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Abstract

Maternal effects can substantially affect ecological and evolutionary processes in natural
populations. However, as they often are environmentally induced, establishing their genetic
basis is challenging. One important, but largely neglected, source of maternal effects are egg
coats (i.e. the maternally derived extracellular matrix that surrounds the embryo). In Rana

the gelatinous egg coats
(i.e. egg jelly) are produced in the mother’s oviduct and consist primarily of highly
glycosylated mucin type O-glycans. These O-glycans affect jelly water balance and,
subsequently, strongly contribute to adaptive divergence in embryonic acid tolerance.

To identify candidate genes for maternal effects, we conducted RNAseq transcriptomics on
oviduct samples from seven R. arvalis females, representing the full range of within and
among population variation in embryonic acid stress tolerance across our study populations.
De novo sequencing of these oviduct transcriptomes detected 124 071 unigenes and
functional annotation analyses identified a total of 57 839 unigenes, of which several
identified genes likely code for variation in egg jelly coats. These belonged to two main
groups: mucin type core protein genes and five different types of glycosylation genes. We
further predict 26 711 gene-linked microsatellite (SSRs) and 231 274 single nucleotide
(SNPs) polymorphisms.

Our study provides the first set of genomic resources for R. arvalis, an emerging model
system for the studies of ecology and evolution in natural populations, and will aid in gaining

insight to the genetic architecture of egg coat mediated maternal effects.

Background

Understanding evolutionary processes of natural populations necessitates a good
understanding of the genetic architecture of trait variation in an ecologically relevant context
(e.0. i iggi (Houle et al.
2010; Mitchell-Olds et al. 2007; Nadeau & Jiggins 2010)). Maternal effects (the effects of
mothera mother’s environment and phenotype on offspring performance) are an important

source of phenotypic variation and often under strong natural selection (reviewed in
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{Mousseau-&Fox-1998;-Rasanen-&Kruuk-2007)(Mousseau & Fox 1998; Résdnen & Kruuk

2007)). Maternal effects can influence speed and direction of evolution as well as facilitate

local adaptation
1998)(Hangartner et al. 2012; R&sénen & Kruuk 2007; Shu et al. 2016; Wolf et al. 1998).
However, as maternal effects are eftentypically at least partially environmentally induced,

their genetic architecture is-stiH poorly understood.

Maternal effects can arise through various mechanisms, most commonly acknowledged
through variation in egg size and content (reviewed in (Bernardo 1996; Meusseat-&Fox
1998Mousseau & Fox 1998). A much less well acknowledged but important source of

maternal effects are so called egg coats {Shu-et-al—2015b)(Shu et al. 2015b)--Egg-eoats. Eqg

coats (present in all sexually reproducing animals, as well as many asexual metazoans) are

maternally derived, extracellular structures that consist of multiple functionally and
structurally different layers (reviewed in {Menkherst-& Selwood-2008;-Shu-et-al—2015b;
Wong-&-Wessel-2006)(Menkhorst & Selwood 2008; Shu et al. 2015b; Wong & Wessel
2006)). These structures have many key functions, ranging from fertilization to embryonic
protection {Shu-et-ak-2015b)(Shu et al. 2015b). The genetic basis of the innermost, so called
oocyte coats, has been studied in several model systems, such as sea urchins and the abalone
(Claw & Swanson 2012; RPalumbi-2009Palumbi 2009), the moth Bombyx mori {Papantonis-et
al—2045)(Papantonis et al. 2015) and the frog Xenopus laevis {Hedrick2008:-Shu-etal-
2015b)(Hedrick 2008; Shu et al. 2015b). However, the genetic basis of the-euteroutermost

gelatinous egg coats—that-surround-embryos-of-many-, often found in taxa where embryos

develop externally in the surrounding environment (e.g. various invertebrates, fish and

amphibians)), is to date effectively unstudied (reviewed in (Shu et al. 2015b)).

_—{ Field code changed

Reeenthy-we-showed-that-inln the moor frog Rana arvalis, jelly coat mediated maternal
effects have driven adaptive divergence in embryonic acid stress tolerance {(Hangartneret-al:

1 7 7 7

2015¢)(Hangartner et al. 2011; Persson et al. 2007; Rasénen et al. 2003b; Shu et al. 2015a;
Shu et al. 2016; Shu et al. 2015c). JelyThis divergence is primarily due to glycoproteins of

the jelly coats, which influence water balance and, subsequently, embryonic survival in acidic
conditions {Shu-etak-2015a)(Shu et al. 2015a). Egg jelly eoatsconsist-ef-glycoproteins,-with
are complex glycan structures attached to a protein backbone {Hedrick-& Nishihara
1991)(Hedrick & Nishihara 1991) and are highly species specific (Coppin et al. 1999;
Delplace et al. 2002;-Streckeret-al-2003); Strecker et al. 2003). Given this complexity, the
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jelly coats can be coded by multiple genes that regulate — for instance — the protein backbone
and the activities of enzymes that impact how different branches are attached {Shu-etal-
2015b)(Shu et al. 2015b). This makes identifying the genetic basis of jelly coat variability
highly challenging — particularly so in natural populations not amenable to experimental
cross-generational rearing or genetic manipulations. Here next generation sequencing tools,
in particular RNA-seq, can be helpful (Fedd-etak2016:\Wang-etak—2009)(Todd et al. 2016;

Wang et al. 2009). Here we apphyapplied de novo transcriptomics to get first insight to jelly
coat genes in the-meorfrog(RanaR. arvalis).. We eenduetconducted tissue specific RNA-seq

on-the-eviduets-of R. arvalis oviducts, where jelly coat biosynthesis takes place {(Hedrick-&
Nishihara-1994)(Hedrick & Nishihara 1991).

Despite the increasing numbers of genomes being sequenced, the genomic resources for

amphibians remain-depauperate-as-are sparse and only twea handful of amphibian genomes

{Xenopus-tropicalis-and-Naneranaperkeri)}-have been sequenced so far (Helsten-etal20106-
Sun-etal—2015)(Elewa et al. 2017; Hammond et al. 2017; Hellsten et al. 2010; Nowoshilow

et al. 2018; Sun et al. 2015). This is an important shortcoming, given that amphibians are
common model systems for a range of ecotoxicological {Hetbing2042)(Helbing 2012),
ecological and evolutionary studies, the latter ranging from spatial patterns of phenotypic and
genetic divergence (Egea-Serrano et al. 2014;-Richter-Boix-et-al2011:-\Van Buskirk-&-Arich
2005); Richter-Boix et al. 2011; Van Buskirk & Arioli 2005) to developmental plasticity
{Gomez-Mestreet-al—2006)(Gomez-Mestre et al. 2006) and adaptive maternal effects

—Rasé ; ; (Mousseau &

NMao Q L, 0 008:- R3 nan-@ 00 hil @ 0 hu-eta 0

Fox 1998; Réasénen et al. 2003b; Shu et al. 2016; Shu et al. 2015c).

To bridge this knowledge gap — and as a first step to identify candidate genes for egg coat
mediated maternal effects - we here apply tissue specific transcriptomics on R. arvalis
oviducts. In doing so, we complement recent transcriptomics studies on other Ranid species
(Birol et al. 2015; i i i
Helbing 2012; Price et al. 2015; Qiao et al. 2013; Robertson & Cornman 2014; Zhang et al.
2013) and increase availability of genomics resources for amphibians in general. As our

specific interest is in identifying putative genes underlying egg jelly coat variation, we
collected samples from the oviduct on seven R. arvalis individuals bracketingencompassing
the full range of embryonic acid tolerance variation among and within our study populations

{Hangartneretak2011-Shu-etal-2015a;-Shu-etak-2015¢)(Hangartner et al. 2011; Shu et al.
2015a; Shu et al. 2015¢)-We-implemented-de-novo-transeriptome-seguencing-and. We
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focused particularly on identifying genes related to biosynthesis of mucin type O-linked
glycans. In addition, we-provide-the-fi et-of transcriptomic-and-genome-wide-mole
markersfor R—arvalis:this study provides the first transcriptomes for R. arvalis, and add more

genome wide markers in addition to existing resources (Brelsford et al. 2017).

Materials and Methods

Study system

R. arvalis is an anuran amphibian, broadly distributed across the western Palearctic (Glandt
2006). Individuals from three R. arvalis populations (Tottajarn, [T;], Bergsjo, [B] and
Stubberud, [S)]) breeding in permanent ponds_along an acidification gradient in southwestern
Sweden were used in this study (Hangartneretal-2011-Shu-etal2015a;-Shu-etal-2016;

Shu-et-al—2015b:-Shu-et-al-2015¢)(Hangartner et al. 2011; Shu et al. 2015a; Shu et al. 2016;
Shu et al. 2015b; Shu et al. 2015¢)-. These ponds differ in pH due to a mix of natural

acidification processes, variation in bedrock buffering capacity and acid rain (Rasanen et al.

2003a; Résénen et al. 2003b). These populations were chosen asbecause, based on former

common garden experiments ((Hangartner et al. 2012; Shu et al. 2015c¢), they represent the

extreme ends of adaptive divergence along-an-acidification-gradientin-in embryonic acid

stress tolerance (i.e. [S] most acid sensitive; [B] intermediate tolerance; [T] most acid

tolerant;{Hangartheretal-2012-Shu-etal-2015¢))). The pH in these ponds ranges from
highly acidic (pH 4, site [T3]) to intermediate (pH 6, site [B}]) to neutral (pH 7.5, [S)]).

During the breeding season of 2012, females in breeding condition were collected and
transported to the laboratory at Uppsala University (59°50°N, 17°50°E). The females were
maintained in containers with moist Sphagnum moss (antibacterial medium) in a climate
chamber at 2- 4°C until artificial crosses (see below) and RNA sampling were conducted a
few days later. The females used for this transcriptomics study consist of a subset (out of 7 to
10 females/population) used-in-artificial-crossesof females that were artificially crossed to

establish acid tolerance of embryos in a common garden laboratory experiment and to study

variation in macromolecular composition of egg jelly coats (for details see {(Shu-et-al—2016;
Shu-et-al—2015¢)(Shu et al. 2016; Shu et al. 2015c¢)). The experiments were conducted under
permissions from the Vastra Gotaland county board (collection permit: Dnr 522-6666-2011)

and the Ethical committee (Dnr C65/11) for animal experiments in Uppsala County.

Sampling and RNA extraction
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To bracket a broad range of genetic backgrounds, the-individuals-chosen{a total N—=6)-fer
RNA-anahysesof six females were seleetedchosen so as to represent females that produced the

most acid tolerant (highest embryonic survival at acidic pH in a common garden experiment)

and most acid sensitive eksteh(lowest embryonic survival at acidic pH in a common garden
experiment) clutches both among and within each of the three populations in-Shu-etal—{Shu
etak2015¢)(Shu et al. 2016). In addition, we included a sample from one female that had

not yet fully ovulated, hence providing a reference for gene expression at an earlier stage of

egg coat production-_(Supplementary material). For each female, RNA of the whole oviduct

(i.e. specific tissue where egg jelly is produced; {Hedrick-& Nishihara-1991)(Hedrick &
Nishihara 1991)) was collected- and stored in RNA later at -20 °C until extraction. RNA

extraction was conducted using TRIzol (Life Technologies) according to the manufacturer's

protocol, followed by DNase (Qiagen) treatment to eliminate potential genomic DNA
contamination. Both the concentration and integrity of the RNA samples for transcriptomic
analyses were evaluated with the Angilent 2100 Bioanalyzer. All samples had an RNA
integrity value (RIN) > 8 and were, hence, used to construct the cDNA libraries {Sehroederet
ak-2006)(Schroeder et al. 2006).

cDNA library construction and sequencing

cDNA libraries were generated using the TruSeq RNA-Seq Sample Prep kit according to the
manufacturer's protocol (lllumina Inc., San Diego, CA, USA). Briefly, magnetic beads with
Oligo_(dT) were used to isolate the poly(A)+ mRNA. Fragmentation buffer was added in the
presence of divalent cations to break the mRNA into short fragments of approximately 200
bp. Short fragments were purified with QiaQuick PCR extraction kit, followed by end
reparation, adding poly(A) and sequencing adapters. The suitable fragments were selected for
the PCR amplification as templates. In total, seven cDNA libraries were constructed and
sequenced using the Illumina HiSeq™ 2000 (90 bp paired-end reads). The sequencing
reactions were conducted at the Beijing Genomics Institute (BGI), Shenzhen.

Assembly and annotation

Raw reads were filtered to remove reads containing adaptors, reads with unknown
nucleotides greater than 5% and low-quality reads with more than 20% bases of quality value
<10 (filter_fg, BGI). Only clean reads were used in the following analyses. Transcriptome de
novo assembly was carried out using the assembly program Trinity {Grabherret-al
2011)(Grabherr et al. 2011). Briefly, the software first combined reads of certain lengths of
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overlap to form contigs. Subsequently, the reads were mapped back to the contigs, which
were connected until extension proceeded on neither end (Grabherretal—2014)(Grabherr et
al. 2011). After removing any redundancy, the resulted sequences were defined as unigenes.
Software and their parameters are-tisted-belowwere: Trinity (--seqType fq --
min_contig_length 100; --min_glue 4 --group_pairs_distance 250; --
path_reinforcement_distance 85 --min_kmer_cov 4); TGICL (-1 40 -c 10 -v 20); Phrap (-

repeat_stringency 0.95 -minmatch 35 -minscore 35).

Unigene annotation provides information of expression and functional annotation of Unigene.
Unigene sequences were first annotated using blastx against the database Nr

(http://www.ncbi.nlm.nih.gov/), with a cut-off E-value of 1e-5. To acquire a more

comprehensive annotation, Unigene sequences were also aligned to the protein databases

Swiss-Prot, KEGGKYyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology

(GO) (1e-5) by blastx. In order to predict and classify the possible functions of the unigenes,
they were additionally annotated to Cluster of Orthologous Group (COG), which classifies
orthologous gene products (Tatusov et al. 2003). Software and their parameters are-listed
belowwere: BLAST (-F F -e 1le-5 -p blastn; -F F -e 1e-5 -p blastx); Blast2GO (Default);
Path_finder (Default).

Protein Coding Sequence Prediction (CDS)

Unigenes were aligned by blastx (e value < 0.00001) to protein databases in the priority order
of NR, Swiss-Prot, KEGG and COG. Unigenes aligned to a higher priority database were not
aligned to lower priority database. Proteins with highest ranks in the blast results were used
to decide the coding region sequences of the Unigenes. The coding region sequences were
subsequently translated into amino acid sequences with the standard codon table. This
produced both the nucleotide sequences (5'->3") and amino acid sequences of the Unigene
coding region. Unigenes that could not be aligned to any database were scanned by ESTScan

{sehetal—1999)(Iseli et al. 1999), producing nucleotide sequence (5’->3") direction and

amino sequence of the predicted coding region.
Metabolic pathway analysis

To investigate the functions of the unigenes in metabolic process, we acquired pathway

annotation by mapping the unigenes to Gene-Ontelegy-{GO) and Kysete-Eneyelopediaof

Genes-and-Genomes{KEGG) database {kanehisa-etal—2008)(Kanehisa et al. 2008). Gene
Ontology-(GO) database is a relational database, which has three ontologies: molecular
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function, cellular component and biological process. KEGG is a database for understanding
high-level functions and utilities of the biological system. It is able to analyze gene products
during metabolism and cellular processes and allowed us to get pathway annotation for
unigenes. We used the Blast2GO program with default setting to acquire GO and KEGG

annotation of Unigenes (Farazona-etal—2014)(Tarazona et al. 2011).

Identification of candidate genes for maternal effects

Based on prior work, jelly coats of R. arvalis and other amphibians As(Coppin et al. 1999;
Guerardel et al. 2000; Strecker et al. 2003) mostly consist of mucin type O-glycans, making

genes related to mucins and to O—glycan biosynthesis particularly relevant as maternal effect

genes. Therefore we considered as candidate genes related to R. arvalis egg jelly coats {Shu
etak—2015b)(Shu et al. 2015b);-we-censidered unigenes that i) were expressed in all
individuals, ii) were mapped to the category of “extracellular matrix” in GO and KEGG
annotations and iii) were involved in the glycosylation process-of the-eggjeHy-. Based-en

-Preliminary differential expression analysis

Unigene expression was calculated using the FPKM (Fragments Per kb per Million reads),
which can eliminate the influence of different gene length and sequencing level on the
calculation of gene expression {Mertazavi-et-ak—2008)(Mortazavi et al. 2008). Group
comparison_between populations was performed using the R Bioconductor package NOISeq,

which is a data-adaptive and nonparametric method {Farazena-etak—2011)(Tarazona et al.
2011)-. We defined Probability > 0.8 and the absolute value of Log2Ratio > 1 as the threshold

%**‘[ Formatted: Space After: 10 pt

to judge the significance of gene expression difference between populations. KEGG
enrichment analysis was performed with a Fisher’s exact test in Blast2GO (Farazona-etal-

2011)(Tarazona et al. 2011). Pathway enrichment analysis identifies significantly enriched

metabolic pathways or signal transduction pathways in differential expressed genes (DEGS).
After correction for multiple testing, we chose pathways with Q value < 0.05 as significantly
enriched in DEGs {Getzetal2008:TFarazona-etal—2011)(Gotz et al. 2008; Tarazona et al.
2011).

Genetic marker resources
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To aid population genomic analyses for taxa were no genome is available, RNA-seq data can
be used to identify genomic markers, such as Simple sequence repeats (SSR) and Single
nucleotide polymorphisms (SNPs), in transcribed regions {Lepez-Maestre-et-al-2016)(Lopez-
Maestre et al. 2016). Here-weWe therefore used the oviduct RNA-seq data to predict SSR
and SNP markers, te-bewhich allows later validated-fervalidation of targeted questions
{Lopez-Maestre-et-al2016)(Lopez-Maestre et al. 2016)-, such as allelic frequency variation

of the candidate genes in the source populations.

SSRs were identified in the final assembly with the software MicroSAtellite (MISA,
http://pgrc.ipk-gatersleben.de/misa/) using unigenes as the reference. Assembled contigs were
scanned for SNPs with SNP detection software SOAPsnp {Li-et-al-2008)(Li et al. 2008). The
program can assemble consensus sequence for the genome of a newly sequenced individual
based on the alignment of the raw sequencing reads on the unigenes. The program calculated
the likelihood of each genotype at each site based on the alignment of short reads to a
unigene, set together with the corresponding sequencing quality scores. It then infers the
genotype with highest posterior probability at each site based on Bayes' theorem (the reverse
probability model {Li-et-al-2008)(Li et al. 2008)). Therefore, the intrinsic bias or errors that
are common in Illumina sequencing data have been taken into account and the quality values
for use in inferring consensus sequence have been recalibrated. Software and their parameters
are-listed-belowwere: SOAPsnp (Release 1.03, http://soap.genomics.org.cn/soapsnp.html, -u t
-Qi-L 90).

Additional analyses

To test whether embryonic acid tolerance is related to the transcriptional activity, we

performed correlation analysis between the acid tolerance of each individual and the

expression of each unigene (FPKM) by PYTHON. A strict correlation threshold was applied

(Pearson correlation, |r| > 0.9 and p-value < 0.01). To test how much of the fluke genomes

our R. arvalis dataset cover, we downloaded the genomes of 3 flukes (Clonorchis sinensis,

Schistosoma mansoni, Schistosoma japonicum) from the wormbase

(https://parasite.wormbase.org/), and BLAST them (BLATP, E-value < le-7) against our

unigenes dataset. To examine whether there are any hits from our database to the recently

developed transcriptomic resources for the green frog Rana clamitans and chorus frog

Pseudacris regilla (Robertson & Cornman 2014), we downloaded the assembled
transcriptomes from NCBI BioProjects (PRINA162931 and PRINA163143), and used them

as query to blast against our Unigene database (BLASTX, E-value < 1e-7).

10
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Results

Sequencing and assembly

In total, 53 330 025 420 bp bases were generated from the R. arvalis oviduct transcriptome.
Total clean reads of the seven cDNA libraries ranged from 81 166 804 to 87 485 924 (Table
1), with an average GC content of 44.95%. In the final assembly, 69-98787 401 to 112 136
unigenes were detected across the sevensix cDNA libraries (Table 2). Interestingly, for the
immatureone female has-lessthat had not yet ovulated fewer unigenes (69 987) were detected
than maturefor the remaining females: (that had ovulated). When the cDNA libraries were

pooled, a total of 124 071 unigenes were detected, with an N50 of 1, 212 bp and a total length
of 90.3 Mb. The average length of the unigenes was 728 bp (the-size-distribution-of-the

wRigepesischesn-nHeFio. 1),
Transcriptome annotation

The E-value distributions of the unigenes showed that approximately 60% of the unigenes
had very strong homogeny (< 1e-30) with the Nr database, while the rest ranged from 1e-5 to
1e-30 (Fig. 2A). Thirty percent of the unigene sequences had over 80% similarity with the Nr
database, while the similarity of the remaining 70% of sequences ranged from 17% to 80%
(Fig. 2B). The R. arvalis sequences matched best with Xenopus (Silurana) tropicalis (43.4%),
followed by Xenopus laevis (13.1 %, Fig. 2C) and the liver fluke Clonorchis sinensis (12.1 %
Fig. 2C).

Functional classes were successfully annotated for 13 501 unigenes using COG (Fig. 3, 4).
BLASTX against Swiss-Prot, KEGG, NT and GO database resulted in 37 262, 31 405, 39
138 and 24 452 hits, respectively (Fig. 4). Altogether, 57 839 R. arvalis unigenes (46.6% of
all 124 071 unigenes) had significant matches with existing databases (Fig. 4). Among the
124 071 unigenes, 48 850 (39.4%) were predicted as Protein coding sequences (CDS). Of
these, 44 809 unigenes were aligned using existing databases, while 4 041 unigenes
whichthat could not be annotated with any database were predicted by EST Scan. The length

distribution of the CDS protein sequences is available in the Supporting information.
Functional pathway annotation

A total of 24 452 unigenes (42.27% of all annotated unigenes) were successfully categorized
into 60 GO functional groups (Fig. 5). These were classified to three major categories:
biological processes (23), cellular components (18) and molecular functions (19) (Fig. 5). A

11
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total of 31 405 unigenes (54.29% of all annotated unigenes) were annotated in KEGG, and
assigned to 259 known KEGG pathways (Table S2). The highly enriched pathways included:
metabolic pathways (3796, 12.09%), purine metabolism (1910, 6.08%), regulation of actin
cytoskeleton (1202, 3.83%), focal adhesion (1161, 3.7%) and calcium signaling pathway
(1159, 3.69%).

Candidate genes for egg jelly coat

We identified two groups of candidate genes likely related to egg jelly coats: 1) core protein
genes (Table 3) and 2) protein glycosylation genes (Table 4). The major components of egg
jelly core protein (extracellular matrix fiber, ECM) are mucin-and-colagen-{Haymucins
(Hedrick 1991), of which 13 and 11 different types, respectively, were detected in our dataset
(Table 3). Within the Mucin gene family, Mucin-5AC, Mucin-5B and Mucin-2 were very
highly expressed (Table 3) and the most abundant transcripts of all unigenes. In addition,
previous evidence suggests that the Mucin-5 gene is expressed exclusively in the X. tropicalis
oviduct, making Mucin-5 genes likely candidates for egg jelly coat genes {Lang-et-al
2016)(Lang et al. 2016). Several other minor components were also identified
(Dermatopontin, Fibulin-5 and Fibrinogen-like protein 1, Decorin, EMILIN-1, Fibrillin-1,
Fibronectin and Laminin) (Table 3).

In addition to the candidate core protein genes, five major biosynthesis pathways involved in
protein glycosylation were identified based on KEGG: Mucin type O—Glycans, Other types
of O—glycans, Heparan sulfate, Chondroitin sulfate and Keratan sulfate (Table 4). Of these,
Mucin type O—Glycan genes are the most likely candidates for egg jelly coat glycosylation
(Coppin et al. 1999;-Lang-et-al—2016); Lang et al. 2016) (Fig. 6). Of the eight types of Mucin
type O—Glycans, only genes related to cores 1, 2, 3, 4 and 6 Mucin type O—Glycan

biosynthesis were detected, while cores 5, 7 and 8 were not expressed in R. arvalis (Fig. 6).
Preliminary differential expression analysis

Differentially expressed genes (i.e. DEGs) were identified by pairwise comparisons between
each population pair {([S] vs [T+]. [S] vs [B+], [T] vs [B;]) of six of the immaturefemales (the
not ovulated female was excluded)- from these analyses). Overall, 4457, 4198 and 3691
differentially expressed genes were identified between [S] vs [T+]. [S] vs [B] and [T] vs [Bs].

respectively- (Figure S3). In general, [T] and [B] individuals had much lower gene expression
levels compared to S individuals-_ (Figure S3). For instance, 3397 and 3388 genes were down-
regulated in the [T] and [B] individuals compared to the [S] individuals, while only 1060 and

12
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810 genes were up-regulated in [T] individuals compared to the [S] individuals:_(Figure S3).
The smallest number of differentially- expressed genes occurred between the [T] and [B]
individuals, where 2256 were up-regulated and 1435 were down-regulated in [T] versus [B]

individuals-_(Figure S3).

Enrichment of KEGG pathway in the differentially expressed unigenes was assessed using a
Fisher’s exact test (FDR < 0.05). The FDR analyses identified 37 and 49 significantly
enriched KEGG pathways in [T] (Table S4) and [B] (Table S3) compared to [S] individuals,
whereas only two were identified between [T] and [B] (Table S5). Again, the suggested
expression profiles of [T] and [B] individuals were more divergent compared to that of [S]
individuals, while differentiation between the [T] vs—.[B] was very small. The Ribosome
(K0O03010) and Oxidative phosphorylation (KO00190) were the most enriched pathways in
both [S] vs. [T] and [S] vs. [B] comparisons (Table S3, S4). This indicated that [T] and [B]

females had, in general, lower rates of energy production as well as protein biosynthesis.

Because we are able to rank each individual frog’s degree of acid tolerance based on our

previous work (Shu et al. 2016), we can test whether a frog’s acid tolerance is related to the

transcriptional activity. The correlation analyses found 292 unigenes that were significantly

correlated with acid tolerance. These genes have diverse functions ranging from signaling to

protein biosynthesis, which could be suitable targets for future functional work (SI2).

However, it is important to note that to really validate their relevance, future studies are

needed. The information of candidate genes were listed in Supplementary Information 2
SI2).

SSRs and SNPs

A total of 26 711 SSRs were identified across all unigenes, in which Mono-nucleotide repeats
(19 215), Di-nucleotide repeats (5 050) and Tri-nucleotide repeats (2 002) were the most
abundant SSR motif classes, and Quad-nucleotide repeat (345), Penta-nucleotide repeats (79)
and Hexa-nucleotide repeats (20) were detected at much lower frequencies (Fig. S1, Table
S1).

_A total of 231 274 SNPs were predicted across all unigenes. The number of SNPs in seven
individual cDNA library ranged from 63 354 to 86 608 (Fig. S2). The average Ts/Tv ratio

(the numbers of transitions and transversions at the SNP sites) of all SNPs was ca. 1.75.

The SSR or SNP data were not analyzed in detail for segregation among populations — as

sample size is small. However, as a first step we compared the homologous SNPs
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differentiated between population [S] (most acid sensitive) and population [T] (most acid
tolerant) that differ in acid tolerance. We found 420 candidate SNPs that could be suitable

targets for future functional work. The results are listed in Supplementary Information 3
SI3).

Discussion

Understanding the genetic architecture of maternal effects is important for our ability to
understand the relative contribution of genetic versus plastic effects in organismal phenotypes
and the eco-evolutionary processes of natural populations {(Meusseau-&-Fox-1998:-Rasanen
&Kruuk2007)(Mousseau & Fox 1998; Rasénen & Kruuk 2007). Yet given that maternal
effects are typically strongly environmentally induced, and that the phenotypic variance of

offspring is produced in the mother but their fitness consequences-are expressed in the
offspring, establishing their genetic basis is challenging — particularly in non-model systems.
We therefore applied RNA-seq analyses as a first step towards identifying candidate genes
for maternal effects that are mediated through the gelatinous egg coats (i.e. egg jelly) in R.
arvalis {Shu-et-al-2015b)(Shu et al. 2015b). We next provide first an overview of the general
genomic variation revealed, followed by a discussion of putative candidate genes for
maternal effects.

General genomic aspects

We characterized 124 071 unigenes from the R. arvalis transcriptome, and successfully
annotated 57 839 of them (46.6%). These unigenes most closely matched Xenopus (Silurana)
tropicalis (43.4%), followed by X. laevis (13.1%) and the liver fluke Clonorchis sinensis

(12.1%) (Fig. 2C). FhisruledopspetedstinareaswhereourRone s somslas ordainnte

lung-flukes-are-commoen{(Beolek-&Janewy-2007))-1t is at the first look somewhat surprising

that a substantial portion of the unigenes matched to a trematode parasites (Platyhelminthes)

rather than any vertebrate genomes. Given that the Xenopus genomes are well annotated, it is

possible that we have produced transcriptomes of two taxa (an approach that was recently

used to detect endoparasites (Santos et al. 2018). We therefore performed additional analyses

to test how much of the fluke genomes our R. arvalis dataset covers. We found that the

14



414  percentage of genes in fluke genomes that have hits in our dataset was very high (C. sinensis:

415  61.4%:; S. mansoni: 72.3%; S. japonicum: 58.0%), indicating that we indeed likely sequences

416  parasites in the oviduct wild moor frogs. Trematode parasites are common in amphibians

417  (Sears et al. 2012), but to our knowledge nothing is known of the oviduct parasites in R.

418  arvalis. Further studies are clearly needed to confirm this finding.

419

420  Gatada

421  related-frog-species;butalse-in-amphibians-as-a-whele-Although nu
422 available across a wide range of taxa, only a0a handful of amphibian genomes O&-tropicalis
423 and-Nanorana-perkeri)}-have been sequenced thus far {HeHlsten-etal2010;-Sun-etak

424  2015)(Elewa et al. 2017; Hammond et al. 2017; Hellsten et al. 2010; Nowoshilow et al. 2018;
425  Sun et al. 2015). This lack of amphibian genomes is mostly due to their large genome sizes
426  (due to large proportion of repeat sequences {Sun-et-al-—2015)(Sun et al. 2015)). ClearhyYet

427  clearly more work on amphibian genomics is needed given-thatas 1) amphibians are the most

merous genomes are now

428  ancient class of land-dwelling vertebrates and their genomic resources are essential for
429  understanding vertebrate development and evolution; 2) the understanding of evolutionary
430  processes of amphibian populations would greatly be facilitated by studies on the genomic
431  architecture of trait variation, and 3) because conservation of amphibians that are under

432 serious global decline (Hef-et-al—2011:-Stuart-et-al-2004)(Hof et al. 2011; Stuart et al. 2004)
433 could thus be facilitated (Calboli et al. 2011). The transeriptormerecently sequenced

434 transcriptomes of R. arvalis (this study) and other anidsRanidae (Birol et al. 2015; Helbing —{ Formatted: Font: Itaiic

435  2012;-Price-etal-2015;-Qiao-etal2013:-Zhang-etal-2013); Helbing 2012; Price et al. 2015;
436 Qiao et al. 2013; Robertson & Cornman 2014; Zhang et al. 2013)-recenthy-sequenced-withaid

437  in-developing-amphibian-genemicsreseurces: will aid in developing amphibian genomics

438  resources. As we used only oviduct tissue, while most other studies use other tissues (e.q.

439  liver, skin), a comparison of oviduct-specific transcriptomes with transcriptomes from other

440  tissues are needed to reliably identify oviduct-specific genes or expression profiles. For

441  instance, when compared with the recently developed transcriptomic resources for the green

442  frog Rana clamitans and chorus frog Pseudacris regilla (Robertson & Cornman 2014), the

443 percentage of genes in our dataset that have hits in their dataset are 40.61% (20 402/50 238)

444  and 40.62% (19 583/48 213) respectively, indicating a considerable proportion of candidate

445  oviduct-specific genes. Furthermore, the large number of potentially amplifiable SSRs and

446 SNP markers detected in this study (Supporting information) represent an important resource
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for applications in population genetics and for the detection of interesting functional genetic

variants {Li-et-al-2008;-Morin-et-al2004:-Schunteret-ak2014)(Li et al. 2008; Morin et al.
2004; Schunter et al. 2014).

Candidate genes for maternal effects: inside the egg jelly coat

Although there is substantial potential for a genetic basis ef-in maternal effects {Résadnen-&
Kruuk2007)(Résanen & Kruuk 2007), most studies aiming to identify maternal effect genes
have focused on their role in early embryonic development per se (Feng-etal—2000:Wu-etak
2003)(Tong et al. 2000; Wu et al. 2003). To what extent maternal effect genes contribute to
adaptive divergence of local populations and response to natural selection at early life stages

is therefore still largely unknown.

We identified two groups of candidate maternal effect genes based on their role in egg jelly
biosynthesis: mucin core protein genes and protein glycosylation genes. The mucin genes and
several-O-linked glycosylation genes are particularly likely candidates, given that amphibian
egg jelly_- including that of R. arvalis (Coppin et al. 1999a) - mostly consists of mucin type
O-linked glycoproteins (Coppin et al. 1999;-Guerardeletal-2000:-Streckeret-al-2003);
Guerardel et al. 2000; Strecker et al. 2003). Evidence for high mucin gene expression in the
oviduct has been found previously in Rana chensinensis (Zhang-et-al—2013)(Zhang et al.
2013) and XenepusX. tropicalis {Lang-et-al2016)(Lang et al. 2016). Whereas Mucin 2 is

expressed in various tissues, Mucin 5AC was reported to be exclusively expressed in the

oviduct of X. tropicalis. Although Mucins, particularly Mucin 5, are likely candidates for the
core protein in jelly coats, the role of different genes contributing to the glycosylation of the
jelly coat proteins are much more difficult to infer. For instance, the egg jelly coat of R.
arvalis consists of at least 19 different glycan building blocks (Coppin et al. 1999) and
preliminanyour own analyses indicate high among individual polymorphism in the
macromolecular composition of R. arvalis jelly is-highoverall (Shu et al. 2016+-) as well as in
glycans (Shu, Suter and R&sanen, unpublished data). Given the complexity of O-linked

glycosylation it is-therefere not surprising that multiple glycosylation genes are highly
expressed in the R. arvalis oviduct - and the genetic basis of jelly coat mediated adaptive
maternal effects could be complex.

In general, the genes representing likely candidate genes for egg jelly coat formation
sheweddid show a different expression pattern compared to the global profile (Fig. 7). For
instance, Mucin-5AC; and Mucin-5B and-(i.e. the major eempenentcomponents of jelly core
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proteins), were relatively highly expressed in the [T] individuals. However—in-general,
expression of the putative jelly coat genes was very diverse across the six individuals in our

data set (Fig. A—7). More detailed analyses on coding versus regulatory variation underlying

this heterogeneity as well as SNP genotyping of allelic variation across the acidification

gradient are important future avenues. However, it is important to note that the current data

only provides the first step that in future allows to test to what extent variation is due to

coding and/or transcriptional differences in the maternally influenced jelly coat (which, in

turn, affects embryonic survival).

The potential complexity of the jelly phenotype and its function is also highlighted in the
high degree of variation in expression of the putative jelly coat genes across different
individuals in our study (Fig. 7). Given the many important roles that the egg jelly coats play
in sperm-egg interactions, pathogen defense and responses to various environmental stressors
(reviewed in (Menkhorst-& Selwood-2008;-Shu-et-al—2015b)(Menkhorst & Selwood 2008;
Shu et al. 2015b)), this complexity is not surprising. Follow up work establishing the link
between the genotype (jelly coat coding genes and variation in the expression) — phenotype

(jelly coat glycome) - fitness (embryonic acid tolerance) map are needed to confirm the role
of the candidate genes is ongoing in our lab.

Conclusion
Conclusions

In conclusion, we identified several mucin and O-linked glycosylation genes that are highly
expressed in the oviduct of R. arvalis — and show high heterogeneity in expression. Given the
role of R. arvalis in a broad range of evolutionary ecological questions, we believe this
transcriptomic dataset andtogether with the predicted SSR and SNP markers (Supporting
information) will benefit future studies of molecular ecology and evolution in natural
populations. We further hope that our oviduct transcriptomes tayslay the ground for future
studies on the molecular evolution of jelly coat genes, thereby contributing to the emerging

field of glycobiology in evolutionary ecology {Shu-etal—2015b:-Springer-&-Gagneux
2016)(Shu et al. 2015b; Springer & Gagneux 2016), as well as studies on how these genes

contribute to responses to natural selection at early life stages and adaptive divergence of
local populations in particular. In particular, we hope that the genes identified here will aid in

disentangling the genetic architecture of egg coat evolution and adaptive maternal effects.
Deelorotions
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