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ABSTRACT
Background: The use and partitioning of trophic resources is a central aspect of
community function. On the ground of tropical forests, dozens of ant species may be
found together and ecological mechanisms should act to allow such coexistence. One
hypothesis states that niche specialization is higher in the tropics, compared to
temperate regions. However, trophic niches of most species are virtually unknown.
Several techniques might be combined to study trophic niche, such as field
observations, fatty acid analysis (FAA) and stable isotope analysis (SIA). In this work,
we combine these three techniques to unveil partitioning of trophic resources in a
tropical and a temperate community. We describe patterns of resource use, compare
them between communities, and test correlation and complementarity of methods
to unveil both community patterns and species’ niches.
Methods: Resource use was assessed with seven kinds of bait representing natural
resources available to ants. Neutral lipid fatty acid (NLFA) profiles, and d15N and
d13C isotope signatures of the species were also obtained. Community patterns
and comparisons were analyzed with clustering, correlations, multivariate analyses
and interaction networks.
Results: Resource use structure was similar in both communities. Niche breadths
(H′) and network metrics (Q and H2′) indicated similar levels of generalization
between communities. A few species presented more specialized niches, such as
Wasmannia auropunctata and Lasius fuliginosus. Stable isotope signatures and
NLFA profiles also indicated high generalization, although the latter differed
between communities, with temperate species having higher amounts of fat and
proportions of C18:1n9. Bait use and NLFA profile similarities were correlated, as
well as species’ specialization indices (d′) for the two methods. Similarities in d15N
and bait use, and in d13C and NLFA profiles, were also correlated.
Discussion: Our results agree with the recent view that specialization levels do not
change with latitude or species richness. Partition of trophic resources alone does not
explain species coexistence in these communities, and might act together with
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behavioral and environmental mechanisms. Temperate species presented NLFA
patterns distinct from tropical ones, which may be related to environmental factors.
All methods corresponded in their characterization of species’ niches to some extent,
and were robust enough to detect differences even in highly generalized
communities. However, their combination provides a more comprehensive picture of
resource use, and it is particularly important to understand individual niches of
species. FAA was applied here for the first time in ant ecology, and proved to be a
valuable tool due to its combination of specificity and temporal representativeness.
We propose that a framework combining field observations with chemical analysis is
valuable to understand resource use in ant communities.

Subjects Biodiversity, Ecology, Entomology
Keywords Formicidae, Trophic niche, Baits, Fatty acids, Stable isotopes, Atlantic forest,
Temperate forest, Trophic ecology, Methodology, Food resources

INTRODUCTION
The use and partitioning of trophic resources is a central aspect of community functioning.
Trophic interactions govern the flux of matter and energy in food webs, and lead to
other fundamental interactions such as competition and mutualism (Polis & Strong, 1996;
Reitz & Trumble, 2002). Trophic niche partitioning is one of the most important
mechanisms allowing species coexistence, and may ultimately link to evolutionary
processes of adaptation and character displacement (Schluter, 2000).

Ants (Hymenoptera: Formicidae) are among the most abundant groups of
invertebrates in terrestrial ecosystems, presenting a wide range of feeding habits,
nesting sites and interactions with organisms from all trophic levels. In general they
are regarded as omnivorous, feeding on a combination of living prey, dead arthropods,
seeds and plant exudates (Blüthgen & Feldhaar, 2010; Lanan, 2014). On the ground of
tropical forests, dozens of species may coexist at the same spot, which raises the
question: how ecologically different are these species? Although the role of interspecific
competition in ant communities has recently been hotly debated (Cerdá, Arnan & Retana,
2013), the combination of high species richness with high biomass may lead to
evolutionary pressure for more diversified niches. MacArthur (1972) suggested that
specialization increases in tropical communities and, as a result, more species can
coexist. However, this idea was put in question by recent studies (Schleuning et al., 2012;
Morris et al., 2014; Frank et al., 2018). For ants, behavioral and environmental
mechanisms of coexistence have been proposed (Cerdá, Retana & Cros, 1997;
Andersen, 2000; Parr & Gibb, 2012). The use of food resources itself is surprisingly
understudied, and trophic niches of most species remain poorly known. This is
particularly evident in rich tropical communities (Rosumek, 2017), but also true for some
temperate species (Lanan, 2014).

Field observations are the most straightforward way of gathering information, but
there are trade-offs between the number of species studied (e.g., single species natural
history vs. community patterns; Medeiros & Oliveira, 2009; Houadria et al., 2015),
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the number of resources assessed (e.g., protein/sugar comparisons vs. all resources
collected by workers; Kaspari & Yanoviak, 2001; Lopes, 2007) and the sampling intensity
(e.g., seasonal studies vs. temporal “snapshots”; Albrecht & Gotelli, 2001; Rosumek, 2017).
Moreover, many species present cryptic habits, and the sheer complexity of interactions
makes the assessment of trophic niches a laborious task. Baiting is a method widely
used in ant ecology to assess communities and infer resource use (Bestelmeyer et al., 2000),
but it is affected by the aforementioned drawbacks.

Several techniques have been applied in ecology to deal with these issues, among
them stable isotope analysis (SIA) and fatty acid analysis (FAA). Indirect techniques
could be faster and reduce fieldwork effort, but also rely on several assumptions to
interpret their results. Since every method has its assets and caveats, the choice depends
on the nature of the questions being asked (Birkhofer et al., 2017). However, this also
works the other way around: complementary methods can be combined to provide a
detailed and integrative perspective on the community being studied.

Stable isotopes have been widely applied to address several questions in ant biology
(Feldhaar, Gebauer & Blüthgen, 2010). Most commonly used are the relative abundance
of heavy nitrogen (d15N) and carbon (d13C) (Hyodo, 2015). d15N increases predictably
when one organism consumes another, thus indicating whether species are at the top or
bottom of the food web (Heethoff & Scheu, 2016). d13C could be used to distinguish
between main carbon sources at the bottom of the food web because C3, C4 and CAM
plants have different signatures (O’Leary, 1988; Gannes, Del Rio & Koch, 1998). SIA
provides time-representative clues about trophic position, but limited information on
specific food sources or feeding behaviors. For instance, if two species feed exclusively on
primary consumers, they will have similar d15N, regardless of what prey items they actually
consume, or whether the food is obtained through predation or scavenging. As such, stable
isotope signatures are not suitable to calculate niche breadth or overlap, or to be analyzed
as species-resources interaction networks.

Fatty acids obtained from the diet are mainly stored as neutral lipid fatty acids (NLFAs)
in the fat body of insects. Some fatty acids can be synthesized de novo by organisms,
from carbohydrates or other fatty acids. Synthesis of C16:0, C18:0 and C18:1n9 (palmitic,
stearic and oleic acids) is widespread, and they are the most abundant NLFAs in insects
(Stanley-Samuelson et al., 1988; but see Thompson, 1973). Ability to synthesize other
NLFAs is highly variable among taxonomic groups, such as C18:2n6 (linoleic acid;
Malcicka, Visser & Ellers, 2018). When fatty acids are reliably assigned to specific food
sources, they may act as biomarkers (Ruess & Chamberlain, 2010). Even when such
biomarkers are not identified, all fatty acids assimilated without modification (i.e., through
direct trophic transfer) influence the composition of the fat reserves, including the relative
amounts of de novo-synthesized NLFAs. Hence, the stored fat preserves information on
ingested carbon sources, and NLFA profiles can be compared to infer niche differences
(Budge, Iverson & Koopman, 2006). However, the application of FAA in field studies of
terrestrial organisms still is limited. Most studies focused on soil detritivores, such as
collembolans and nematodes (Ruess et al., 2007; Haubert et al., 2009; Ngosong et al., 2009).
So far, FAA was not used to study trophic ecology of ants.
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In this work, we combine field observations with SIA and FAA to unveil the use and
partitioning of trophic resources in a tropical and a temperate epigeic ant community.
Our main goal is to describe patterns for each community and test differences between
communities and methods. Specifically, we aim to: (1) assess use of multiple resources,
stable isotope signatures and NLFA profiles of the most abundant species in both
communities; (2) compare patterns between communities using descriptive and statistical
approaches; (3) test whether different methods provide convergent or complementary
information on patterns of resource use.

MATERIALS AND METHODS

Baiting
Fieldwork in Brazil was carried out in Florianópolis (Desterro Conservation Unit,
27�31′38″S, 48�30′15″W, altitude ca. 250 m), in December 2015 and January 2016, under
sampling permit SISBIO 51173-1 (ICMBio), and export permits 15BR019038/DF and
17BR025207/DF (IBAMA). The vegetation consists of a secondary Atlantic forest with at
least 60 years of regeneration. High rainfall rate along the coast results in high productivity,
ant species richness and a tropical aspect for the Atlantic forest even at higher latitudes
such as in our work (Silva & Brandão, 2014). In Germany, it was carried out in Darmstadt
(Prinzenberg, 49�50′14″N, 08�40′01″E, altitude ca. 250 m), in July 2015 (no permits
needed there). The vegetation consists of patches of mixed forest, beech forest and
orchards, which were all covered by the sample grids.

Sampling design followed similar protocols in both sites (Table 1). Seven bait types
were offered as proxies for resources that are widely used by ants in general (Kaspari, 2000;
Blüthgen & Feldhaar, 2010; Lanan, 2014; for a full description of baits, see Supplemental
Document S1). Sample points were distributed in grids and separated by 10 m. In each
sampling session, only a single bait was offered per point, and bait types were randomized
among points. Baits were set up in transparent plastic boxes and retrieved after 90 min.
This procedure was repeated in different days until all bait types had been offered at
each point (twice in Brazil). The design was based on Houadria et al. (2015) and evaluates
use of multiple resources, differing from a typical cafeteria experiment, which is designed
to assess preferred resources (Krebs, 1999).

Pitfall sampling
We performed a concomitant pitfall assessment to verify whether bait records represented
well the epigeic community (Table 1). One vial per sample point was previously buried to
avoid the digging-in effect (Greenslade, 1973), and replaced after collection for the next
round. Pitfall and bait sampling were not performed simultaneously at the same point.
Vials were buried at ground level, had six cm diameter and 150 ml volume, and contained
40 ml propylene glycol 50%.

Fatty acid analysis
In Brazil, samples were obtained from baits and complemented by colony sampling in
November 2017. We only used ants from melezitose, sucrose and seed baits, to avoid
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interference of bait lipids. In Germany, they were obtained by colony sampling
between July and August 2017. Samples were frozen at -18 �C directly from the field.
Total lipids were extracted from the ants whole body using one ml chloroform:methanol
solution, 2:1 (v/v). The solution was applied to SiOH-columns and the neutral parcel
(= mono-, di- and triglycerides) eluted with four ml chloroform. Samples were analyzed
with gas chromatography–mass spectrometry, following the same procedures described
in Rosumek et al. (2017). NLFA amounts were obtained comparing their proportions to
an internal standard (C19:0 in methanol; ρi = 220 ng/ml). Ants were subsequently dried
to obtain their lean dry weight (= without lipids).

Stable isotope analysis
Ants collected in baits and conserved in ethanol 70% were used to analyze d15N and d13C.
C and N isotope abundances were measured in a dual element analysis mode with an
elemental analyzer coupled to a continuous flow isotope ratio mass spectrometer as
described in Bidartondo et al. (2004). Relative abundances were calculated following the
equation: dx = (Rsample/Rstandard - 1) � 1,000 [‰], where R denotes the ratio between
heavy and light isotopes of samples and international standards (N2 in the air and CO2 in
PeeDee belemnite). Gasters were removed prior to analysis to avoid interference of gut
content (Blüthgen, Gebauer & Fiedler, 2003).

Taxonomic identification
Ants were identified with taxonomic revisions, and comparison to identified specimens in
collections and AntWeb images (AntWeb, 2016). Updated names were checked with

Table 1 Details of the sampling design applied in this study.

Brazil Germany

Sampling effort

Sampling points 64 80

Period of the day Day and night Day

Baits 64 per resource per period (= 896 baits) 80 per resource (= 560 baits)

Pitfall sampling Three 10-h rounds per period (= 60 h) Three 12-h rounds (= 36 h)

Resource represented

Larger, faster and harder prey Living crickets
(Achaeta domesticus Linnaeus, 1758)

Smaller, slower and softer prey Living termites
(Nasutitermitinae)

Living maggots
(Lucilia sericata Meigen, 1826)

Dead arthropods Crushed crickets and maggots/mealworms
(Tenebrio molitor Linnaeus, 1758)

Bird droppings Chicken feces from organic
breeding

Seeds Seed mixture of diverse sizes and
shapes, without elaiosomes

Seeds of Chelidonium majus
(L.), with elaiosomes

Oligosaccharides in honeydew Melezitose 20%

Disaccharides in nectar and fruits Sucrose 20%
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Antcat (Bolton, 2018). Identifications were partially confirmed by taxonomists (see
Acknowledgements).

In Brazil, ants were identified to genus level with Baccaro et al. (2015) and to species
level with: Acanthognathus—Galvis & Fernández (2009); Acromyrmex—Gonçalves (1961);
Cephalotes—De Andrade & Baroni Urbani (1999); Crematogaster—Longino (2003);
Cyphomyrmex—Kempf (1965) and Snealling & Longino (1992); Gnamptogenys—Lattke
(1995); Hylomyrma—Kempf (1973); Linepithema—Wild (2007); Octostruma—Longino
(2013); Odontomachus and Pachycondyla—Fernández (2008); Pheidole—Wilson (2003);
Wasmannia—Longino & Fernández (2007). Camponotus and Strumigenys were identified
solely by comparison with collections.

In Germany, ants were identified to genus and species with Seifert (2007), Seifert &
Schultz (2009) and Radchenko & Elmes (2010).

All material is stored in the collections of the Ecological Networks research group,
Technische Universität Darmstadt, Darmstadt, Germany and Department of Ecology and
Zoology, Federal University of Santa Catarina, Florianópolis, Brazil.

Data analysis
As a first step, we compared species’ incidences in baits and pitfalls (i.e., number of
sampling points where it was recorded with each method). We assumed incidence in
pitfalls to represent abundance in the community, and qualitatively compared it to
incidence in baits to check whether common species were underrepresented in baits.
To account for different efficiencies between methods, expected incidences were indicated
by a line of slope m = Ibaits/Ipitfalls, where I is the sum of all incidences for each method
(Houadria et al., 2015).

Number of species, replicates and individuals per sample differed between methods,
based on sample availability and ant size. In Brazil, we analyzed 24 species for baits,
41 for FAA and 31 for SIA. Method comparisons were performed only with 22 species
considered in all three datasets. In Germany, seven species were analyzed with all methods.
For a full list of recorded species and respective labels used in plots, see Table S1.

Unless noted otherwise, similarity matrices were based on unweighted Bray–Curtis
dissimilarities, andMantel tests and correlations used Spearman’s coefficient (rho). Analyses
were run in R 3.4.3 (R Core Team, 2017) and PAST 3.14 (Hammer, Harper & Ryan, 2001).

For all bait analyses, we used proportion of occurrence on each bait type, relative to
total records for each species. Only species with at least 10 records from five or more
sample points were considered. In Brazil, day and night records were considered as
independent to calculate proportions. For FAA, we calculated proportions of each
NLFA relative to total composition, and used average proportions for each species. All
NLFAs with average proportion >0.01% were considered. For SIA, we also used species’
averages and analyzed d15N and d13C separately, using Euclidean distances to build
similarity matrices. A special case was Lasius fuliginosus in Germany, which was
represented by a single colony that foraged over a large area. Bait records from different
sample points were considered independent, and chemical results represent the average of
different samples from that colony.
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To analyze resource use, we used clustering and network analysis. UPGMA clustering
was used for species, to show functional groups based on similar use of resources, and
for baits, to show the structure of resource use in each community. Statistical significance
of clusters was tested with SIMPROF (Clarke, Somerfield & Gorley, 2008) using the package
“clustsig” (Whitaker & Christman, 2015). A Mantel test was used to compare similarity
matrices of Brazil and Germany.

For network analysis, we used quantitative modularity (Q) (Dormann & Strauss, 2014)
and specialization indices for species/resources (d′) and whole networks (H2′) (Blüthgen,
Menzel & Blüthgen, 2006), using the package “bipartite” (Dormann, Fruend & Gruber,
2017). Modularity shows how compartmentalized is a community, that is, if there are
groups of species that strongly interact with groups of resources. In turn, d′ indicates
whether individual species are specialized in certain resources, or resources that are used
by a specialized group of species. H2′ is an extension of d′ and shows how specialized the
network is overall. H2′ = 0 would mean that all species used resources in the same
proportions, and H2′ = 1 that each species has its exclusive pattern of resource use.

Specialization indices were also used to analyze species � fatty acids contingency
tables. In this case, they indicate how exclusively NLFAs are distributed across species
(Brückner & Heethoff, 2017). H2′ = 0 would mean that all compounds occur in the same
proportion in all species, and H2′ = 1 that each species has its exclusive compounds.
Correspondingly, relatively high d′ represents NLFAs that occur more exclusively in
certain species, or species with more exclusive proportions of certain NLFAs. Low d′means
a compound that is widespread among species, or species with similarly generalized
profiles. Additionally, we tested whether the two communities differed in their overall
NLFA composition with PERMANOVA, using site as a fixed factor (Anderson, 2001).
Homogeneity of multivariate dispersion was tested a priori with PERMDISP (Anderson &
Walsh, 2013). To detect which NLFAs contributed to differences, we used SIMPER
(Clarke, 1993). These tests were performed using package “vegan” (Oksanen et al., 2017).

To test whether niche breadths and NLFA profile diversity were different between
communities at species level, we calculated Shannon diversity indices for each ant species
as H′ = Spilnpi, where pi is the proportion of each resource i used by the species, or
NLFA found in its profile, and compared them with Mann–Whitney tests.

To test whether particular NLFAs were related to use of certain resources, we
performed principal component analyses (PCA) using baits � species contingency tables,
replacing zeros by small values (0.000001) and using centered log-ratio transformation to
deal with the constant-sum constraint (Brückner & Heethoff, 2017). PC axes were
correlated with NLFAs using function “envfit” from package “vegan.” We also compared
proportions, amounts (in mg/mg; the amount of fat divided by lean dry weight) and
unsaturation indices (UI; the sum of percentages of each unsaturated NLFA multiplied
by its number of double bounds) between Brazil and Germany with Mann–Whitney tests.
We did this for total fat and the three most abundant NLFAs (C16:0, C18:0 and C18:1n9).
To test whether there was a direct relationship between total fat amount and C18:1n9,
or total amount and UI, we correlated values for all individual samples of each community
(166 in Brazil, 32 in Germany).
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Finally, to test whether the results yielded by the three methods were correlated,
we performed Mantel tests between similarity matrices of species for each method.
We also correlated species’ d′ values for baits and NLFAs, to test whether specialization
levels were related.

RESULTS
Use of resources
Most common species were recorded in baits in proportions similar to the expected, given
their frequency in the community (Fig. S1 and Table S1). A few species were
underrepresented in baits (e.g., Pachycondyla harpax, Myrmica scabrinodis, Stenamma
debile), but, in general, species with few bait records were also rare in pitfalls. Thus, we
consider that a representative part of the epigeic communities was properly sampled.
Despite strong variation in total number of records, the number of species recorded in each
bait was similar, with exception of large prey (Table 2).

Similarities in resource use were correlated between Brazil and Germany (Fig. 1,
Mantel test, rho = 0.63, p = 0.03). In both communities, large prey was set apart from the
other resources, being used less frequently and by fewer species. Seeds and melezitose
changed positions between communities. In Germany, all ants used both sugars
indiscriminately, while in Brazil several species used more sucrose (e.g., Camponotus
zenon, Gnamptogenys striatula, Pachycondyla striata, Odontomachus chelifer, Solenopsis
sp.6) and others used more melezitose (e.g., Pheidole aper, Solenopsis sp.8, Wasmannia
affinis) (Table 2). Both modularity (QBR = 0.16, QGE = 0.14) and network specialization
(H2′BR = 0.13, H2′GE = 0.12) were relatively low and similar between sites. Species used
resources in different ways and a few were more specialized (see below), but there were no
clear links between particular resources and species or groups of species.

In Brazil, W. auropunctata occupied a highly specialized niche, using only feces baits,
which lead to the highest d′ values for any species and resource. Linepithema iniquum also
showed a relatively higher specialization level due to its preference for dead arthropods and
low use of sugars. P. striata and O. chelifer used more large prey, dead arthropods and
sucrose. C. zenon grouped with them based on use of dead arthropods and sucrose,
but avoided large prey. P. aper was the only species to have melezitose as its preferred
resource. Other species showed higher redundancy and clustered together, including all
Solenopsis and most Pheidole (Fig. 1; Table 2).

In Germany, only L. fuliginosus showed a relatively high specialization level and
clustered separately, due to its almost exclusive use of animal resources (living prey and
dead arthropods). Other species showed low specialization and dissimilarity (Fig. 1;
Table 2).

Niche breadths were similar between communities (Mann–Whitney, p = 0.44). Average
Shannon index was 1.6 ± 0.4 SD in Brazil and 1.7 ± 0.1 SD in Germany (Table 2).

Fatty acids
Temperate species contained much higher amounts of total fat than tropical ones (Fig. 2).
Fatty acid compositions changed between communities (PERMANOVA, r2 = 0.35,
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Table 2 Resource use of ant species in Brazil and Germany. Values for the seven baits are given in % of the total records for each species. Only
species with at least 10 records from five sample points are listed.

Species Large prey Small prey
Dead
arthropods

Feces Seeds Melezitose Sucrose d′
Shannon
index

Records

Brazil

Camponotus zenon – 14 36 7 7 7 29 0.06 1.6 14

Gnamptogenys striatula 2 23 21 19 11 6 17 0.04 1.8 47

Linepithema iniquum 10 10 50 20 – 10 – 0.16 1.4 10

Linepithema micans – 6 31 6 19 19 19 0.03 1.7 16

Nylanderia sp.1 7 10 25 6 9 23 21 0.03 1.8 267

Odontomachus chelifer 26 5 19 5 5 10 31 0.12 1.7 42

Pachycondyla striata 14 3 42 – 1 6 34 0.16 1.3 88

Pheidole aper 4 – 15 19 7 37 19 0.08 1.6 27

Pheidole lucretii 4 4 26 8 14 20 24 0.02 1.8 50

Pheidole nesiota 4 9 20 4 16 25 21 0.02 1.8 89

Pheidole sarcina 4 8 16 14 20 18 22 0.01 1.9 51

Pheidole sigillata 4 10 24 10 16 13 22 0.00 1.8 91

Pheidole sp.1 3 13 19 10 18 17 21 0.01 1.9 101

Pheidole sp.2 6 11 14 14 21 20 15 0.01 1.9 322

Pheidole sp.4 5 6 21 19 14 14 21 0.01 1.9 78

Pheidole sp.7 6 6 6 6 41 18 18 0.08 1.6 17

Solenopsis sp.1 4 14 18 13 26 12 13 0.01 1.8 141

Solenopsis sp.2 2 14 24 7 28 13 13 0.03 1.8 180

Solenopsis sp.3* – 4 16 8 32 20 20 0.05 1.6 25

Solenopsis sp.4 1 5 21 10 31 14 18 0.03 1.7 96

Solenopsis sp.6 2 10 29 7 17 10 26 0.02 1.7 42

Solenopsis sp.8 7 11 29 7 25 14 7 0.03 1.8 28

Wasmannia affinis – 25 10 10 30 20 5 0.09 1.6 20

Wasmannia auropunctata* – – – 100 – – – 0.62 0 19

d′ 0.17 0.09 0.09 0.24 0.14 0.07 0.09 H2′ = 0.13

Total richness† 26 31 33 32 32 34 34

Total records† 107 203 422 215 344 327 366

Germany

Formica fusca 4 5 21 2 12 26 30 0.06 1.6 57

Lasius fuliginosus 20 27 33 13 – – 7 0.31 1.5 15

Lasius niger 7 14 19 11 9 19 20 0.01 1.9 118

Lasius platythorax – – 17 17 4 30 30 0.11 1.5 23

Myrmica rubra 3 13 15 13 3 25 30 0.03 1.7 40

Myrmica ruginodis – 10 27 14 6 18 24 0.03 1.7 49

Temnothorax nylanderi – 4 21 14 18 21 22 0.06 1.7 165

d′ 0.29 0.14 0.02 0.05 0.13 0.11 0.05 H2′ = 0.12

Total richness† 4 8 8 8 7 9 11

Total records† 14 42 99 56 54 102 116

Notes:
* Species not considered in comparisons between methods.
† Including species with less than 10 records.
–, Species not recorded in this bait.
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p < 0.01). Multivariate dispersion was heterogeneous, being higher in Brazil than in
Germany (PERMDISP, F = 11.32, p < 0.01). This does not change the previous
result because, in this case, PERMANOVA becomes overly conservative (Anderson &
Walsh, 2013).

The main reason for this difference was the predominant role of C18:1n9 in temperate
species (SIMPER, dissimilarity contribution = 47%, p < 0.01, Figs. 2 and 3; Table 3). In
Brazil, composition was more balanced, which led to higher proportions of C18:0
(contribution = 21%, p < 0.01), although amounts were similar. C16:0 was proportionally
the most abundant NLFA in Brazil and the difference from Germany was marginally
significant (contribution = 20%, p = 0.06), although amounts again were higher in
temperate species. A few other NLFAs had statistically significant, but very small
contributions to the difference (Table S2).

Fatty acid compositions were generalized overall, but more homogeneous in Germany
because of the predominance of C18:1n9 (H2′BR = 0.09, H2′GE = 0.03). Accordingly, NLFA
profile diversity was higher in tropical species (average Shannon index = 1.5 ± 0.2 SD) than
temperate ones (0.9 ± 0.2 SD) (Mann–Whitney, p < 0.01) (Fig. 3; Table 3).

In samples from Germany, there was no correlation between total amount of fat
and percentage of C18:1n9 (rho = 0.19, p = 0.30) or unsaturation index (rho = 0.24,
p = 0.89). In samples from Brazil, there was weak negative correlation between total fat
and both C18:1n9 (rho = -0.16, p = 0.04) and unsaturation index (rho = -0.22, p > 0.01).

In Brazil, several fatty acids were related to resource use (Fig. 4; see Table S3 for PCA
eigenvalues and full Envfit results). Species with higher C18:1n9 also used more dead
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Figure 1 UPGMA clustering of resources and species in Brazil (A, C) and Germany (B, D), based on
Bray–Curtis dissimilarities. Red lines link elements from the same statistically significant cluster
(SIMPROF, p < 0.05). Full-size DOI: 10.7717/peerj.5467/fig-1
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arthropods (Envfit, r2 of the NLFA with PC axes = 0.32, p = 0.02), while C18:2unk1
(an unidentified NLFA) was related to use of sucrose and large prey (r2 = 0.31, p = 0.03).
C14:0 (mystric acid) tended to be higher in species that used more seeds, feces and
small prey (r2 = 0.39, p = 0.01). Notice that the first two Principal Components explained
only 60% of the variance and linear regressions were not strong. In Germany, most
variation was along the sugar-protein axis. C18:0 and C17:0 (margaric acid) were
strongly correlated with PC axes (r2 = 0.84, p = 0.05 and r2 = 0.78, p = 0.04, respectively).
Both were higher in species that used more sugars, and C17:0 also was related to use of
feces, although its relative abundance was very low in all species (<0.5%, Table 3).

Stable isotopes
In Brazil, W. auropunctata presented distinctive signatures for both isotopes. It was the
species with highest d15N, while most species ranged from 5.8 to 8.2, and six showed
conspicuously lower signatures. Besides W. auropunctata, d13C varied less, ranging from
-24.1 to -27 (Fig. 5; Table 4).

In Germany, d15N was lower overall, ranging from 3.6 (Lasius niger) to -1.1 (Lasius
fuliginosus). Species varied little in d13C (from -25.4 to -26.3), with values within the range
of Brazilian species (Fig. 5; Table 4).
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Figure 2 Comparison of the three most abundant NLFAs, total amounts and unsaturation indices
between tropical and temperate species. (a) Amounts; (b) percentages. Green = tropical species; red
= temperate species. Significant differences are in bold (Mann–Whitney test).

Full-size DOI: 10.7717/peerj.5467/fig-2
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Isotope signatures were correlated for tropical species (rho = 0.43, p = 0.02).
For temperate species, the correlation lacked statistical significance (rho = -0.46,
p = 0.3), but their inclusion slightly strengthened the correlation for all species together
(rho = 0.47, p < 0.01).
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Dataset comparisons
In Brazil, similarities in bait use and NLFA profiles were correlated (Table 5). While d15N
similarities were correlated with similarities in bait use, but not with NLFAs, the
opposite was found for d13C. That is, similar use of resources among species was reflected
in similar body fat composition, and both were related to their long-term trophic position,
albeit in different ways. In Germany, no such correlations were found between datasets
(although it was marginally significant for NLFAs and d15N).
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Table 4 Stable isotope signatures of ant species in Brazil and Germany. Average d15N and d13C are
given in ‰, following the equation described in the methods.

Species d15N d13C Samples

Brazil

Acromyrmex aspersus* 3.42 -25.76 1

Camponotus lespesii* 2.44 -26.99 3

Camponotus zenon 3.50 -25.06 4

Crematogaster nigropilosa* 3.63 -26.97 2

Gnamptogenys striatula 8.18 -25.00 5

Linepithema iniquum 4.50 -26.71 5

Linepithema micans 7.71 -24.62 4

Linepithema pulex* 7.63 -26.48 4

Nylanderia sp.1 5.94 -25.12 5

Odontomachus chelifer 7.69 -25.28 5

Pachycondyla striata 7.69 -25.52 5

Pheidole aper 6.71 -25.26 5

Pheidole avia* 5.84 -25.46 3

Pheidole lucretii 7.89 -25.79 3

Pheidole nesiota 6.13 -25.55 5

Pheidole sarcina 7.77 -25.02 4

Pheidole sigillata 7.35 -24.67 5

Pheidole sp.1 6.40 -25.18 5

Pheidole sp.2 6.35 -24.88 5

Pheidole sp.4 8.23 -25.98 5

Pheidole sp.5* 6.63 -25.79 1

Pheidole sp.7 8.42 -24.10 5

Solenopsis sp.1 6.14 -25.12 5

Solenopsis sp.2 6.61 -25.10 5

Solenopsis sp.3* 5.82 -24.80 3

Solenopsis sp.4 6.81 -25.47 5

Solenopsis sp.6 7.30 -25.58 5

Solenopsis sp.8 6.91 -24.97 3

Trachymyrmex sp.1* 2.29 -26.77 1

Wasmannia affinis 6.28 -26.28 4

Wasmannia auropunctata* 11.20 -17.79 4

Germany

Formica fusca 3.15 -25.72 5

Lasius fuliginosus -1.09 -25.81 5

Lasius niger 3.63 -26.31 5

Lasius platythorax 0.80 -25.40 5

Myrmica rubra 1.78 -26.03 5

Myrmica ruginodis 1.66 -25.56 5

Temnothorax nylanderi 0.53 -25.65 5

Notes:
* Species not considered in comparisons between methods.
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Table 5 Correlations between methods in Brazil and Germany. Results are for Mantel tests using
Spearman’s rho, based on similarities matrices (Bray–Curtis for baits and NLFAs, Euclidean distances for
isotopes). Asterisks indicate significant correlations.

Method
Baits NLFAs

rho p rho p

Brazil

NLFAs 0.43 <0.01*

d13C 0.23 0.07 0.23 0.02*

d15N 0.25 0.04* 0.14 0.08

Germany

NLFAs -0.23 0.77

d13C -0.24 0.76 0.29 0.19

d15N 0.37 0.12 0.46 0.06
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Full-size DOI: 10.7717/peerj.5467/fig-6
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Exclusiveness (d′) of bait choices and NLFAs profiles were also correlated in Brazil
(rho = 0.51, p = 0.02), suggesting that specialization in resources was reflected in more
specific compositions of fatty acids. No correlation was observed in Germany (rho = -0.07,
p = 0.86) (Fig. 6).

DISCUSSION
Our main findings in this work are: (1) patterns of resource use are similar in both
communities, although the role of oligosaccharides is distinct; (2) both communities
are similarly generalized in resource use, regardless of species richness; (3) temperate
ants present higher amounts of fat and more homogeneous NLFA compositions;
(4) composition and specialization in resource use and NLFAs are correlated, and are also
related to species’ trophic position; (5) some species show specialized behaviors that can be
better understood by method complementarity.

The hypothesis proposed by MacArthur (1972) suggested that specialization is higher
in tropical communities because the environmental stability allows species to adapt to
more specialized niches without increasing extinction risk, thus allowing more species
to coexist. However, this idea was put in question by recent studies, where the
latitude-richness-specialization link was not confirmed, or an inverse trend was found
(Schleuning et al., 2012; Morris et al., 2014; Frank et al., 2018). Our work is not an
explicit test of this hypothesis, but several results agree with the view that specialization
does not necessarily increase with higher richness toward the tropics: despite the different
number of species, network metrics of resource use and niche breadths were similarly
generalized in both communities; fatty acid compositions were also highly generalized,
although in this case in different level, possibly due to other factors (see discussion on fatty
acids below); cluster analysis of resource use showed similar patterns between
communities and both species clusters and stable isotopes indicated strong overlap inside
each community.

The bait protocol we applied is efficient to assess niches of generalists, and
specialized species were seldom recorded. Nevertheless, these generalists represent the
majority of the communities (as highlighted by our pitfall data), and one might expect more
diversified niches to allow coexistence, but that was not the case. The differences
we observed might still play a role in coexistence of some species, particularly when they
share other traits, such as O. chelifer and Pachycondyla striata. Both are large, solitary
foraging Ponerinae species, very common on the ground of the Atlantic forest, but
O. chelifer is more predatory and Pachycondyla striata is more scavenging (Rosumek, 2017).
Coexistence is result of a complex interplay of habitat structure, interspecific interactions
and species traits and no single factor governs ant community organization (Cerdá,
Arnan & Retana, 2013). Trophic niche alone does not explain coexistence of the common
species in these two communities, but likely is one of the many factors structuring them.

Use of resources
Resource use in Brazil was discussed in detail in Rosumek (2017), as well as the literature
review on trophic niche of our identified tropical species. Large prey was the less used
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resource, because size and mobility of the prey limits which species are able to
overcome them. Small prey and feces were also relatively less used, the first because also is
relatively challenging to acquire, and the second probably due to smaller nutritional value.
On the other hand, the other resources are nutritive and relatively easy to gather,
particularly dead arthropods, which was by far the most used resource. Considering
the similarity in resource use patterns, most general remarks in that work apply to
Germany as well. The two main differences we found are discussed below.

The role of insect-synthesized oligosaccharides seems to be distinct between temperate
and tropical communities. In Brazil, the aversion to melezitose showed by some species
could represent a physiological constraint, since tolerance to oligosaccharides differs
among ant species (Rosumek, 2017). For ants without physiological constraints, melezitose
use might be opportunistic and does not necessarily mean that they interact with
sap-sucking insects. However, honeydew is the only reliable source of oligosaccharides in
nature, so the few species that preferred this sugar may engage in such interactions
(particularly Pheidole aper). In Germany, on the other hand, all species used both sugars
similarly. The two Myrmica, Lasius and Formica fusca are known to interact with
sap-sucking insects, and Temnothorax nylanderi uses honeydew opportunistically when
droplets fall on the ground (Seifert, 2007).

Seeds were other resource used differently, but this probably is consequence of our
methodological choice of seeds with elaiosomes in Germany. Elaiosomes are thought to
mimic animal prey and attract predators and scavengers (Hughes, Westoby & Jurado,
1994), not only granivores. Effectively, elaiosomes of Chelidonium majus are attractive to a
wide range of ants (Reifenrath, Becker & Poethke, 2012). However, seeds were more
extensively used in Brazil. A higher diversity of shape and sizes of seeds was offered there,
which allowed more ants to use them.

Fatty acids
Fatty acid compositions were generalized, but differed between communities. In Germany,
C18:1n9 plays a prominent role, making up for more than 70% of the NLFAs stored by
ants. The amounts of fat also differed remarkably: in average, temperate ants stored
over five times more fat. Similarly high amounts of total fat and percentages of C18:1n9
were observed in laboratory colonies of F. fusca and M. rubra (Rosumek et al., 2017),
which suggest that it might be a general trend for temperate species. In Brazil, NLFA
abundance at community level was more balanced between C16:0, C18:0 and C18:1n9.
Both amounts and proportions of C18:1n9 were variable among species.

Organisms can actively change their fatty acid composition in response to
environmental factors and physiological needs (Stanley-Samuelson et al., 1988).
Temperature and balance between saturated and unsaturated NLFAs are important,
because the fat body should present a certain fluidity that allows enzymes to access stored
nutrients (Ruess & Chamberlain, 2010). C18:1n9 seems to be the only unsaturated fatty
acid that ants are able to synthesize by themselves in large amounts (Rosumek et al., 2017).
However, there was no positive correlation between amount of fat and C18:1n9 or
unsaturation index of samples, which would be expected if C18:1n9 synthesis was a direct
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mechanism of individuals to balance saturation:unsaturation ratios (the weak negative
correlation in Brazil also does not fit this hypothesis).

Therefore, we suggest that differences in C18:1n9 percentages and total amounts could
be consequence of two distinct environmental factors. Under lower temperatures, higher
proportion of unsaturated fatty acids is needed to maintain lipid fluidity (Jagdale &
Gordon, 1997). Thus, temperate species might be adapted to synthesize and store more
C18:1n9 to withstand the cold seasons. If this hypothesis were correct, the ants would
maintain this high proportion throughout the year, since we collected in summer. In turn,
high amount of fat could be a direct consequence of the marked seasonality in
temperate regions. These species might be adapted to quickly acquire and accumulate
energy reserves during the short warm season, while there is less pressure for this in
regions where resources are available throughout the year.

We observed relationships between certain NLFAs and resources, although overall
they were not strong and not necessarily result of direct trophic transfer. C18:1n9
was related to use of dead arthropods in Brazil. This NLFA is considered a
“necromone,” a chemical clue for recognition of corpses by ants and other insects
(Sun & Zhou, 2013), so it presumably increases in dead arthropods. However, only
polyunsaturated fatty acids can be degraded to form C18:1n9 during decomposition,
and C18:1n9 itself turns into C18:0 (Dent, Forbes & Stuart, 2004). Thus, for high C18:1n9
to be a direct result of scavenging, prey items should previously possess high levels of
unsaturation. This might be an indirect effect as well: scavenger ants might be better
at tracking and retrieving food items that are naturally rich in C18:1n9. No correlation
was found in Germany, which could also be related to the special role of this NLFA
in temperate species: its predominance due to environmental factors may override its
dietary signal.

C18:2n6 occurs independently of diet only in very small amounts, and it is a potential
biomarker (Rosumek et al., 2017). The differences we observed among species are direct
result of diet. Its occurrence was more widespread in Brazil, but we observed no clear
correlation with specific resources. C18:2n6 is found in elaiosomes, seeds and other
arthropods in different amounts (Thompson, 1973; Hughes, Westoby & Jurado, 1994).
Since it can come from different sources, C18:2n6 cannot be straightforwardly used as a
biomarker for specific diets, but depends on a deeper analysis of the resources actually
available in the habitat.

The biological significance of the correlations of NLFAs and resources in Germany is
difficult to grasp. C18:0 does not appear to be preferably synthesized from carbohydrates,
compared to C16:0 and C18:1n9 (Rosumek et al., 2017). Adding to the fact that such
correlation was not found in Brazil, this might not represent a physiological link between
sugar consumption and C18:0 synthesis. With low number of species in Germany, even
strong correlations might be result of species-specific factors other than diet. The same
might be said for C17:0, a fatty acid that occurs in very low amounts in several vegetable
oils (Beare-Rogers, Dieffenbacher & Holm, 2001).

Interestingly, we did not observe any 18:3n3 or 18:3n6 (a- and �-linolenic acids).
Ants are not able to synthesize them, and they are assimilated through direct trophic
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transfer (Rosumek et al., 2017). In the studied communities, these fatty acids seem to be
completely absent from food sources used by ants. This is an unexpected result, since
their occurrence is well documented in elaiosomes and a wide range of insect groups that
might serve as prey (Thompson, 1973; Hughes, Westoby & Jurado, 1994).

The use of fatty acids as biomarkers to track food sources is one of the greatest potentials
of this method. However, it might be more suitable to detritivore systems, where the
biomarkers are distinctive membrane phospholipids from microorganisms that
decompose specific resources, and that end up stored in the fat reserves of the consumers
(Ruess & Chamberlain, 2010). The NLFA profiles we observed are generalized, and the
most relevant fatty acids could represent distinct sources and/or be synthesized de novo in
large amounts. The biomarker approach might not be suitable at community level for
ground ants, contrary to NLFA profiles (see Method Comparison below). However, it
still might be useful to unveil species-specific interactions, or in contexts with less potential
sources that can be better tracked (e.g., leaf-litter or subterranean species).

Stable isotopes
Trophic shift (i.e., the degree of change in isotopic ratios from one trophic level to
another) varies among taxonomic groups and according to other physiological factors
(McCutchan et al., 2003). “Typical” values of ca. 3‰ for d15N and 1‰ for d13C were
experimentally observed in one ant species (Feldhaar, Gebauer & Blüthgen, 2010).
Establishing discrete trophic levels is unrealistic in most food webs, particularly for
omnivores such as ants (Polis & Strong, 1996), but species within the range of one
trophic shift are more likely to use resources in a similar way. d15N ranges of ca. 9‰
were observed for ant communities in other tropical forests, representing three trophic
shifts (Davidson et al., 2003; Bihn, Gebauer & Brandl, 2010). This is similar to our
range of 8.9‰ but, discounting W. auropunctata, the remaining range of 6.1‰ is
more similar to what was observed in an Australian forest (7.1‰; Blüthgen, Gebauer &
Fiedler, 2003). In Germany, only Lasius fuliginosus presented a distinct signature. In both
communities, most species fell within the range of one trophic shift.

d13C showed smaller, but meaningful, variations that were correlated to d15N. d13C
is less applied to infer trophic levels, as it is more sensitive to sample preservation
method and diet composition (Tillberg et al., 2006; Heethoff & Scheu, 2016). An average
change of 0.61‰ was observed in samples stored in ethanol by Tillberg et al. (2006).
However, we observed correlations (including with NLFAs—see below) despite this
eventual change, and it would not affect the similarity among species and between
communities. Primary consumers using distinct plant sources may present differences
of up to 20‰, and this will influence the signature of secondary consumers (O’Leary, 1988;
Gannes, Del Rio & Koch, 1998). However, in our case, only W. auropunctata presented
such distinct value.

Again, both isotopes suggest that the core of these communities is composed by
generalists that broadly use the same resources. Since we did not establish baselines, lower
values in Germany do not necessarily mean lower trophic levels in this community.
Isotope signatures for the same species are highly variable among sites in Europe
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(Fiedler et al., 2007), and this variation can be the result of either different isotope baselines
or actual changes in species’ ecological roles.

Low d15N suggest that a species obtain most of their nitrogen from basal trophic
levels, mainly plant sources (Blüthgen, Gebauer & Fiedler, 2003; Davidson et al., 2003).
This fits the six species with lowest d15N in Brazil. Two were fungus-growing ants
(Acromyrmex aspersus, Trachymyrmex sp.1), which use mostly plant material to grow its
fungus. The others were species that forage frequently on vegetation, besides the ground
(Camponotus lespesii, Camponotus zenon, Crematogaster nigropilosa, Linepithema
iniquum). Arboreal species that heavily rely on nectar or honeydew usually present low
d15N, which may be the case for these species. Linepithema represents well this trend:
the two mainly ground-nesting species, Linepithema micans and Linepithema pulex,
presented higher signatures than the plant-nesting Linepithema iniquum (Wild, 2007).

Community patterns and method comparison
The correlations we observed between methods are interesting from both the
methodological and the biological perspective. From a methodological viewpoint, for
terrestrial animals, this is the first time an empirical relationship is shown between
patterns of resource use and composition of stored fat in natural conditions, and that both
relate to their long-term trophic position. Although differences between species were
small, these relationships were robust enough to be detected by different methods. From a
biological viewpoint, it highlights several physiological mechanisms involved in such
relationships. We will discuss in the following some of these mechanisms, as well as caveats
that are often cited for these methods. They probably still influence our results and
correlations, but did not completely override the patterns.

A commonly cited caveat for using baits is that ants could be attracted to the most
limited resources, instead of the ones they use more often. Evidence for this comes mainly
from nitrogen-deprived arboreal ants (Kaspari & Yanoviak, 2001), and some cases are
discussed below (see method complementarity). However, this effect might be less
pronounced in epigeic species, and our results suggest that there is convergence between
bait attendance, and medium- and long-term use of resources.

Diet may significantly change NLFA composition in a few weeks (Rosumek et al., 2017)
and persist for a similar time (Haubert, Pollierer & Scheu, 2011). Therefore, the
“snapshot” of resource use we observed with baits should represent at least the seasonal
preferences of the species. A seasonal study on NLFA compositions can bring valuable
information on resource use changes, or if they are stable throughout the year.

Adult ants are thought to feed mostly on liquid foods, due to the morphology of the
proventriculus, which prevents solid particles to pass from the crop to the midgut
(Eisner & Happ, 1962). Larvae are able to process solids and possess a more diversified suit
of enzymes, and are sometimes called the “digestive caste” of the colony (Hölldobler &
Wilson, 1990; Erthal, Peres Silva & Ian Samuels, 2007). Trophallaxis is an important
mechanism of food sharing between workers and larvae. Our results suggest that the
trophic signal of NLFAs is not lost in this processes, and that might be true even for solid
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items such as arthropods or seeds. However, the similarities could be as well the result of
direct digestion and assimilation of liquid sources (sugars, hemolymph).

We also found correlations with stable isotopes. They were weaker than between
baits and NLFAs, and different for each isotope. For d15N, it shows that patterns of
resource use are more correlated with trophic level. Protein amino acids must be obtained
from diet or synthesized from other nitrogenated compounds, so the signal relative to
nitrogen sources should be more preserved. This also fits to the idea that d15N reflects
larval diet, because it is in this stage that ants grow and build most of their biomass
(Blüthgen & Feldhaar, 2010). On the other hand, it makes sense that the signal relative to
carbon sources is related to NLFA composition. We should note that we removed the
gaster of the ants used in SIA, so we observed only the signal of carbon incorporated in
the other body parts. This is related to dietary carbon, but a stronger signal could be
expected if the fat body is included.

The low source-specificity of stable isotope signatures might also lead to relatively
weak correlations. Pachycondyla striata and O. chelifer had the same d15N despite their
different preferences. Other species that appear to be mostly scavengers had similar or
higher d15N than those two “predators,” such as Linepithema micans, Pheidole sarcina,
Pheidole lucretii and Pheidole sp.4.

In Germany, no correlation was observed between methods. This is probably a
consequence of the low number of species available in the community. The relationships
found in Brazil might be valid for other communities, although ecological context and
physiology might change their significance or strength.

Species niches and method complementarity
Niche differences were correlated at community level, but the use of different techniques
allows better understanding of species’ niches. Method complementarity is particularly
important if one is interested in the functional role of individual species, not only in overall
patterns. Some cases are described below.

In Brazil, W. auropunctata was distinct from the remaining community, both in
resource use and isotopic signature (unfortunately, no NLFA samples were obtained for
this species). Strong preference for feces is a novel behavior for this species, known to
invade and dominate disturbed habitats, but less dominant inside forests (Rosumek, 2017).
Its isotopic signature confirms that they have a highly differentiated diet, and could be
direct result of a feces-rich diet. In herbivorous mammals, feces are usually enriched
in d15N relative to diet (Sponheimer et al., 2003; Hwang, Millar & Longstaffe, 2007).
The proposed mechanism of 15N enrichment along trophic levels states that this happens
due to preferential excretion of 14N, and it is assumed that most nitrogen is excreted in the
urine, which is depleted in 15N (Peterson & Fry, 1987; Gannes, Del Rio & Koch, 1998; but
see Sponheimer et al., 2003). However, 15N-enriched feces were also observed in uricotelic
organisms, such as birds and locusts (Webb, Hedges & Simpson, 1998; Bird et al., 2008).
Thus, high d15N is consistent with a diet based on 15N-enriched feces from other
consumers. The relationship with the d13C signature is less clear, but it also suggests
high specialization.
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This behavior might be a local adaptation, but also could indicate thatW. auropunctata
shifts to less disputed resources inside native forests (although the exact resources
used may be context-dependent). In Davidson (2005), Wasmannia species (including
W. auropunctata) presented relatively high d15N and were considered highly carnivorous.
However, our result shows that high d15N should not be taken from granted to
represent high-level consumers. It might be a solid generalization for communities, but
other trophic pathways may lead to such signatures. Due to their lack of specificity,
isotope signatures should be combined with field observations to provide reliable
information at species level. As another example, the second highest d15N in our work
was observed in Pheidole sp.7, a species that used mainly seeds and was seldom recorded in
animal (or feces) baits.

Another example where results seem to be contradictory is L. fuliginosus, which showed
strong preference for animal baits, but low d15N. In this case, the natural history of the
species is well known, and it strongly interacts with aphids, particularly the giant oak aphid
Stomaphis quercus (Seifert, 2007). This suggests that this aphid’s honeydew is not enriched
in 15N and has a composition similar to the plants on which they feed. The honeydew
supply should be abundant, since ants basically ignored sugar baits, but also relatively poor
in nitrogen, which makes L. fuliginosus use animal sources whenever possible. A similar
pattern may apply to Linepithema iniquum in Brazil, which also combined low d15N with
preference for animal baits. This species is also known to use extra-floral nectaries and
honeydew (Rosumek, 2017), but does not have such strong and specific interactions as its
temperate counterpart.

CONCLUSIONS
In this work, we investigated two communities with three distinct methods, and provided
information on community patterns of resource use and species’ trophic niches. Our
results agree with the view that ant communities are mostly composed by generalist
species that share similar resources, and suggest that such patterns do not differ
between tropical and temperate communities. Although high richness may lead to more
specialists in the tropics, the generalist core of the community should be maintained by a
combination of several factors.

Overall, we observed that the three methods corresponded in their characterization of
the communities, but their combination provided a more comprehensive picture of
resource use. However, the time and costs demanded should limit the broad application of
this framework, and some techniques are more suitable to answer particular questions.
We gave special focus on FAA in this work because it was the first time this method was
applied to study ant ecology in the field. Considering that NLFA profiles provide a more
time-representative snapshot than baits, and are more specific than stable isotopes, we
suggest FAA as a powerful tool to study trophic niche relationships in species-rich ant
communities. It allows the researcher to obtain quantitative data related to diet with
relatively short fieldwork time, or from systems where direct observation is limited, and
then use it to infer niche breadths, similarities and overlap. However, their use as
biomarkers has yet to be developed, and seems to be limited for epigeic ant communities.
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Combining NLFA compositions with field observations is strongly recommended if the
researcher is interested in source-specificity. Finally, stable isotopes (particularly d15N)
might be added as a long-term representation of trophic position, which can corroborate
or complement other results.
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