fry disease), F. columnare (cotton-wool disease
in freshwater fish), F. branchiophilum (bacterial gill disease in
trout)

Salmonella – – – – Not present
Giardia – – – – Not present
Shigella – – – – Not present
Aeromonas 206,805 10,426 (MI) 24 95 (98.95%) A. veronii (human pathogen), A. salmonicida (virulent salmon

pathogen), A. schubertii (infection of Chana argus!)

Flavobacteriumwas themost diverse (400OTUs) andmost abundant (1,173,491 sequences)
taxonomic group of putative pathogens (Table 3). Additionally, Flavobacteriumwas present
in all of the eDNA samples processed and sequenced as a part of this effort. Least common
in our resulting data was Plesiomonas, with a total of 17 reads found in the water sample
from a single commercial bait shop in Michigan and the resulting BLAST search matches
were to an unknown strain. Further, our results found that both potential human and fish
pathogens were present in water samples collected in the commercial bait trade (Table 3).
While we restricted our study to pathogens in trade (see Smith et al., 2012), our data
from bait shop samples did show the presence of three putative fecal indicator bacteria:
Bacteroides (13 OTUs with 9828 total reads), Staphylococcus (one OTU with 56356 total
reads), and Enterococcus (one OTU with 3706 total reads). Future investigations on these
and other comparable datasets should investigate these organisms further.

Compared to bait samples, the five water samples collected from one location in
northern Lake Michigan had only five of nine of our chosen target groups present when
sequenced and analyzed in same fashion (Table 4). Additionally, numbers of OTUs for
Lake Michigan targeted groups were significantly lower (ranging from 1-39 total OTUs;
Table 4). The Chi-square test indicated the distribution of pathogens was different between
Lake Michigan and Bait shops (p-value <0.001, d.f .= 8).
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Table 4 Sequence data LakeMI. Reads and OTUs of targeted pathogen groups for the five Lake Michigan samples (one collection location; Hengy
et al., 2017) and their virulence/pathogenic effects regardless of their origin. Note that Top/Notable matches from BLAST results were for all top
matches >98% similar for the OTUs found.

Total # of
reads in all
samples

Highest # of
reads in
single
sample/
location

Total OTUs
found in
dataset
from all
samples

Present in # of
samples
(and% of
samples)

Top/Notable matches (disease)

Vibrio 0 0 0 0 Not present
Legionella 16 4 11 5 (100%) L. longbeachae, L. wadsworthii, L. santicrucis
Mycobacterium 9 4 6 3 (60%) n/a
Coxiella 1 1 1 1 (20%)
Campylobacter 0 0 0 0 Not present
Francisella 0 0 0 0 Not present
Plesiomonas 0 0 0 0 Not present
Flavobacterium 1,379 915 39 5 (100%) Pseudomonas veronii, Pseudomonas gessardi, Pseudomonas sp.,

Pseudomonas fluorescens
Salmonella – – – – Not present
Giardia – – – – Not present
Shigella – – – – Not present
Aeromonas 46 33 1 5 (100%) Aeromonas jandaei, Aeromonas allosaccharophilia, Aeromonas

bivalvium, Aeromonas molluscorum, Aeromonas caviae,
Aeromonas salmonicida, others (all 100%) A.c. causes
necroticizing fasciatus

DISCUSSION
In this study, we documented the presence of human and fish pathogens in commercial
bait retailers in the Great Lakes region using genomic surveillance. Compared to a sample
sourced from Lake Michigan, bait samples had higher counts and higher diversity of
multiple groups of pathogens. Bait samples collected for this study even found the presence
of human fecal indicator bacteria (Bacteroides, Staphylococcus, and Enterococcus). Given
the number of recreational anglers that use live bait and potentially dispose of bait bucket
water into aqutic systems, the bait trade represents a potential vector for introducing and
spreading pathogens throughout the Great Lakes. Along with this, angler’s use of bait
presents the possibility of contact with the bait tank water increasing risk of exposure to
these potential pathogens. While the virulence of these organisms remains unknown, this
still represents a distinct possibility of transfer, spread, and/or infection when they are
present in the system.

While most any water sample, be it from the holding water of an ornamental fish
(Smith et al., 2012) or a commercial bait shop, local pond, drinking water source, or from
a Great Lake, is expected to have some pathogenic biota, clearly there is a difference in
the distribution and diversity of pathogens contained within samples. Our dataset found
no evidence of Vibrio, Campylobater, Francisella, or Pleasiomonas bacterial strains in the
limited number of samples from Lake Michigan water we sampled and sequenced, yet they
comprised 1.5% of the sequenced pathogens in bait shop sourced water. While admittedly
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rare in our bait shop samples, these pathogens may be thriving or at some ecological
advantage in bait shops or they may be at undetectable levels in the natural system. In
contrast, OTUs similar to Aeromonas pathogens were nearly four times more abundant (as
a percentage) in bait shops than in Lake Michigan sourced water. This again demonstrates
an important point about these data, where a high percentage, i.e., dominant, microbes
in bait water are potential pathogens, and in our Lake Michigan sampling, dominant
microbes were likely non-pathogens. A study by Fujimoto et al. (2016) on lake water did
not find OTUs classified as Vibrio, Mycobacterium, Aeromonas, or Pleasiomonas but did
find one OTU that can be classeifed as Campylobater and Francisella. However, these were
very rare as the study defined a total of 158,900 OTUs (Fujimoto et al., 2016). Although,
in this study, the wild sourced Lake Michigan collections (from five samples sequenced
and included here), came from a relatively limited spatial extent, which likely represent a
fraction of the true pathogenic diversity in the Great Lakes, the contrast between the wild
and bait shop samples suggests a substantial variation between the two sources. Future
investigations should include a wider sampling effort from throughout the basin to make
a more direct comparison between these two sources of water samples.

CONCLUSIONS
Detection and identification of pathogens is not new to science with over 19,000 articles
published on pathogen detection in the last 10 years (from 2008-2018; IS Web of Science,
query on 3/15/18). Researchers have previously reported on pathogen identification
from areas outside of water and the environment, including the food industry, defense,
and clinical applications (Lazcka, Campo & Muñoz, 2007). Analytical methods for these
industries include traditional screening procedures (culturing and colony counts) through
molecular methods and biosensors (Lazcka, Campo & Muñoz, 2007). However, the role
bait water plays in pathogen transmission is unclear.

In the United States, there are approximately 33 million people that participate in
recreational fishing (16 years of age and older) that account for an industry of over $48
billion annually and approximately 828,000 jobs (Southwick, 2012). Within this, the access
to and the use of live bait from commercial shops presents a need to ensure the safety
of participants. Spread of these pathogens is an ongoing important problem in the bait
industry. Despite the concern over pathogens in the industry, actions towards prevention
of pathogen spread by commercial vendors do not always address the issue (Connelly et al.,
2018).

In this study, we note a number of potentially harmful pathogens in samples fully
accessible to the public. However, there are a number of caveats to this. First, potential
pathogens, albeit present in the samples as noted, could be at low levels and may never
become virulent. Additionally, the pathogenicity of the documented OTUs was not
specifically tested in this study. Second, there is no guarantee of spread from source (e.g.,
commercial shop) to additional sites, or that bait water bacteria could become harmful to
humans as the pathogens may become damaged during transport or die when released into
the environment, a similar observation to that of the importance of propagule pressure in
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the invasive species literature (Lockwood, Cassey & Blackburn, 2005). However, while there
are no guarantees for spread and/or infection, the likely repeated introduction of these
potentially dangerous strains of organisms to the environment and as documented in the
invasive species literature, even low probability survival and arrival can ultimately lead
to establishment and damages of invasive species (Jerde & Lewis, 2007; Jerde, Bampfylde &
Lewis, 2009). Future screening and monitoring is needed to ensure safety for millions of
participants in recreational fishing annually and also to the ecosystems where these harmful
pathogens could be spread.
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