1	De novo oviduct transcriptome of the moor frog Rana arvalis: a quest for
2	maternal effect candidate genes
3	Longfei Shu* 1. Jie Qiu 2 and Katja Räsänen Räsänen 1
4	Affiliations:
5	Eawag Eawag, Department of Aquatic Ecology, Switzerland and ETH Zürich, Institute of
6	Integrative Biology, Switzerland
7	² Institutue of Crop Science & Institute of Bioinformatics, College of Agriculture and
8	Biotechnology, Zhejiang University, Hangzhou 310058, China
9	
10	
11	Corresponding author:
12	Dr. Longfei Shu
13	Eawag, Department of Aquatic Ecology, Switzerland and ETH Zürich, Institute of Integrative
14	Biology, CH-8600 Dübendorf, Switzerland;
15	Email: longfei.shu@wustl.edu; Phone: +1-314-445-8037.
16	
17	*Current address: Department of Biology, Washington University in St. Louis, St. Louis,
18	MO 63130, USA
19	
20	Keywords: Amphibian; Egg coat; Glycosylation; Lake acidification; Maternal effect genes;
21	Moor frog; RNA Seq; Rana arvalis; Transcriptome
22	Running title: First transcriptome of the moor frog
23	
24	
25	
26	
27	

34	basis is challenging. One important, but largely neglected, source of maternal effects are egg
35	coats (i.e. the maternally derived extracellular matrix that surrounds the embryo). In Rana
36	arvalis, an emerging ecological and evolutionary amphibian model, the gelatinous egg coats
37	(i.e. egg jelly) are produced in the mother's oviduct and consist primarily of highly
38	glycosylated mucin type O-glycans. These O-glycans affect jelly water balance and,
39	subsequently, strongly contribute to adaptive divergence in embryonic acid tolerance.
40	To identify candidate genes for maternal effects, we conducted RNAseq transcriptomics on
41	oviduct samples from seven R. arvalis females, representing the full range of within and
42	among population variation in embryonic acid stress tolerance across our study populations.
43	De novo sequencing of these oviduct transcriptomes detected 124 071 unigenes and
44	functional annotation analyses identified a total of 57 839 unigenes, of which several
45	identified genes likely code for variation in egg jelly coats. These belonged to two main
46	groups: mucin type core protein genes and five different types of glycosylation genes. We
47	further predict 26 711 gene-linked microsatellite (SSRs) and 231 274 single nucleotide
48	(SNPs) polymorphisms.
49	Our study provides the first set of genomic resources for R. arvalis, an emerging model
50	system for the studies of ecology and evolution in natural populations, and will aid in gaining
51	insight to the genetic architecture of egg coat mediated maternal effects.
52	
53	
54	
55	Background
33	
56	Understanding evolutionary processes of natural populations necessitates a good
57	understanding of the genetic architecture of trait variation in an ecologically relevant context
58	(e.g. (Houle et al. 2010; Mitchell-Olds et al. 2007; Nadeau & Jiggins 2010)(Houle et al.
59	2010; Mitchell-Olds et al. 2007; Nadeau & Jiggins 2010). Maternal effects (the effects of
60	mothera mother's environment and phenotype on offspring performance) are an important
61	source of phenotypic variation and often under strong natural selection (reviewed in
	3

Maternal effects can substantially affect ecological and evolutionary processes in natural populations. However, as they often are environmentally induced, establishing their genetic

Abstract

31

32

```
(Mousseau & Fox 1998; Räsänen & Kruuk 2007)(Mousseau & Fox 1998; Räsänen & Kruuk
62
63
      2007). Maternal effects can influence speed and direction of evolution as well as facilitate
     local adaptation (Hangartner et al. 2012; Räsänen & Kruuk 2007; Shu et al. 2016; Wolf et al.
64
65
     1998)(Hangartner et al. 2012; Räsänen & Kruuk 2007; Shu et al. 2016; Wolf et al. 1998).
     However, as maternal effects are oftentypically at least partially environmentally induced,
66
67
      their genetic architecture is still poorly understood.
68
     Maternal effects can arise through various mechanisms, most commonly acknowledged
69
     through variation in egg size and content (reviewed in (Bernardo 1996; Mousseau & Fox
70
     1998 Mousseau & Fox 1998). A much less well acknowledged but important source of
     maternal effects are so called egg coats (Shu et al. 2015b) (Shu et al. 2015b). Egg coats. Egg
71
     coats (present in all sexually reproducing animals, as well as many asexual metazoans) are
72
     maternally derived, extracellular structures that consist of multiple functionally and
73
     structurally different layers (reviewed in (Menkhorst & Selwood 2008; Shu et al. 2015b;
74
75
     Wong & Wessel 2006) (Menkhorst & Selwood 2008; Shu et al. 2015b; Wong & Wessel
76
     2006)). These structures have many key functions, ranging from fertilization to embryonic
77
     protection (Shu et al. 2015b) (Shu et al. 2015b). The genetic basis of the innermost, so called
78
     oocyte coats, has been studied in several model systems, such as sea urchins and the abalone
79
     (Claw & Swanson 2012; Palumbi 2009 Palumbi 2009), the moth Bombyx mori (Papantonis et
80
     al. 2015)(Papantonis et al. 2015) and the frog Xenopus laevis (Hedrick 2008; Shu et al.
81
     2015b)(Hedrick 2008; Shu et al. 2015b). However, the genetic basis of the outeroutermost
     gelatinous egg coats—that surround embryos of many, often found in taxa where embryos
82
83
     develop externally in the surrounding environment (e.g. various invertebrates, fish and
84
     amphibians), is to date effectively unstudied (reviewed in (Shu et al. 2015b)).
      Recently, we showed that in In the moor frog Rana arvalis, jelly coat mediated maternal
85
     effects have driven adaptive divergence in embryonic acid stress tolerance (Hangartner et al.
86
     2011; Persson et al. 2007; Räsänen et al. 2003; Shu et al. 2015a; Shu et al. 2016; Shu et al.
87
     2015c)(Hangartner et al. 2011; Persson et al. 2007; Räsänen et al. 2003b; Shu et al. 2015a;
88
89
     Shu et al. 2016; Shu et al. 2015c). JellyThis divergence is primarily due to glycoproteins of
90
     the jelly coats, which influence water balance and, subsequently, embryonic survival in acidic
     conditions (Shu et al. 2015a)(Shu et al. 2015a). Egg jelly coats consist of glycoproteins, with
91
92
     are complex glycan structures attached to a protein backbone (Hedrick & Nishihara
     1991)(Hedrick & Nishihara 1991) and are highly species specific (Coppin et al. 1999;
93
     Delplace et al. 2002; Strecker et al. 2003); Strecker et al. 2003). Given this complexity, the
94
```

Field Code Changed

```
96
       and the activities of enzymes that impact how different branches are attached (Shu et al.
 97
       2015b)(Shu et al. 2015b). This makes identifying the genetic basis of jelly coat variability
 98
       highly challenging - particularly so in natural populations not amenable to experimental
       cross-generational rearing or genetic manipulations. Here next generation sequencing tools,
 99
       in particular RNA-seq, can be helpful (Todd et al. 2016; Wang et al. 2009)(Todd et al. 2016;
100
101
       Wang et al. 2009). Here we applyapplied de novo transcriptomics to get first insight to jelly
       coat genes in the moor frog (RanaR. arvalis). We conducted tissue specific RNA-seq
102
103
       on the oviducts of R. arvalis oviducts, where jelly coat biosynthesis takes place (Hedrick &
104
       Nishihara 1991) (Hedrick & Nishihara 1991).
       Despite the increasing numbers of genomes being sequenced, the genomic resources for
105
106
       amphibians remain depauperate as are sparse and only two a handful of amphibian genomes
107
       (Xenopus tropicalis and Nanorana perkeri)-have been sequenced so far (Hellsten et al. 2010;
108
       Sun et al. 2015)(Elewa et al. 2017; Hammond et al. 2017; Hellsten et al. 2010; Nowoshilow
109
       et al. 2018; Sun et al. 2015). This is an important shortcoming, given that amphibians are
110
       common model systems for a range of ecotoxicological (Helbing 2012) (Helbing 2012),
111
       ecological and evolutionary studies, the latter ranging from spatial patterns of phenotypic and
       genetic divergence (Egea-Serrano et al. 2014; Richter-Boix et al. 2011; Van Buskirk & Arioli
112
113
       2005); Richter-Boix et al. 2011; Van Buskirk & Arioli 2005) to developmental plasticity
114
       (Gomez-Mestre et al. 2006)(Gomez-Mestre et al. 2006) and adaptive maternal effects
115
       (Mousseau & Fox 1998; Räsänen et al. 2003; Shu et al. 2016; Shu et al. 2015c) (Mousseau &
116
       Fox 1998; Räsänen et al. 2003b; Shu et al. 2016; Shu et al. 2015c).
117
       To bridge this knowledge gap - and as a first step to identify candidate genes for egg coat
       mediated maternal effects - we here apply tissue specific transcriptomics on R. arvalis
118
119
       oviducts. In doing so, we complement recent transcriptomics studies on other Ranid species
120
       (Birol et al. 2015; Helbing 2012; Price et al. 2015; Qiao et al. 2013; Zhang et al. 2013);
121
       Helbing 2012; Price et al. 2015; Qiao et al. 2013; Robertson & Cornman 2014; Zhang et al.
122
       2013) and increase availability of genomics resources for amphibians in general. As our
123
       specific interest is in identifying putative genes underlying egg jelly coat variation, we
124
       collected samples from the oviduct on seven R. arvalis individuals bracketingencompassing
125
       the full range of embryonic acid tolerance variation among and within our study populations
126
       (Hangartner et al. 2011; Shu et al. 2015a; Shu et al. 2015c)(Hangartner et al. 2011; Shu et al.
127
       2015a; Shu et al. 2015c). We implemented de novo transcriptome sequencing and. We
```

jelly coats can be coded by multiple genes that regulate – for instance – the protein backbone

128	focused particularly on identifying genes related to biosynthesis of mucin type O-linked
129	glycans. In addition, we provide the first set of transcriptomic and genome wide molecular
130	markers for R. arvalis. this study provides the first transcriptomes for R. arvalis, and add more
131	genome wide markers in addition to existing resources (Brelsford et al. 2017).
132	Materials and Methods
133	Study system
134	R. arvalis is an anuran amphibian, broadly distributed across the western Palearctic (Glandt
135	2006). Individuals from three R. arvalis populations (Tottajärn, [T-], Bergsjö, [B] and
136	Stubberud, [S+]) breeding in permanent ponds along an acidification gradient in southwestern
137	Sweden were used in this study (Hangartner et al. 2011; Shu et al. 2015a; Shu et al. 2016;
138	Shu et al. 2015b; Shu et al. 2015e)(Hangartner et al. 2011; Shu et al. 2015a; Shu et al. 2016;
139	Shu et al. 2015b; Shu et al. 2015c) These ponds differ in pH due to a mix of natural
140	acidification processes, variation in bedrock buffering capacity and acid rain (Räsänen et al.
141	2003a; Räsänen et al. 2003b). These populations were chosen asbecause, based on former
142	common garden experiments ((Hangartner et al. 2012; Shu et al. 2015c), they represent the
143	extreme ends of adaptive divergence along an acidification gradient in in embryonic acid
144	stress tolerance (i.e. [S] most acid sensitive; [B] intermediate tolerance; [T] most acid
145	tolerant; (Hangartner et al. 2012; Shu et al. 2015c)).). The pH in these ponds ranges from
146	highly acidic (pH 4, site [T]) to intermediate (pH 6, site [B]) to neutral (pH 7.5, [S).]).
147	During the breeding season of 2012, females in breeding condition were collected and
148	transported to the laboratory at Uppsala University (59°50'N, 17°50'E). The females were
149	maintained in containers with moist Sphagnum moss (antibacterial medium) in a climate
150	chamber at 2-4°C until artificial crosses (see below) and RNA sampling were conducted a
151	few days later. The females used for this transcriptomics study consist of a subset (out of 7 to
152	10 females/population) used in artificial crosses of females that were artificially crossed to
153	establish acid tolerance of embryos in a common garden laboratory experiment and to study
154	variation in macromolecular composition of egg jelly coats (for details see (Shu et al. 2016;
155	Shu et al. 2015e)(Shu et al. 2016; Shu et al. 2015c)). The experiments were conducted under
156	permissions from the Västra Götaland county board (collection permit: Dnr 522-6666-2011)
157	and the Ethical committee (Dnr C65/11) for animal experiments in Uppsala County.

Sampling and RNA extraction

To bracket a broad range of genetic backgrounds, the individuals chosen (a total N = 6) for RNA analyses of six females were selected chosen so as to represent females that produced the most acid tolerant (highest embryonic survival at acidic pH in a common garden experiment) and most acid sensitive elutch(lowest embryonic survival at acidic pH in a common garden experiment) clutches both among and within each of the three populations in Shu et al. (Shu et al. 2015e). (Shu et al. 2016). In addition, we included a sample from one female that had not yet fully ovulated, hence providing a reference for gene expression at an earlier stage of egg coat production-(Supplementary material). For each female, RNA of the whole oviduct (i.e. specific tissue where egg jelly is produced; (Hedrick & Nishihara 1991)(Hedrick & Nishihara 1991) was collected-and stored in RNA later at -20 °C until extraction. RNA extraction was conducted using TRIzol (Life Technologies) according to the manufacturer's protocol, followed by DNase (Qiagen) treatment to eliminate potential genomic DNA contamination. Both the concentration and integrity of the RNA samples for transcriptomic analyses were evaluated with the Angilent 2100 Bioanalyzer. All samples had an RNA integrity value (RIN) > 8 and were, hence, used to construct the cDNA libraries (Schroeder et al. 2006)(Schroeder et al. 2006). cDNA library construction and sequencing cDNA libraries were generated using the TruSeq RNA-Seq Sample Prep kit according to the manufacturer's protocol (Illumina Inc., San Diego, CA, USA). Briefly, magnetic beads with Oligo_(dT) were used to isolate the poly(A)+ mRNA. Fragmentation buffer was added in the presence of divalent cations to break the mRNA into short fragments of approximately 200 bp. Short fragments were purified with QiaQuick PCR extraction kit, followed by end reparation, adding poly(A) and sequencing adapters. The suitable fragments were selected for the PCR amplification as templates. In total, seven cDNA libraries were constructed and sequenced using the Illumina HiSeqTM 2000 (90 bp paired-end reads). The sequencing reactions were conducted at the Beijing Genomics Institute (BGI), Shenzhen. Assembly and annotation Raw reads were filtered to remove reads containing adaptors, reads with unknown nucleotides greater than 5% and low-quality reads with more than 20% bases of quality value \leq 10 (filter_fq, BGI). Only clean reads were used in the following analyses. Transcriptome de novo assembly was carried out using the assembly program Trinity (Grabherr et al. 2011) (Grabherr et al. 2011). Briefly, the software first combined reads of certain lengths of

159

160

161

162

163 164

165

166 167

168

169

170

171

172 173

174

175

176

177

178

179

180

181

182

183

184

185

186

187 188

189

192	were connected until extension proceeded on neither end (Grabherr et al. 2011)(Grabherr et
193	al. 2011). After removing any redundancy, the resulted sequences were defined as unigenes.
194	Software and their parameters are listed belowwere: Trinity (seqType fq
195	min_contig_length 100;min_glue 4group_pairs_distance 250;
196	path_reinforcement_distance 85min_kmer_cov 4); TGICL (-1 40 -c 10 -v 20); Phrap (-
197	repeat_stringency 0.95 -minmatch 35 -minscore 35).
198	Unigene annotation provides information of expression and functional annotation of Unigene
199	Unigene sequences were first annotated using blastx against the database Nr
200	(http://www.ncbi.nlm.nih.gov/), with a cut-off E-value of 1e-5. To acquire a more
201	comprehensive annotation, Unigene sequences were also aligned to the protein databases
202	Swiss-Prot, KEGGKyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology
203	(GO) (1e-5) by blastx. In order to predict and classify the possible functions of the unigenes,
204	they were additionally annotated to Cluster of Orthologous Group (COG), which classifies
205	orthologous gene products (Tatusov et al. 2003). Software and their parameters are listed
206	belowwere: BLAST (-F F -e 1e-5 -p blastn; -F F -e 1e-5 -p blastx); Blast2GO (Default);
207	Path_finder (Default).
208	Protein Coding Sequence Prediction (CDS)
209	Unigenes were aligned by blastx (e value < 0.00001) to protein databases in the priority order
210	of NR, Swiss-Prot, KEGG and COG. Unigenes aligned to a higher priority database were no
211	aligned to lower priority database. Proteins with highest ranks in the blast results were used
212	to decide the coding region sequences of the Unigenes. The coding region sequences were
213	subsequently translated into amino acid sequences with the standard codon table. This
214	produced both the nucleotide sequences (5'->3') and amino acid sequences of the Unigene
215	coding region. Unigenes that could not be aligned to any database were scanned by ESTScan
216	(Iseli et al. 1999)(Iseli et al. 1999), producing nucleotide sequence (5'->3') direction and
217	amino sequence of the predicted coding region.
218	Metabolic pathway analysis
219	To investigate the functions of the unigenes in metabolic process, we acquired pathway
220	annotation by mapping the unigenes to Gene Ontology (GO) and Kyoto Encyclopedia of
221	Genes and Genomes (KEGG) database (Kanehisa et al. 2008)(Kanehisa et al. 2008). Gene

Ontology (GO) database is a relational database, which has three ontologies: molecular

overlap to form contigs. Subsequently, the reads were mapped back to the contigs, which

191

223	function, cellular component and biological process. KEGG is a database for understanding
224	high-level functions and utilities of the biological system. It is able to analyze gene products
225	during metabolism and cellular processes and allowed us to get pathway annotation for
226	unigenes. We used the Blast2GO program with default setting to acquire GO and KEGG
227	annotation of Unigenes (Tarazona et al. 2011)(Tarazona et al. 2011).
228	Identification of candidate genes for maternal effects
229	Based on prior work, jelly coats of <i>R. arvalis</i> and other amphibians As(Coppin et al. 1999;
230	Guerardel et al. 2000; Strecker et al. 2003) mostly consist of mucin type O-glycans, making
231	genes related to mucins and to O-glycan biosynthesis particularly relevant as maternal effect
232	genes. Therefore we considered as candidate genes related to R. arvalis egg jelly coats (Shu
233	et al. 2015b)(Shu et al. 2015b), we considered unigenes that i) were expressed in all
234	individuals, ii) were mapped to the category of "extracellular matrix" in GO and KEGG
235	annotations and iii) were involved in the glycosylation process-of the egg jelly Based on
236	prior work, jelly coats of R. arvalis and other amphibians (Coppin et al. 1999; Guerardel et
237	al. 2000; Strecker et al. 2003) mostly consist of mucin type O-glycans, making genes related
238	to mucins and to O-glycan biosynthesis particularly relevant as maternal effect genes.
239	-Preliminary differential expression analysis
240	Unigene expression was calculated using the FPKM (Fragments Per kb per Million reads),
241	which can eliminate the influence of different gene length and sequencing level on the
242	calculation of gene expression (Mortazavi et al. 2008)(Mortazavi et al. 2008). Group
243	$comparison \underline{between\ populations}\ was\ performed\ using\ the\ R\ Bioconductor\ package\ NOISeq,$
244	
	which is a data-adaptive and nonparametric method (Tarazona et al. 2011)(Tarazona et al.
245	which is a data-adaptive and nonparametric method (Tarazona et al. 2011)(Tarazona et al. 2011). We defined Probability ≥ 0.8 and the absolute value of Log2Ratio ≥ 1 as the threshold
245 246	
	2011) ₇ . We defined Probability \ge 0.8 and the absolute value of Log2Ratio \ge 1 as the threshold
246	2011). We defined Probability ≥ 0.8 and the absolute value of Log2Ratio ≥ 1 as the threshold to judge the significance of gene expression difference between populations. KEGG
246 247	2011). We defined Probability ≥ 0.8 and the absolute value of Log2Ratio ≥ 1 as the threshold to judge the significance of gene expression difference between populations. KEGG enrichment analysis was performed with a Fisher's exact test in Blast2GO (Tarazona et al.
246 247 248	2011). We defined Probability ≥ 0.8 and the absolute value of Log2Ratio ≥ 1 as the threshold to judge the significance of gene expression difference between populations. KEGG enrichment analysis was performed with a Fisher's exact test in Blast2GO (Tarazona et al. 2011). Pathway enrichment analysis identifies significantly enriched
246 247 248 249	2011). We defined Probability ≥ 0.8 and the absolute value of Log2Ratio ≥ 1 as the threshold to judge the significance of gene expression difference between populations. KEGG enrichment analysis was performed with a Fisher's exact test in Blast2GO (Tarazona et al. 2011) (Tarazona et al. 2011). Pathway enrichment analysis identifies significantly enriched metabolic pathways or signal transduction pathways in differential expressed genes (DEGs).

Genetic marker resources

Formatted: Space After: 10 pt

254	To aid population genomic analyses for taxa were no genome is available, RNA-seq data can
255	be used to identify genomic markers, such as Simple sequence repeats (SSR) and Single
256	nucleotide polymorphisms (SNPs), in transcribed regions (Lopez-Maestre et al. 2016)(Lopez-
257	Maestre et al. 2016). Here weWe therefore used the oviduct RNA-seq data to predict SSR
258	and SNP markers, to be which allows later validated for validation of targeted questions
259	(Lopez-Maestre et al. 2016)(Lopez-Maestre et al. 2016), such as allelic frequency variation
260	of the candidate genes in the source populations.
261	SSRs were identified in the final assembly with the software MicroSAtellite (MISA,
262	http://pgrc.ipk-gatersleben.de/misa/) using unigenes as the reference. Assembled contigs were
263	scanned for SNPs with SNP detection software SOAPsnp (Li et al. 2008)(Li et al. 2008). The
264	program can assemble consensus sequence for the genome of a newly sequenced individual
265	based on the alignment of the raw sequencing reads on the unigenes. The program calculated
266	the likelihood of each genotype at each site based on the alignment of short reads to a
267	unigene, set together with the corresponding sequencing quality scores. It then infers the
268	genotype with highest posterior probability at each site based on Bayes' theorem (the reverse
269	probability model (Li et al. 2008)(Li et al. 2008)). Therefore, the intrinsic bias or errors that
270	are common in Illumina sequencing data have been taken into account and the quality values
271	for use in inferring consensus sequence have been recalibrated. Software and their parameters
272	are listed belowwere: SOAPsnp (Release 1.03, http://soap.genomics.org.cn/soapsnp.html, -u t
273	-Q i -L 90).
274	Additional analyses
275	To test whether embryonic acid tolerance is related to the transcriptional activity, we
276	performed correlation analysis between the acid tolerance of each individual and the
277	expression of each unigene (FPKM) by PYTHON. A strict correlation threshold was applied
278	(Pearson correlation, $ r > 0.9$ and p-value < 0.01). To test how much of the fluke genomes
279	our R. arvalis dataset cover, we downloaded the genomes of 3 flukes (Clonorchis sinensis,
280	Schistosoma mansoni, Schistosoma japonicum) from the wormbase
281	(https://parasite.wormbase.org/), and BLAST them (BLATP, E-value < 1e-7) against our
282	unigenes dataset. To examine whether there are any hits from our database to the recently
283	developed transcriptomic resources for the green frog Rana clamitans and chorus frog
284	Pseudacris regilla (Robertson & Cornman 2014), we downloaded the assembled
285	transcriptomes from NCBI BioProjects (PRJNA162931 and PRJNA163143), and used them
286	as query to blast against our Unigene database (BLASTX, E-value < 1e-7).

Sequencing and assembly 288 In total, 53 330 025 420 bp bases were generated from the R. arvalis oviduct transcriptome. 289 290 Total clean reads of the seven cDNA libraries ranged from 81 166 804 to 87 485 924 (Table 1), with an average GC content of 44.95%. In the final assembly, 69 98787 401 to 112 136 291 292 unigenes were detected across the sevensix cDNA libraries (Table 2). Interestingly, for the 293 immatureone female has less that had not yet ovulated fewer unigenes (69 987) were detected 294 than mature for the remaining females-(that had ovulated). When the cDNA libraries were 295 pooled, a total of 124 071 unigenes were detected, with an N50 of 1, 212 bp and a total length 296 of 90.3 Mb. The average length of the unigenes was 728 bp (the size distribution of the 297 unigenes is shown in Fig. Fig. 1). 298 Transcriptome annotation The E-value distributions of the unigenes showed that approximately 60% of the unigenes 299 300 had very strong homogeny (< 1e-30) with the Nr database, while the rest ranged from 1e-5 to 1e-30 (Fig. 2A). Thirty percent of the unigene sequences had over 80% similarity with the Nr 301 database, while the similarity of the remaining 70% of sequences ranged from 17% to 80% 302 (Fig. 2B). The *R. arvalis* sequences matched best with *Xenopus* (*Silurana*) tropicalis (43.4%), 303 304 followed by Xenopus laevis (13.1 %, Fig. 2C) and the liver fluke Clonorchis sinensis (12.1 % Fig. 2C). 305 Functional classes were successfully annotated for 13 501 unigenes using COG (Fig. 3, 4). 306 BLASTX against Swiss-Prot, KEGG, NT and GO database resulted in 37 262, 31 405, 39 307 308 138 and 24 452 hits, respectively (Fig. 4). Altogether, 57 839 R. arvalis unigenes (46.6% of 309 all 124 071 unigenes) had significant matches with existing databases (Fig. 4). Among the 124 071 unigenes, 48 850 (39.4%) were predicted as Protein coding sequences (CDS). Of 310 these, 44 809 unigenes were aligned using existing databases, while 4 041 unigenes 311 312 which that could not be annotated with any database were predicted by EST Scan. The length 313 distribution of the CDS protein sequences is available in the Supporting information. 314 Functional pathway annotation A total of 24 452 unigenes (42.27% of all annotated unigenes) were successfully categorized 315 into 60 GO functional groups (Fig. 5). These were classified to three major categories: 316 317 biological processes (23), cellular components (18) and molecular functions (19) (Fig. 5). A

Results

319 assigned to 259 known KEGG pathways (Table S2). The highly enriched pathways included: 320 metabolic pathways (3796, 12.09%), purine metabolism (1910, 6.08%), regulation of actin 321 cytoskeleton (1202, 3.83%), focal adhesion (1161, 3.7%) and calcium signaling pathway (1159, 3.69%). 322 323 Candidate genes for egg jelly coat 324 We identified two groups of candidate genes likely related to egg jelly coats: 1) core protein genes (Table 3) and 2) protein glycosylation genes (Table 4). The major components of egg 325 326 jelly core protein (extracellular matrix fiber, ECM) are mucin and collagen (Haymucins 327 (Hedrick 1991), of which 13 and 11 different types, respectively, were detected in our dataset (Table 3). Within the Mucin gene family, Mucin-5AC, Mucin-5B and Mucin-2 were very 328 329 highly expressed (Table 3) and the most abundant transcripts of all unigenes. In addition, 330 previous evidence suggests that the Mucin-5 gene is expressed exclusively in the X. tropicalis 331 oviduct, making Mucin-5 genes likely candidates for egg jelly coat genes (Lang et al. 332 2016)(Lang et al. 2016). Several other minor components were also identified 333 (Dermatopontin, Fibulin-5 and Fibrinogen-like protein 1, Decorin, EMILIN-1, Fibrillin-1, 334 Fibronectin and Laminin) (Table 3). In addition to the candidate core protein genes, five major biosynthesis pathways involved in 335 protein glycosylation were identified based on KEGG: Mucin type O-Glycans, Other types 336 of O-glycans, Heparan sulfate, Chondroitin sulfate and Keratan sulfate (Table 4). Of these, 337 338 Mucin type O-Glycan genes are the most likely candidates for egg jelly coat glycosylation (Coppin et al. 1999; Lang et al. 2016); Lang et al. 2016) (Fig. 6). Of the eight types of Mucin 339 340 type O-Glycans, only genes related to cores 1, 2, 3, 4 and 6 Mucin type O-Glycan 341 biosynthesis were detected, while cores 5, 7 and 8 were not expressed in R. arvalis (Fig. 6). 342 Preliminary differential expression analysis Differentially expressed genes (i.e. DEGs) were identified by pairwise comparisons between 343 344 each population pair $(([S] \text{ vs } [T_{-}], [S] \text{ vs } [B_{-}], [T] \text{ vs } [B_{7}])$ of six of the immature females (the 345 not ovulated female was excluded). from these analyses). Overall, 4457, 4198 and 3691 346 differentially expressed genes were identified between [S] vs [T,], [S] vs [B] and [T] vs [B,], 347 respectively-(Figure S3). In general, [T] and [B] individuals had much lower gene expression

levels compared to S individuals- (Figure S3). For instance, 3397 and 3388 genes were down-

regulated in the [T] and [B] individuals compared to the [S] individuals, while only 1060 and

total of 31 405 unigenes (54.29% of all annotated unigenes) were annotated in KEGG, and

318

350	810 genes were up-regulated in [T] individuals compared to the [S] individuals. (Figure S3).
351	The smallest number of differentially-expressed genes occurred between the [T] and [B]
352	individuals, where 2256 were up-regulated and 1435 were down-regulated in [T] versus [B]
353	individuals-(Figure S3).
354	Enrichment of KEGG pathway in the differentially expressed unigenes was assessed using a
355	Fisher's exact test (FDR $<$ 0.05). The FDR analyses identified 37 and 49 significantly
356	enriched KEGG pathways in [T] (Table S4) and [B] (Table S3) compared to [S] individuals,
357	whereas only two were identified between [T] and [B] (Table S5). Again, the suggested
358	expression profiles of [T] and [B] individuals were more divergent compared to that of [S]
359	individuals, while differentiation between the $[T]$ vs - $[B]$ was very small. The Ribosome
360	(KO03010) and Oxidative phosphorylation (KO00190) were the most enriched pathways in
361	both [S] vs. [T] and [S] vs. [B] comparisons (Table S3, S4). This indicated that [T] and [B]
362	females had, in general, lower rates of energy production as well as protein biosynthesis.
363	Because we are able to rank each individual frog's degree of acid tolerance based on our
364	previous work (Shu et al. 2016), we can test whether a frog's acid tolerance is related to the
365	transcriptional activity. The correlation analyses found 292 unigenes that were significantly
366	correlated with acid tolerance. These genes have diverse functions ranging from signaling to
367	protein biosynthesis, which could be suitable targets for future functional work (SI2).
368	However, it is important to note that to really validate their relevance, future studies are
369	needed. The information of candidate genes were listed in Supplementary Information 2
370	<u>(SI2).</u>
371	SSRs and SNPs
372	A total of 26 711 SSRs were identified across all unigenes, in which Mono-nucleotide repeats
373	(19 215), Di-nucleotide repeats (5 050) and Tri-nucleotide repeats (2 002) were the most
374	abundant SSR motif classes, and Quad-nucleotide repeat (345), Penta-nucleotide repeats (79)
375	and Hexa-nucleotide repeats (20) were detected at much lower frequencies (Fig. S1, Table
376	S1).
377	_A total of 231 274 SNPs were predicted across all unigenes. The number of SNPs in seven
378	individual cDNA library ranged from 63 354 to 86 608 (Fig. S2). The average Ts/Tv ratio
379	(the numbers of transitions and transversions at the SNP sites) of all SNPs was ca. 1.75.
380	The SSR or SNP data were not analyzed in detail for segregation among populations – as
381	sample size is small. However, as a first step we compared the homologous SNPs

382 differentiated between population [S] (most acid sensitive) and population [T] (most acid 383 tolerant) that differ in acid tolerance. We found 420 candidate SNPs that could be suitable 384 targets for future functional work. The results are listed in Supplementary Information 3 385 (SI3). Discussion 386 387 Understanding the genetic architecture of maternal effects is important for our ability to understand the relative contribution of genetic versus plastic effects in organismal phenotypes 388 389 and the eco-evolutionary processes of natural populations (Mousseau & Fox 1998; Räsänen 390 & Kruuk 2007)(Mousseau & Fox 1998; Räsänen & Kruuk 2007). Yet given that maternal 391 effects are typically strongly environmentally induced, and that the phenotypic variance of 392 offspring is produced in the mother but their fitness consequences are expressed in the 393 offspring, establishing their genetic basis is challenging – particularly in non-model systems. We therefore applied RNA-seq analyses as a first step towards identifying candidate genes 394 395 for maternal effects that are mediated through the gelatinous egg coats (i.e. egg jelly) in R. 396 arvalis (Shu et al. 2015b) (Shu et al. 2015b). We next provide first an overview of the general genomic variation revealed, followed by a discussion of putative candidate genes for 397 maternal effects. 398 399 General genomic aspects We characterized 124 071 unigenes from the R. arvalis transcriptome, and successfully 400 annotated 57 839 of them (46.6%). These unigenes most closely matched *Xenopus* (*Silurana*) 401 402 tropicalis (43.4%), followed by X. laevis (13.1%) and the liver fluke Clonorchis sinensis 403 (12.1%) (Fig. 2C). This fluke does not exist in areas where our R arvalis samples originate 404 from and, hence, this relatively high match to the lung fluke is most likely due to poor 405 annotation of amphibian genomes (as only two amphibian genomes sequenced thus far). It is also possible that genes expressed in the amphibian oviduet may in part orthologous with that 406 of liver fluke, or R. arvalis may have been infested by other genetically related parasites (e.g. 407 408 lung flukes are common (Bolek & Janovy 2007)). It is at the first look somewhat surprising 409 that a substantial portion of the unigenes matched to a trematode parasites (Platyhelminthes) 410 rather than any vertebrate genomes. Given that the Xenopus genomes are well annotated, it is 411 possible that we have produced transcriptomes of two taxa (an approach that was recently 412 used to detect endoparasites (Santos et al. 2018). We therefore performed additional analyses

to test how much of the fluke genomes our R. arvalis dataset covers. We found that the

414 percentage of genes in fluke genomes that have hits in our dataset was very high (C. sinensis: 415 61.4%; S. mansoni: 72.3%; S. japonicum: 58.0%), indicating that we indeed likely sequences 416 parasites in the oviduct wild moor frogs. Trematode parasites are common in amphibians 417 (Sears et al. 2012), but to our knowledge nothing is known of the oviduct parasites in R. arvalis. Further studies are clearly needed to confirm this finding. 418 419 More than half of the unigenes in our database could not be annotated with any existing 420 databases. This mostly reflects the lack of genomics resources in R. arvalis or any closely 421 related frog species, but also in amphibians as a whole. Although numerous genomes are now 422 available across a wide range of taxa, only two a handful of amphibian genomes (X. tropicalis 423 and Nanorana perkeri) have been sequenced thus far (Hellsten et al. 2010; Sun et al. 424 2015)(Elewa et al. 2017; Hammond et al. 2017; Hellsten et al. 2010; Nowoshilow et al. 2018; 425 Sun et al. 2015). This lack of amphibian genomes is mostly due to their large genome sizes 426 (due to large proportion of repeat sequences (Sun et al. 2015)(Sun et al. 2015)). Clearly Yet 427 clearly more work on amphibian genomics is needed given thatas 1) amphibians are the most 428 ancient class of land-dwelling vertebrates and their genomic resources are essential for 429 understanding vertebrate development and evolution; 2) the understanding of evolutionary 430 processes of amphibian populations would greatly be facilitated by studies on the genomic 431 architecture of trait variation, and 3) because conservation of amphibians that are under serious global decline (Hof et al. 2011; Stuart et al. 2004) (Hof et al. 2011; Stuart et al. 2004) 432 433 could thus be facilitated (Calboli et al. 2011). The transcriptomerecently sequenced 434 transcriptomes of R. arvalis (this study) and other ranids Ranidae (Birol et al. 2015; Helbing 435 2012; Price et al. 2015; Qiao et al. 2013; Zhang et al. 2013); Helbing 2012; Price et al. 2015; 436 Qiao et al. 2013; Robertson & Cornman 2014; Zhang et al. 2013) recently sequenced will aid 437 in developing amphibian genomics resources. will aid in developing amphibian genomics 438 resources. As we used only oviduct tissue, while most other studies use other tissues (e.g. 439 liver, skin), a comparison of oviduct-specific transcriptomes with transcriptomes from other 440 tissues are needed to reliably identify oviduct-specific genes or expression profiles. For 441 instance, when compared with the recently developed transcriptomic resources for the green 442 frog Rana clamitans and chorus frog Pseudacris regilla (Robertson & Cornman 2014), the 443 percentage of genes in our dataset that have hits in their dataset are 40.61% (20 402/50 238) 444 and 40.62% (19 583/48 213) respectively, indicating a considerable proportion of candidate 445 oviduct-specific genes. Furthermore, the large number of potentially amplifiable SSRs and

SNP markers detected in this study (Supporting information) represent an important resource

446

Formatted: Font: Italic

447 for applications in population genetics and for the detection of interesting functional genetic variants (Li et al. 2008; Morin et al. 2004; Schunter et al. 2014)(Li et al. 2008; Morin et al. 448 449 2004; Schunter et al. 2014). Candidate genes for maternal effects: inside the egg jelly coat 450 451 Although there is substantial potential for a genetic basis of in maternal effects (Räsänen & 452 Kruuk 2007) (Räsänen & Kruuk 2007), most studies aiming to identify maternal effect genes 453 have focused on their role in early embryonic development per se (Tong et al. 2000; Wu et al. 454 2003) (Tong et al. 2000; Wu et al. 2003). To what extent maternal effect genes contribute to 455 adaptive divergence of local populations and response to natural selection at early life stages is therefore still largely unknown. 456 457 We identified two groups of candidate maternal effect genes based on their role in egg jelly 458 biosynthesis: mucin core protein genes and protein glycosylation genes. The mucin genes and 459 several-O-linked glycosylation genes are particularly likely candidates, given that amphibian 460 egg jelly - including that of R. arvalis (Coppin et al. 1999a) - mostly consists of mucin type 461 O-linked glycoproteins (Coppin et al. 1999; Guerardel et al. 2000; Strecker et al. 2003); 462 Guerardel et al. 2000; Strecker et al. 2003). Evidence for high mucin gene expression in the 463 oviduct has been found previously in Rana chensinensis (Zhang et al. 2013)(Zhang et al. 464 2013) and XenopusX. tropicalis (Lang et al. 2016)(Lang et al. 2016). Whereas Mucin 2 is 465 expressed in various tissues, Mucin 5AC was reported to be exclusively expressed in the 466 oviduct of X. tropicalis. Although Mucins, particularly Mucin 5, are likely candidates for the 467 core protein in jelly coats, the role of different genes contributing to the glycosylation of the 468 jelly coat proteins are much more difficult to infer. For instance, the egg jelly coat of R. arvalis consists of at least 19 different glycan building blocks (Coppin et al. 1999) and 469 470 preliminary our own analyses indicate high among individual polymorphism in the 471 macromolecular composition of R. arvalis jelly is highoverall (Shu et al. 2016,) as well as in glycans (Shu, Suter and Räsänen, unpublished data). Given the complexity of O-linked 472 473 glycosylation it is therefore not surprising that multiple glycosylation genes are highly 474 expressed in the R. arvalis oviduct - and the genetic basis of jelly coat mediated adaptive 475 maternal effects could be complex. 476 In general, the genes representing likely candidate genes for egg jelly coat formation 477 showeddid show a different expression pattern compared to the global profile (Fig. 7). For

instance, Mucin-5AC, and Mucin-5B and (i.e. the major components of jelly core

proteins), were relatively highly expressed in the [T] individuals. However, in general, expression of the putative jelly coat genes was very diverse across the six individuals in our data set (Fig. 7). More detailed analyses on coding versus regulatory variation underlying this heterogeneity as well as SNP genotyping of allelic variation across the acidification gradient are important future avenues. However, it is important to note that the current data only provides the first step that in future allows to test to what extent variation is due to coding and/or transcriptional differences in the maternally influenced jelly coat (which, in turn, affects embryonic survival).

The potential complexity of the jelly phenotype and its function is also highlighted in the high degree of variation in expression of the putative jelly coat genes across different individuals in our study (Fig. 7). Given the many important roles that the egg jelly coats play in sperm-egg interactions, pathogen defense and responses to various environmental stressors (reviewed in (Menkhorst & Selwood 2008; Shu et al. 2015b)(Menkhorst & Selwood 2008; Shu et al. 2015b)), this complexity is not surprising. Follow up work establishing the link between the genotype (jelly coat coding genes and variation in the expression) – phenotype (jelly coat glycome) - fitness (embryonic acid tolerance) map are needed to confirm the role of the candidate genes is ongoing in our lab.

Conclusion

Conclusions

In conclusion, we identified several mucin and O-linked glycosylation genes that are highly expressed in the oviduct of *R. arvalis* – and show high heterogeneity in expression. Given the role of *R. arvalis* in a broad range of evolutionary ecological questions, we believe this transcriptomic dataset and together with the predicted SSR and SNP markers (Supporting information) will benefit future studies of molecular ecology and evolution in natural populations. We further hope that our oviduct transcriptomes layslay the ground for future studies on the molecular evolution of jelly coat genes, thereby contributing to the emerging field of glycobiology in evolutionary ecology (Shu et al. 2015b; Springer & Gagneux 2016), as well as studies on how these genes contribute to responses to natural selection at early life stages and adaptive divergence of local populations in particular. In particular, we hope that the genes identified here will aid in disentangling the genetic architecture of egg coat evolution and adaptive maternal effects.

Declarations

511	Acknowledgements
512	We thank Anssi Laurila for generous access to research facilities and Beatrice Lindgren for
513	invaluable help in the field and Dr. laboratory. We thank particularly Ellen Menkhorst, Daniel
514	<u>Jeffries</u> , Alice Dennis for and an anonymous reviewer for valuable comments on earlier drafts
515	of this manuscript and as well as the Genetic Diversity Center (GDC) of ETH-Zurich for
516	advice on genetic analyses. The experiments were conducted under permissions from the
l 517	Västra Götaland county board and the Ethical committee for animal experiments in Uppsala
518	County. This study was supported by Swiss National Science foundation (to KR). Longfei
519	Shu is currently a Simons Foundation Fellow of the Life Sciences Research Foundation.
520	Data Accessibility
521	Transcriptome sequences will be deposited in the NCBI Sequence Read Archive (SRA)
	database.
522	database.
523	Author Contributions
524	LS and KR conceived and planned the study. LS performed the experiments. Both authors
525	discussed the results and commented on the manuscript. Both authors read and approved the
526	final manuscript.
527	Competing interests
528	The authors declare that they have no competing interests.
1 529	References
530	Bernardo J. 1996. The particular maternal effect of propagule size, especially egg size:
531	Patterns, models, quality of evidence and interpretations. American Zoologist 36:216-
532	236.
533 534	Birol I, Behsaz B, Hammond SA, Kucuk E, Veldhoen N, and Helbing CC. 2015. De novo Transcriptome Assemblies of Rana (Lithobates) catesbeiana and Xenopus laevis
535	Tadpole Livers for Comparative Genomics without Reference Genomes. <i>Plos One</i> 10.
536	ARTN e0130720 10.1371/journal.pone.0130720
537	Bolek MG, and Janovy J. 2007. Evolutionary avenues for, and constraints on, the
538	transmission of frog lung flukes (Haematoloechus spp.) in dragonfly second
539	intermediate hosts. Journal of Parasitology 93:593-607. Doi 10.1645/Ge-1011r.1
540	Brelsford A, Lavanchy G, Sermier R, Rausch A, and Perrin N. 2017. Identifying
541	homomorphic sex chromosomes from wild-caught adults with limited genomic
542	resources. Molecular Ecology Resources 17:752-759. 10.1111/1755-0998.12624
543	Calboli FCF, Fisher MC, Garner TWJ, and Jehle R. 2011. The need for jumpstarting amphibian genome projects. <i>Trends in Ecology & Evolution</i> 26:378-379.
544 545	10.1016/j.tree.2011.04.006

Formatted: Font: 14 pt

Claw KG, and Swanson WJ. 2012. Evolution of the Egg: New Findings and Challenges. In:
 Chakravarti A, and Green E, eds. *Annual Review of Genomics and Human Genetics*,
 Vol 13. Palo Alto: Annual Reviews, 109-125.

- Coppin A, Maes E, Flahaut C, Coddeville B, and Strecker G. 1999. Acquisition of species-specific O-linked carbohydrate chains from oviducal mucins in Rana arvalis A case study. *European Journal of Biochemistry* 266:370-382.
- Delplace F, Maes E, Lemoine J, and Strecker G. 2002. Species specificity of O-linked carbohydrate chains of the oviducal mucins in amphibians: structural analysis of neutral oligosaccharide alditols released by reductive beta-elimination from the eggjelly coats of Rana clamitans. *Biochemical Journal* 363:457-471.
- Egea-Serrano A, Hangartner S, Laurila A, and Rasanen K. 2014. Multifarious selection through environmental change: acidity and predator-mediated adaptive divergence in the moor frog (Rana arvalis). *Proceedings of the Royal Society B-Biological Sciences* 281. Unsp 20133266 Doi 10.1098/Rspb.2013.3266
- Elewa A, Wang H, Talavera-Lopez C, Joven A, Brito G, Kumar A, Hameed LS, Penrad-Mobayed M, Yao ZY, Zamani N, Abbas Y, Abdullayev I, Sandberg R, Grabherr M, Andersson B, and Simon A. 2017. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. *Nature Communications* 8. Artn 2286 10.1038/S41467-017-01964-9
- Gomez-Mestre I, Touchon JC, and Warkentin KM. 2006. Amphibian embryo and parental defenses and a larval predator reduce egg mortality from water mold. *Ecology* 87:2570-2581. Doi 10.1890/0012-9658(2006)87[2570:Aeapda]2.0.Co;2
- Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, and Conesa A. 2008. High-throughput functional annotation and data mining with the Blast2GO suite. *Nucleic Acids Research* 36:3420-3435. 10.1093/nar/gkn176
- Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, and Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nature Biotechnology* 29:644-U130. 10.1038/nbt.1883
- Guerardel Y, Kol O, Maes E, Lefebvre T, Boilly B, Davril M, and Strecker G. 2000. Oglycan variability of egg-jelly mucins from Xenopus laevis: characterization of four phenotypes that differ by the terminal glycosylation of their mucins. *Biochemical Journal* 352:449-463.
- Hammond SA, Warren RL, Vandervalk BP, Kucuk E, Khan H, Gibb EA, Pandoh P, Kirk H, Zhao YJ, Jones M, Mungall AJ, Coope R, Pleasance S, Moore RA, Holt RA, Round JM, Ohora S, Walle BV, Veldhoen N, Helbing CC, and Birol I. 2017. The North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA. *Nature Communications* 8. Artn 1433 10.1038/S41467-017-01316-7
- Hangartner S, Laurila A, and Rasanen K. 2011. Adaptive divergence of the moor frog (Rana arvalis) along an acidification gradient. *Bmc Evolutionary Biology* 11. 366 10.1186/1471-2148-11-366
- Hangartner S, Laurila A, and Rasanen K. 2012. The quantitative genetic basis of adaptive divergence in the moor frog (Rana arvalis) and its implications for gene flow. *Journal of Evolutionary Biology*; 25:1587-1599. 10.1111/j.1420-9101.2012.02546.x
- Hedrick JL. 2008. Anuran and pig egg zona pellucida glycoproteins in fertilization and early development. *International Journal of Developmental Biology* 52:683-701. DOI 10.1387/ijdb.082580jh

Hedrick JL, and Nishihara T. 1991. Structure and Function of the Extracellular-Matrix of
 Anuran Eggs. Journal of Electron Microscopy Technique 17:319-335.

- Helbing CC. 2012. The metamorphosis of amphibian toxicogenomics. *Front Genet* 3:37. 10.3389/fgene.2012.00037
 - Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu SQ, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, and Rokhsar DS. 2010. The Genome of the Western Clawed Frog Xenopus tropicalis. *Science* 328:633-636. 10.1126/science.1183670
- Hof C, Araujo MB, Jetz W, and Rahbek C. 2011. Additive threats from pathogens, climate
 and land-use change for global amphibian diversity. *Nature* 480:516-U137<u>519</u>.
 10.1038/nature10650
 - Houle D, Govindaraju DR, and Omholt S. 2010. Phenomics: the next challenge. *Nature Reviews Genetics* 11:855-866. 10.1038/nrg2897
 - Iseli C, Jongeneel CV, and Bucher P. 1999. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. *Proc Int Conf Intell Syst Mol Biol*:138-148.
 - Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, and Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. *Nucleic Acids Research* 36:<u>D480480</u>-484. 10.1093/nar/gkm882
 - Lang TG, Klasson S, Larsson E, Johansson MEV, Hansson GC, and Samuelsson T. 2016.
 Searching the Evolutionary Origin of Epithelial Mucus Protein Components-Mucins and FCGBP. *Molecular Biology and Evolution* 33:1921-1936.
 10.1093/molbev/msw066
 - Li RQ, Li YR, Kristiansen K, and Wang J. 2008. SOAP: short oligonucleotide alignment program. *Bioinformatics* 24:713-714. 10.1093/bioinformatics/btn025
 - Lopez-Maestre H, Brinza L, Marchet C, Kielbassa J, Bastien S, Boutigny M, Monnin D, El Filali A, Carareto CM, Vieira C, Picard F, Kremer N, Vavre F, Sagot MF, and Lacroix V. 2016. SNP calling from RNA-seq data without a reference genome: identification, quantification, differential analysis and impact on the protein sequence. *Nucleic Acids Research* 44:e148. 10.1093/nar/gkw655
 - Menkhorst E, and Selwood L. 2008. Vertebrate Extracellular Preovulatory and Postovulatory Egg Coats. *Biology of Reproduction* 79:790-797. 10.1095/biolreprod.108.068551
 - Mitchell-Olds T, Willis JH, and Goldstein DB. 2007. Which evolutionary processes influence natural genetic variation for phenotypic traits? *Nature Reviews Genetics* 8:845-856. Doi 10.1038/Nrg2207
 - Morin PA, Luikart G, Wayne RK, and Grp SW. 2004. SNPs in ecology, evolution and conservation. *Trends in Ecology & Evolution* 19:208-216. 10.1016/j.tree.2004.01.009
 - Mortazavi A, Williams BA, McCue K, Schaeffer L, and Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat Methods* 5:621-628. 10.1038/nmeth.1226
- Mousseau TA, and Fox CW. 1998. The adaptive significance of maternal effects. *Trends in Ecology & Evolution* 13:403-407.
- Nadeau NJ, and Jiggins CD. 2010. A golden age for evolutionary genetics? Genomic studies
 of adaptation in natural populations. *Trends in Genetics* 26:484-492. DOI
 10.1016/j.tig.2010.08.004

- Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC, Pippel M, Winkler S, Hastie AR,
 Young G, Roscito JG, Falcon F, Knapp D, Powell S, Cruz A, Cao H, Habermann B,
 Hiller M, Tanaka EM, and Myers EW. 2018. The axolotl genome and the evolution of
 key tissue formation regulators. *Nature* 554:50-55. 10.1038/nature25458
 - Palumbi SR. 2009. Speciation and the evolution of gamete recognition genes: pattern and process. *Heredity* 102:66-76. Doi 10.1038/Hdy.2008.104

- Papantonis A, Swevers L, and Iatrou K. 2015. Chorion Genes: A Landscape of Their Evolution, Structure, and Regulation. *Annual Review of Entomology* 60:177-194. 10.1146/annurev-ento-010814-020810
- Persson M, Räsänen K, Laurila A, and Merilä J. 2007. Maternally determined adaptation to acidity in Rana arvalis: Are laboratory and field estimates of embryonic stress tolerance congruent? *Canadian Journal of Zoology-Revue Canadienne De Zoologie* 85:832-838. Doi 10.1139/Z07-064
- Price SJ, Garner TWJ, Balloux F, Ruis C, Paszkiewicz KH, Moore K, and Griffiths AGF. 2015. A de novo Assembly of the Common Frog (Rana temporaria) Transcriptome and Comparison of Transcription Following Exposure to Ranavirus and Batrachochytrium dendrobatidis. *Plos One* 10. ARTN e0130500 10.1371/journal.pone.0130500
- Qiao L, Yang WZ, Fu JZ, and Song ZB. 2013. Transcriptome Profile of the Green Odorous Frog (Odorrana margaretae). *Plos One* 8. ARTN e75211 10.1371/journal.pone.0075211
- Räsänen K, and Kruuk LEB. 2007. Maternal effects and evolution at ecological time-scales. Functional Ecology 21:408-421. DOI 10.1111/j.1365-2435.2007.01246.x
- Räsänen K, Laurila A, and Merilä J. 2003.2003a. Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. I. Local adaptation. *Evolution* 57:352-362
- Räsänen K, Laurila A, and Merilä J. 2003b. Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. II. Adaptive maternal effects. *Evolution* 57:363-371.
- Richter-Boix A, Quintela M, Segelbacher G, and Laurila A. 2011. Genetic analysis of differentiation among breeding ponds reveals a candidate gene for local adaptation in Rana arvalis. *Molecular Ecology* 20:1582-1600. 10.1111/j.1365-294X.2011.05025.x
- Robertson LS, and Cornman RS. 2014. Transcriptome resources for the frogs Lithobates clamitans and Pseudacris regilla, emphasizing antimicrobial peptides and conserved loci for phylogenetics. *Molecular Ecology Resources* 14:178-183. 10.1111/1755-0998.12164
- Santos JC, Tarvin RD, O'Connell LA, Blackburn DC, and Coloma LA. 2018. Diversity within diversity: Parasite species richness in poison frogs assessed by transcriptomics. Molecular Phylogenetics and Evolution 125:40-50. https://doi.org/10.1016/j.ympev.2018.03.015
- Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, and Ragg T. 2006. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. *Bmc Molecular Biology* 7. Artn 3 10.1186/1471-2199-7-3
- Schunter C, Garza JC, Macpherson E, and Pascual M. 2014. SNP development from RNAseq data in a nonmodel fish: how many individuals are needed for accurate allele frequency prediction? *Molecular Ecology Resources* 14:157-165. Doi 10.1111/1755-0998.12155
- Sears BF, Schlunk AD, and Rohr JR. 2012. Do Parasitic Trematode Cercariae Demonstrate a
 Preference for Susceptible Host Species? *Plos One* 7. ARTN e51012
 10.1371/journal.pone.0051012

Shu L, Laurila A, and Rasanen K. 2015a. Acid stress mediated adaptive divergence in ion
 channel function during embryogenesis in Rana arvalis. Scientific Reports 5:14201.
 10.1038/srep14201

- Shu L, Laurila A, Suter MJF, and Räsänen K. 2016. Molecular phenotyping of maternally mediated parallel adaptive divergence within Rana arvalis and Rana temporaria. *Molecular Ecology*- 25:4564-4579. 10.1111/mec.13786
 - Shu L, Suter M, and Rasanen K. 2015b. Evolution of egg coats: linking molecular biology and ecology. *Molecular Ecology* 24:4052-4073. 10.1111/mec.13283
 - Shu L, Suter MF, Laurila A, and Räsänen K. 2015c. Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis. *Oecologia*:1-12 179:617-628. 10.1007/s00442-015-3332-4
 - Springer SA, and Gagneux P. 2016. Glycomics: revealing the dynamic ecology and evolution of sugar molecules. *J Proteomics* 135:90-100. 10.1016/j.jprot.2015.11.022
 - Strecker G, Coppin A, Florea D, Maes E, and Cogalniceanu D. 2003. Comparative study of carbohydrate chains released from the oviducal mucins of the two very closely related amphibian species Bombina bombina and Bombina variegata. *Biochimie* 85:53-64. Doi 10.1016/S0300-9084(03)00021-X
 - Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, and Waller RW. 2004. Status and trends of amphibian declines and extinctions worldwide. *Science* 306:1783-1786. 10.1126/science.1103538
- Sun YB, Xiong ZJ, Xiang XY, Liu SP, Zhou WW, Tu XL, Zhong L, Wang L, Wu DD, Zhang BL, Zhu CL, Yang MM, Chen HM, Li F, Zhou L, Feng SH, Huang C, Zhang GJ, Irwin D, Hillis DM, Murphy RW, Yang HM, Che J, Wang J, and Zhang YP. 2015. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. *Proceedings of the National Academy of Sciences of the United States of America* 112:E1257-E12621257-1262. 10.1073/pnas.1501764112
- Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, and Conesa A. 2011. Differential expression in RNA-seq: A matter of depth. *Genome Research* 21:2213-2223. 10.1101/gr.124321.111
- Todd EV, Black MA, and Gemmell NJ. 2016. The power and promise of RNA-seq in ecology and evolution. *Molecular Ecology* 25:1224-1241. 10.1111/mec.13526
- Tong ZB, Gold L, Pfeifer KE, Dorward H, Lee E, Bondy CA, Dean J, and Nelson LM. 2000. Mater, a maternal effect gene required for early embryonic development in mice. *Nature Genetics* 26:267-268.
- Van Buskirk J, and Arioli M. 2005. Habitat specialization and adaptive phenotypic divergence of anuran populations. *Journal of Evolutionary Biology* 18:596-608. 10.1111/j.1420-9101.2004.00869.x
- Wang Z, Gerstein M, and Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. *Nature Reviews Genetics* 10:57-63. Doi 10.1038/Nrg2484
- Wolf JB, Brodie ED, Cheverud JM, Moore AJ, and Wade MJ. 1998. Evolutionary consequences of indirect genetic effects. *Trends in Ecology & Evolution* 13:64-69. Doi 10.1016/S0169-5347(97)01233-0
- Wu XM, Viveiros MM, Eppig JJ, Bai YC, Fitzpatrick SL, and Matzuk MM. 2003. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. *Nature Genetics* 33:187-191. 10.1038/ng1079

Zhang M, Li YT, Yao BJ, Sun MY, Wang ZW, and Zhao Y. 2013. Transcriptome
 Sequencing and de novo Analysis for Oviductus Ranae of Rana chensinensis Using
 Illumina RNA-Seq Technology. *Journal of Genetics and Genomics* 40:137-140.
 10.1016/j.jgg.2013.01.004