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ABSTRACT
Diacylglycerol kinases (DGKs) are lipid kinases that modulate the levels of lipid
second messengers, diacylglycerol and phosphatidic acid. Recently, increasing
attention has been paid to its a isozyme (DGKa) as a potential target for cancer
immunotherapy. DGKa consists of the N-terminal regulatory domains including
EF-hand motifs and C1 domains, and the C-terminal catalytic domain (DGKa-CD).
To date, however, no structures of mammalian DGKs including their CDs have yet
been reported, impeding our understanding on the catalytic mechanism of DGKs
and the rational structure-based drug design. Here we attempted to produce DGKa-
CD or a full-length DGKa using bacterial and baculovirus-insect cell expression
system for structural studies. While several DGKa-CD constructs produced using
both bacterial and insect cells formed insoluble or soluble aggregates, the full-length
DGKa expressed in insect cells remained soluble and was purified to near
homogeneity as a monomer with yields (1.3 mg/mL per one L cell culture) feasible for
protein crystallization. Following enzymatic characterization showed that the
purified DGKa is in fully functional state. We further demonstrated that the purified
enzyme could be concentrated without any significant aggregation, and characterized
its secondary structure by circular dichroism. Taken together, these results suggest
that the presence of N-terminal regulatory domains suppress protein aggregation
likely via their intramolecular interactions with DGKa-CD, and demonstrate that the
baculovirus-insect cell expression of the full-length form of DGKa, not DGKa-CD
alone, represents a promising approach to produce protein sample for structural
studies of DGKa. Thus, our study will encourage future efforts to determine the
crystal structure of DGK, which has not been determined since it was first
identified in 1959.
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INTRODUCTION
Diacylglycerol (DG) and phosphatidic acid (PA) are important signaling lipids and
regulate a myriad of cellular events by modulating numerous signaling proteins
(English, 1996; Stace & Ktistakis, 2006; Griner & Kazanietz, 2007; Almena &Merida, 2011),
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including protein kinase C isoforms (Newton, 1997; Parekh, Ziegler & Parker, 2000;
Griner & Kazanietz, 2007) and Ras guanyl nucleotide-releasing protein (RasGRP)
(Ebinu et al., 1998; Tognon et al., 1998) by DG, and mammalian target of Rapamycin
(Ávila-Flores et al., 2005) and phosphatidylinositol (PI)-4-phosphate 5-kinase (Moritz
et al., 1992) by PA. Diacylglycerol kinases (DGKs), which was first identified in 1959
(Hokin & Hokin, 1959), are a family of lipid kinase that regulates the intracellular
levels of DG and PA by phosphorylating DG into PA (Sakane et al., 2007; Merida,
Ávila-Flores & Merino, 2008; Shulga, Topham & Epand, 2011). Mammalian DGK
consists of 10 isozymes (a, b, �, d, h, k, ε, �, �, and �), classified in five subtypes
featuring distinct regulatory domains and a conserved catalytic domain (CD; Sakane et al.,
2007; Shulga, Topham & Epand, 2011), and each DGK serves as a key downregulator
and upregulator for the DG and PA-mediated cellular signaling, respectively.

Diacylglycerol kinase a is the first-cloned DGK isozyme in mammals (Sakane et al.,
1990) and has amino-terminal regulatory domains including EF-hand motifs and C1
domains, and a carboxyl-terminal CD (Fig. 1A). Recently, increasing attention has been
paid to DGKa as a potential target for anti-cancer treatments including cancer
immunotherapy (Dominguez et al., 2013; Purow, 2015; Sakane, Mizuno & Komenoi, 2016;
Liu et al., 2016; Noessner, 2017). Expression of DGKa has been reported to be upregulated
in melanoma cells (but not in noncancerous melanocytes) (Yanagisawa et al., 2007),
lymphoma (Bacchiocchi et al., 2005), hepatocellular carcinoma (Takeishi et al., 2012),
breast cancer cells (Torres-Ayuso et al., 2014), and glioblastoma cells (Dominguez et al.,
2013) where DGKa promotes cancer cell survival, proliferation, migration, and invasion
(Merida et al., 2017). siRNA knockdown of DGKA or inhibition of DGKa by small
molecule inhibitors for DGKs, R59022 and R59949, has detrimental effects on the
proliferation of glioblastoma cells, melanoma, breast cancer, and cervical cancer cells
(Yanagisawa et al., 2007; Dominguez et al., 2013). In T-lymphocytes, on the other hand,
DGKa is appreciated as a critical attenuator for immune response.
DGKa is highly expressed in T-cells and decreases membrane DG levels required for
RasGRP1-dependent activation of the Ras–Erk pathway (Jones et al., 2002). Furthermore,
in vitro and in vivo studies have uncovered that DGKa is responsible for T-cell
hyporesponsive state known as anergy state (Olenchock et al., 2006; Zha et al., 2006).

Using a high-throughput DGK assay, we have recently identified a novel
DGKa-selective inhibitor, CU-3, and revealed that this compound targets the CD of
DGKa (Liu et al., 2016). Indeed, this compound not only induced the apoptosis of HepG2
hepatocellular carcinoma and HeLa cervical cancer cells as observed for other DGK
inhibitors with lower-selectivity (Dominguez et al., 2013), but also enhanced the
production of interleukin-2 in Jurkat T cells (Liu et al., 2016), illustrating a double-strike
effect of DGKa inhibitors potentially utilized for cancer immunotherapy (Noessner, 2017).
However, despite these biological and biomedical importance, no structure has been
determined for the CDs of any mammalian DGKs, thus impeding the detailed
understanding of DGK catalytic machinery and substrate binding sites as well as the
development and optimization of effective DGKa inhibitors.
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One of the greatest challenges for the structure determination of DGK isozymes lies
in producing enough and soluble proteins suitable for protein crystallization, as illustrated
in previous studies (Takahashi et al., 2012; Petro & Raben, 2013). Although intensive
efforts have been made by Petro & Raben (2013) to express and purify the full-length and
CD of porcine DGKa using bacterial expression system with expression-tags (glutathione
S-transferase (GST), maltose binding protein (MBP), thioredoxin (TRX)) for solubility
enhancement, all the expressed DGKa constructs formed inclusion bodies or soluble
aggregates, likely due to the inability of bacterial translational and folding machineries.

Figure 1 Expression of DGKa in baculovirus-infected insect cells and purification. (A) Domain
architecture of DGKa. RVH, recoverin homology domain; EF, EF-hand motif; C1, cysteine-rich C1
domain. (B) Immunoblot analysis of the solubility of a full-length DGKa expressed in Sf9 cells. Cell
lysates were separated into supernatant and insoluble pellets and subjected to SDS-PAGE (10%) followed
by immunoblot analysis using anti-DGKa antibody. (C) SDS-PAGE (10%) analysis of fractions from
Ni2+-affinity purification. Separated proteins were stained with Coomassie blue staining. (D) Elution
profile of DGKa from size exclusion chromatography. Fraction numbers used for following SDS-PAGE
analysis are labeled. The inset shows the calibration of gel-filtration column using protein standards
of known molecular weight (thyroglobulin (670 kDa), �-globulin (158 kDa), ovalbumin (44 kDa),
myoglobin (17 kDa)). Partition coefficient (Kav) was calculated from the formula, Kav = (VE–V0)/
(VT–V0), where VE is the retention volume of each sample, VT is the total column volume (120 mL), and
V0 is the void volume of the column (44 mL), respectively. Kav was plotted against the molecular weight of
proteins and linear regression analysis was conducted. (E) SDS-PAGE (10%) analysis of DGKa purified
using size-exclusion chromatography. Full-size DOI: 10.7717/peerj.5449/fig-1
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To overcome these problems, here we have taken advantage of the baculovirus-insect cell
expression system to express a full-length DGKa in soluble form. DGKa expressed in the
insect cells was then purified by a series of column chromatography, and the purified
protein was found to be a monomer in solution. Successful purification of DGKa also
allowed us to characterize enzymatic, inhibitory and structural properties of DGKa in
vitro. Taken together, these results provide promising evidence that the baculovirus-insect
cell expression system is better suited to produce DGKa for in vitro functional and
structural studies.

MATERIALS AND METHODS
Bacterial expression and purification of DGKa-CD
Multiple-constructs approach with different N- and C-terminal boundaries (Gräslund
et al., 2008), and several N-terminal fusion-tags (GST, MBP, and small ubiquitin-like
modifier (SUMO)) was applied for bacterial expression of DGKa-CD.

To prepare GST-fused constructs, the DNA sequences of DGKa-CD (S332–G722,
D344–G722, D369–G722, S332–S735, D344–S735, D369–S735), flanked by BamHI and
SalI restriction sites were amplified by PCR from the full-length cDNA for human DGKa,
inserted into a pGEX-4T-2 vector (GE Healthcare Life Science, Little Chalfont, UK) and
the resulting plasmids were used to transform Escherichia coli strain Rosetta2 (DE3)
(Novagen, Madison, WI, USA). The protein construct contained a thrombin-cleavable
GST-tag before the DGKa-CD sequence. Cells were cultured in LB media at 37 �C until
OD600 reached 0.6–0.8. Expression of the recombinant protein was then induced by adding
0.5 mM isopropyl b-D-thiogalactopyranoside (IPTG), and the bacterial culture was
continued at 16 �C for overnight. Bacteria harvested by centrifugation were suspended in a
lysis buffer (50 mM sodium phosphate, pH 8.0, containing 500 mM NaCl, 1 mM
phenylmethylsulfonyl fluoride, 1 mM dithiothreitol) and lysed by sonication on ice.
Protease inhibitors (20 mg/mL aprotinin, 20 mg/mL leupeptin, 20 mg/mL pepstatin, 1 mM
soybean trypsin inhibitor) were added immediately before sonication. To evaluate
expression and solubility of the expressed proteins, soluble and insoluble fractions were
separated by centrifugation at 15,000�g for 10 min and subjected to SDS-PAGE (10%)
followed by Coomassie Brilliant Blue (CBB) staining and immunoblot analysis using anti-
GST monoclonal antibody (B-14; Santa Cruz Biotechnology, Dallas, TX, USA). The
immunoreactive bands were visualized using peroxidase-conjugated anti-mouse IgG
antibodies (Jackson ImmunoResearch Laboratories, West Grove, PA, USA) and the ECL
Western blotting detection system (GE Healthcare Life Science, Little Chalfont, UK).

For Sumo-tag, the DNA sequences of DGKa-CD (S332–G722, D344–G722,
D369–G722, S332–S735, D344–S735, D369–S735) were cloned via NdeI/SalI sites into
pSUMO vector. In addition, three constructs with additional two glutamic acids at the
C-terminus (S332–S735EE, D344–S735EE, D369–S735EE) were also cloned into the
pSUMO vector. The resulting recombinant protein contains an N-terminal His-tagged
Sumo domain, followed by a Sumo-specific protease (Ulp1) cleavage site before the
DGKa-CD sequence. His�6-Sumo-DGKa-CD was expressed in E. coli Rosetta2 (DE3)
cells by induction with 0.1 mM IPTG at 16 �C for overnight. After a small-scale expression
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and solubility test using anti-His�6 monoclonal antibody (9C11; Wako, Osaka, Japan),
large scale expression of the construct D344–S735EE was conducted. After cell-lysis and
centrifugation, Ni-affinity chromatography was applied to purify His�6-Sumo-DGKa-CD
(D344–S735EE). The column was washed with 50 mM Tris–HCl, pH 8.0, 500 mM
NaCl, 10 and 50 mM imidazole, and the bound proteins were eluted with 300 mM
imidazole. An elution fraction containing His�6-Sumo-DGKa-CD was concentrated using
a centrifugal filter (Amicon Ultra-15; Millipore, Burlington, MA, USA), and applied to a
Superdex 75 16/60 column for size exclusion chromatography purification.

Maltose binding protein-fused DGKa-CD constructs were prepared by cloning the
sequences of DGKa-CD (S332–G722, D344–G722, D369–G722, S332–S735, D344–S735,
D369–S735, S332–S735EE, D344–S735EE, D369–S735EE) into a pMAL-c2X vector
(New England Biolabs, Ipswich, MA, USA) via BamHI/SalI sites. E. coli strain Rosetta2
(DE3) transformed with the plasmids. Protein expression was induced with 0.1 mM IPTG
and bacterial cells were then incubated at 16 �C for overnight. After cell-lysis and
centrifugation, the expression and solubility test was conducted by subjecting soluble and
insoluble fractions on SDS-PAGE (10%) followed by CBB staining and immunoblot
analysis using anti-MBP antibody (Sc-13564; Santa Cruz Biotechnology, Dallas, TX, USA).
The construct MBP-DGKa-CD (D369–S735) was expressed in 2 L of LB medium and the
MBP-fused protein was purified by affinity chromatography on amylose resin (New
England Biolabs, Ipswich, MA, USA). The affinity column was washed with a buffer,
20 mMTris–HCl, pH 7.4, 200mMNaCl, 1 mMphenylmethylsulfonyl fluoride, 1 mMEDTA,
and the bound proteins were eluted with a buffer containing 10 mM maltose. Fractions were
subjected to SDS-PAGE (10%) and analyzed by CBB staining and immunoblotting using
anti-MBP antibody and anti-DGKa antibody (Yamada, Sakane & Kanoh, 1989).

Expression of DGKa in insect cells using baculovirus expression
vector system
The construct of DGKa-CD (D364–S735) or full-length DGKa with N-terminal His�6

tag was PCR-amplified and cloned into the pOET3 vector (Oxford Expression
Technologies, Oxford, UK) via SalI/NotI sites. The resulting DNA sequences were verified
to be correct by DNA sequencing. The flashBAC system (Oxford Expression Technologies,
Oxford, UK) was used to generate a recombinant baculovirus and the virus stock was
amplified by several rounds of infection of Sf9 cells cultured in Sf-900 II serum free
medium (Invitrogen, Carlsbad, CA, USA) at a low multiplicity of infection (MOI).
Plaque assays were performed to determine titers of the amplified virus stocks. Both
DGKa-CD and full-length DGKa were expressed in Sf9 cells by infecting the cells
(at 2 � 106 cells/mL) with the baculovirus stock at MOI of 2. Cells were cultured at 28 �C
with shaking for 24 h and pelleted by centrifugation at 1,500�g, 4 �C for 20 min and
washed with sterile phosphate buffered saline before storage at -80 �C.

Purification of DGKa expressed in insect cells
The cell pellets were thawed and suspended in a lysis buffer containing 50 mM Tris–HCl,
pH 8.0, 0.5M NaCl, 20 mM imidazole, 20% glycerol, 5 mM CaCl2, 5 mM MgCl2,
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5 mM b-mercaptoethanol, 1% Nonidet P-40 (NP-40), 5 mM adenosine 5’-diphosphate
(ADP), 5 U/mL benzonase (EMD Millipore, Burlington, MA, USA) and a EDTA-free
protease inhibitor cocktail tablet (Roche, Basel, Switzerland). The cell suspension was lysed
by sonication on ice followed by centrifugation at 25,000�g, 4 �C for 1 h. The supernatant
was incubated with 2 mL of Ni-NTA agarose (Qiagen, Venlo, The Netherlands) for 2 h at 4
�C, and then the mixture was packed into a column by gravity. The column was washed
with wash buffer 1 (50 mM Tris–HCl, pH 8.0, 0.5M NaCl, 20 mM imidazole, 20% glycerol,
5 mM CaCl2, 5 mM MgCl2, 5 mM b-mercaptoethanol, 1% NP-40) and wash buffer 2
(50 mM Tris–HCl, pH 8.0, 0.5M NaCl, 20 mM imidazole, 20% glycerol, 5 mM CaCl2,
5 mM MgCl2, 5 mM b-mercaptoethanol and 10% ethanol). Subsequently, the bound
proteins were eluted with step-wise increase of imidazole concentration (50, 100, and
200 mM) in a buffer consisting of 50 mM Tris–HCl, pH 8.0, 0.5M NaCl, 20 mM imidazole,
20% glycerol, 5 mM CaCl2, 5 mM MgCl2, 5 mM b-mercaptoethanol. Collected fractions
were analyzed by SDS-PAGE with Coomassie blue staining and immunoblot analysis
using anti-DGKa antibody (Yamada, Sakane & Kanoh, 1989).

Fractions containing full-length DGKa were further purified using size-exclusion
chromatography on a Superdex 200 column 16/60 equilibrated with 20 mM Tris–HCl,
pH 7.4 with 200 mM NaCl, 3 mM CaCl2, 3 mM MgCl2, 0.5 mM dithiothreitol, and 5%
glycerol. Resulting fractions were analyzed by SDS-PAGE followed by Coomassie blue
staining. Protein quantification was done by Bradford assay or using the extinction
coefficient, E0.1% = 1.14. Gel filtration standards (Bio-Rad, Hercules, CA, USA) containing
thyroglobulin (670 kDa), �-globulin (158 kDa), ovalbumin (44 kDa), myoglobin (17 kDa),
and vitamin B12 (1.3 kDa) were used to determine the molecular mass of proteins.

In vitro DGKa activity assay
Activity of full-length DGKa was determined using the octyl-b-D-glucoside mixed
micelle assay combined with the ADP-GloTM kinase assay kit (Promega, Madison, WI,
USA), as previously described (Sato et al., 2013; Liu et al., 2016). Briefly, the substrate
micelle mixture containing 50 mM n-octyl-b-D-glucoside (Dojindo, Kumamoto,
Japan), 10 mM (27 mol%) phosphatidylserine (PS; Sigma-Aldrich, St. Louis, MO, USA),
2 mM (5.4 mol%) 1,2-dioleolyl-sn-glycerol (DG; Sigma-Aldrich, St. Louis, MO, USA),
0.2 mM adenosine 5’-triphosphate (ATP) in a final buffer consisting of 50 mMMOPS, pH
7.4, 100 mM NaCl, 20 mM NaF, 10 mM MgCl2, 1 mM CaCl2 was mixed with 5 mL of
purified DGKa to initiate enzymatic reaction. The reaction mixtures were incubated at
30 �C for 30 min. Subsequently, 25 mL of ADP-Glo reagent was added and incubated
at room temperature for 40 min to terminate the enzyme reaction and deplete the
remaining ATP. Kinase Detection Reagent (50 mL) was then added to convert the ADP
produced from the kinase reaction into ATP for a luciferase/luciferin reaction. The
reaction was performed at room temperature for 40 min and the luminescence from the
luciferase/luciferin reaction was measured with a GloMax microplate reader (GloMax;
Promega). A standard curve for ADP was generated by fitting a various concentration of
ADP ranging from 25 to 200 mM and the corresponding luminescence signals relative
luminescence unit by linear regression, and was used to convert the luminescence
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intensities from DGKa reaction into ADP concentrations. To determine kinetic constants,
the activity assay was performed under a series of concentrations of ATP (20 mM–1 mM)
and DG (0–5.4 mol%), respectively. DGKa purified by size exclusion chromatography
was added to 100 ng for each reaction and the assays were done in triplicate for each
ATP or DG concentrations. The Km value was obtained by fitting the kinase activity of
DGKa with the Michaelis–Menten equation using Prism 7 (GraphPad Software, La Jolla,
CA, USA). To test the calcium dependency of DGKa activity, the enzyme activity was
measured under the conditions containing either EGTA (3 mM) or CaCl2 (0.6 mM).

Inhibitor activity assay
Inhibitory activity of a previously identified inhibitor, CU-3 (Liu et al., 2016), against DGKa
was measured with the octyl-b-D-glucoside mixed micelle assay followed by the ADP-Glo
assay. A concentration series of CU-3 (0.02–10 mM) was incubated with the purified DGKa
for 30 min at room temperature before adding to a reaction mixture for the assay. Half
maximal inhibitory concentration (IC50) was determined by fitting the CU-3 dependent
decrease of DGKa activity with the variable slope model in Graphpad Prism 7 software.

Circular dichroism spectroscopy
Circular dichroism spectrum were recorded at ambient conditions between 190
and 250 nm on a Jasco J-805 spectrometer (JASCO Corporation, Tokyo, Japan) using a
cell with path length of 0.2 mm, 20 nm/min scan speed and a bandwidth of 1 nm. DGKa
was prepared at 0.32 mg/mL (3.75 mM) in 20 mM Tris–HCl buffer, pH 7.5, 10 spectra
were averaged and a spectrum obtained for the buffer was subtracted. Spectral data were
analyzed using the program Contin-LL (Provencher & Glöckner, 1981) suited in the
DICHROWEB platform (Whitmore & Wallace, 2004).

RESULTS

A full-length form of DGKa was expressed in baculovirus-infected
insect cells and purified as a monomer
We have previously reported that DGKa-CD possess enzymatic activity comparable to
that of the full-length enzyme when expressed in COS-7 cells (Sakane et al., 1996),
indicating that its substrate (ATP and DG) binding sites locate in the CD and DGKa-CD is
an essential target for inhibitor development. Full-length DGKa also contains cysteine-
rich C1 domains (Fig. 1A), which might be detrimental for correct folding in heterologous
expression hosts. Therefore, we have first attempted to express DGKa-CD in E. coli by
revamping the previous approach by Petro & Raben (2013). In addition to N-terminal GST
and MBP-tags, which were previously utilized (Petro & Raben, 2013), we have used Sumo
domain fusion-tag for the enhancement of expression and solubility (Butt et al., 2005;
Marblestone et al., 2006). To further increase the chance for expression of soluble proteins,
we have also applied a multiple-construct approach (Gräslund et al., 2008) to prepare
DGKa-CD constructs which have different N- and C-terminal boundaries (S332–G722,
D344–G722, D369–G722, S332–S735, D344–S735, D369–S735). Each of those constructs
was fused with the GST, MBP, and Sumo-tags. Despite our efforts, those constructs
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resulted in either insoluble inclusion body formation (with GST-tag), or insufficient
translation and proteolytic degradation (with MBP-tag), or soluble microscopic
aggregation (with Sumo-tag) (Fig. S1).

To circumvent the difficulty associated with bacterial expression system, we have
used baculovirus-infected Sf9 cells to produce DGKa-CD. The construct of DGKa-CD
(D364–S735) with N-terminal His�6 tag was cloned into pOET3 transfer vector harboring
the late AcMNPV p6.9 promoter, which provides earlier expression compared to the
polyhedrin promotor. The recombinant DGKa-CD was expressed in cultured insect cells
using the flashBAC baculovirus vector expression system, and subsequently purified from
cell-lysates using Ni-affinity chromatography (Fig. S2A). Following size-exclusion
chromatography on a Superdex 200, however, demonstrated that DGKa-CD formed
soluble aggregates eluting in the void volume of the column (Fig. S2B).

In our early studies, a native form of full-length DGKa has been purified from
porcine thymus and this full-length form was found to be catalytically competent (Sakane,
Yamada & Kanoh, 1989; Sakane et al., 1991). We therefore set to produce full-length
DGKa (aa 1–735) using the same baculovirus expression system used for DGKa-CD.
As expected, the vast majority of DGKa remained in soluble form after cell lysis, as shown
by immunoblot analysis (Fig. 1B). Ni-affinity chromatography was conducted to purify
DGKa from the cell lysis supernatant, and relatively pure DGKa was eluted in fractions
containing 50 and 100 mM imidazole (Fig. 1C). To further purify DGKa, we next
performed size-exclusion chromatography on a Superdex 200 column. Because DGKa
bears calcium-binding EF-hand motifs and a magnesium ion was predicted to bind to
the CD (Abe et al., 2003), we added 3 mM CaCl2 and 3 mM MgCl2 in the equilibration
buffer. DGKa eluted as a single peak at 73.5 mL retention volume (Fig. 1D), which
corresponds to the molecular mass of 77 kDa, based on a calibration curve obtained with
molecular mass standard proteins. This result indicates that DGKa exists as a monomer in
solution. DGKa was purified to near homogeneity (Fig. 1E) and the yield was
approximately 1.3 mg per one L of Sf9 cell culture.

Kinase activity assay and inhibitory assay for the purified DGKa
To test whether the purified DGKa is catalytically active, we conducted the octyl-b-D-
glucoside mixed micelle assay combined with a luminescence-based assay that measures
ADP produced in a kinase reaction (Sato et al., 2013; Liu et al., 2016). DGKa purified
from the size-exclusion chromatography was found to exhibit kinase activity with peak
fractions having the maximum activity (Fig. 2A). We have previously demonstrated that
DGKa activity, which has been purified from porcine thymus or expressed in COS-7 cells,
is enhanced by Ca2+ binding to its two N-terminal EF-hand motifs (Sakane et al., 1990,
1991; Yamada et al., 1997). As predicted, the purified DGKa exhibited significantly
reduced activity when the bound calcium ions were chelated with 3 mM EGTA (Fig. 2B).
Furthermore, no significant changes of the activity were observed after storage of the
purified DGKa at 4 �C for at least 3 months.

We also determined the kinetic parameters of DGKa for ATP and DG to assess the
catalytic properties of the purified DGKa. ATP-dependent increase of the kinase activity
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Figure 2 Purified DGKa is catalytically active and positively regulated by Ca2+. (A) Luminescence-
based (ADP-glo) kinase activity assay of fractions from size exclusion chromatography of DGKa.
Five microliters from each fraction containing 38.5–363 ng of DGKa was added for a reaction and the
following details are described in “Materials and Methods.” Luminescence values are presented as relative
luminescence unit (RLU) over background signals from a well containing a buffer (20 mM Tris–HCl,
pH 7.4, 0.2M NaCl, 3 mM CaCl2, 3 mM MgCl2, 0.5 mM DTT, and 5% glycerol) used for size-exclusion
chromatography. (B) Calcium-dependent activity of the purified DGKa. The luminescence-based DGK
activity assay was conducted using 150 ng of DGKa in the presence of CaCl2 (0.6 mM) and EGTA (3.6
mM). Purified DGKa was pre-incubated with 3 mM EGTA for 30 min on ice to chelate CaCl2 contained
in a buffer used for size exclusion chromatography, and concentrated EGTA was also added into the
reaction mixture at a final concentration of 3.6 mM. Measured luminescence values of DGKa in the
presence of CaCl2 or EGTA were subtracted with each negative control (CaCl2 or EGTA) and data shown
are mean ± SD for triplicate measurements. Full-size DOI: 10.7717/peerj.5449/fig-2

Figure 3 The enzymatic kinetics of the purified DGKa with ATP and diacylglycerol (DG). (A) ATP
dependency of DGKa activity was measured with the luminescence based assay. (B) DGKa activity was
plotted as a function of DG concentration (mol%). Measured luminescence values were converted into
the amount of ADP produced (nmol) based on the ATP-to-ADP conversion curve separately measured
with known concentration of ATP (50 mM–1 mM). Data shown are mean ± SD for triplicate
measurements. Full-size DOI: 10.7717/peerj.5449/fig-3
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was observed (Fig. 3A) and the Km value was determined to be 0.24 ± 0.03 mM (Table 1),
comparable with those obtained with DGKa from porcine thymus (0.1 mM) (Sakane et al.,
1991) or DGKa expressed in COS-7 cells (0.1–0.25 mM) (Sato et al., 2013; Liu et al., 2016).
The activity was also increased in a DG-concentration dependent manner (Fig. 3B)
and the Km value of 1.1 ± 0.21 mol% (Table 1) was consistent with those from our
previous studies (3.3 mol% with DGKa purified from porcine thymus (Sakane et al., 1991),
1.9–3.4 mol% with DGKa expressed in COS-7 cells (Sato et al., 2013; Liu et al., 2016)).
For both cases, compared to our previous study using crude lysates of mammalian
cells (Sato et al., 2013; Liu et al., 2016), the relative activity increased nearly 50-fold
when the purified DGKa was used. Furthermore, the kinase activities of our purified
DGKa (1 to 2 nmol/min/mg) is comparable to those obtained with DGKa from porcine
thymus (2.4 nmol/min/mg) (Sakane et al., 1991). These results demonstrate that the
purified DGKa is in a fully functional state and stable during purification and storage.

We next measured the inhibitory activity of CU-3, a previously identified DGKa
inhibitor (Liu et al., 2016). CU-3 is an ATP competitive inhibitor with an IC50 value

Table 1 Enzyme kinetic parameters of DGKa with ATP and diaclyglycerol.

Substrate Km Vmax

ATP 0.24 ± 0.03 mM 2.66 ± 0.15 nmol/min/mg

Diacylglycerol 1.06 ± 0.21 mol% 1.00 ± 0.06 nmol/min/mg

Figure 4 Inhibitory activity of a small molecule inhibitor, CU-3. A concentration series of CU-3
ranging from 0.02 to 10 mM was incubated with the purified DGKa (100 ng) for 30 min at room
temperature before adding to a reaction mixture for the mixed micelle/luminescence-based assay. Half
maximal inhibitory concentration (IC50) was determined by fitting the CU-3 dependent decrease of
DGKa activity with the variable slope model. In the absence of DGKa, luminescence signals with various
concentrations of CU-3 were negligible and no dose-dependent changes were observed.

Full-size DOI: 10.7717/peerj.5449/fig-4
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of 0.6 mM. Consistent with this, CU-3 inhibited the activity of DGKa in a
concentration-dependent manner with an IC50 value of 0.34 ± 0.1 mM (Fig. 4).

Structural characterization of the purified DGKa
We also found that DGKa solution could be concentrated using a centrifugal filter without
any significant loss of the protein. Concentrated DGKa remained as a monomer as
demonstrated by a size-exclusion chromatography (Fig. S3). Using the concentrated
DGKa (0.32 mg/mL), we characterized the secondary structure using circular
dichroism spectroscopy. The circular dichroism spectrum of DGKa and following analysis
indicates that DGKa is well-folded and contains certain amounts of a-helical (18.9%)
and b-strand (27.4%) structures (Fig. 5), further demonstrating that the expression of a
full-length DGKa, not a solo CD, in the baculovirus-infected insect cells is suitable for
producing a natively folded and active form of DGKa.

DISCUSSION
Diacylglycerol kinases are a family of multi-domain lipid kinase that regulate a variety
of cellular process (Sakane et al., 2007; Merida, Ávila-Flores & Merino, 2008; Shulga,
Topham & Epand, 2011), and DGKa has recently emerged as a novel therapeutic

Figure 5 Secondary structure of the purified DGKa. Circular dichroism spectrum of DGKameasured
at ambient conditions between 190 and 250 nm on a Jasco J-805 spectrometer. DGKa was prepared at 0.3
mg/mL in 20 mM Tris–HCl buffer, pH 7.4, 150 mM NaCl, 3 mMMgCl2, 3 mM CaCl2, 5 % glycerol. The
analysis of the circular dichroism spectrum using the program Contin-LL (Provencher & Glöckner, 1981)
suited in the DICHROWEB platform (Whitmore &Wallace, 2004) showed the presence of both a-helical
(18.9 %) and β-strand (27.4 %) structures. Full-size DOI: 10.7717/peerj.5449/fig-5
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target for cancer immunotherapy (Dominguez et al., 2013; Purow, 2015; Sakane,
Mizuno & Komenoi, 2016; Liu et al., 2016; Noessner, 2017). However, no structural
information of DGKs, especially their CD, is available. This is largely because the
procedure for large scale production of recombinant DGKs in their soluble and
homogeneous form, a prerequisite for protein crystallization, is not well-established.
Here we have used the baculovirus-insect cell expression system to produce a full-length
form (DGKa), and investigated the enzymatic and structural properties in vitro.

Petro & Raben (2013) have made significant efforts to express and purify a pig
DGKa and DGKa-CD using bacterial expression system with several fusion tags
(GST, TRX, and MBP), a set of bacterial chaperons, or in vitro refolding. Despite their
pursuit, expressed DGKa constructs either formed inclusion bodies or soluble
microscopic aggregates. We have also used E. coli cells to produce DGKa-CD with
several N-terminal fusion tags (GST, Sumo, and MBP) and with different N- and
C-terminal boundaries. While both MBP- and Sumo-fused DGKa-CD remained in a
soluble fraction after cell-lysis and Ni-affinity chromatography (Figs. S1A and S1B),
those DGKa-CD with fusion-tags eluted in the void volume of Superdex 200 column
(Fig. S1C). When expressed with MBP, an elution fraction from the Ni-affinity
chromatography also contained additional smaller bands along with MBP-fused
DGKa-CD (Fig. S1A), which could be due to insufficient translational ability of E. coli
for producing eukaryotic proteins, as previously suggested (Petro & Raben, 2013).
Because baculovirus-insect cell expression system has both the capacity to produce
recombinant proteins at a large scale and the capability to provide eukaryotic protein
expression machineries, we next utilized this system to produce DGKa-CD. The protein
expressed in Sf9 cells was soluble, however, contrary to our expectation, the protein
formed soluble aggregates, which eluted in the void volume (Fig. S2). These results
indicate that the only CD has a tendency to self-aggregate upon isolation, possibly due to
its intrinsic characteristics that recognize DG embedded in plasma membrane, and
suggest that the only CD is not suitable for structural studies even if it is expressed using
a eukaryotic expression system.

In contrast to the CD, full-length DGKa elutes in a relatively sharp peak of size-
exclusion chromatography and remains as a monomer when it is assumed to have a
globular shape (Fig. 1C; Fig. S3). Such production of a full-length DGKa in a soluble and
monomeric form using the baculovirus insect cell expression system holds promise for
the preparation of DGKa sample suitable for protein crystallization screening. DGKa
consists of the N-terminal regulatory domains including EF-hand motifs and
C1 domains, and the C-terminal CD. This suggests that DGKa adopts a compact globular
structure rather than an elongated one. YegS (a putative bacterial lipid kinase) (Bakali,
Nordlund & Hallberg, 2006), a bacterial DgkB (Miller et al., 2008), and a human
sphingosine kinase (SphK1) (Wang et al., 2013) have been successfully purified and their
crystal structures have been reported (Bakali et al., 2007; Miller et al., 2008; Wang et al.,
2013). Although all of those lipid kinases are homologous to mammalian DGKs and
belong to a protein family PF00781 (DAGK_cat), they do not possess N-terminal
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regulatory domains. This might explain why the N-terminal domain of DGKa is required
to obtain the protein as a soluble monomer. Interestingly, previous studies by us and
others have suggested the presence of intramolecular interactions between the N-terminal
regulatory domains and the CD (Merino et al., 2007; Takahashi et al., 2012). It is
reasonable to surmise that a potential aggregation-prone surface of the CD of DGKa is
intra-molecularly masked by the N-terminal regulatory domains including recoverin
homology, EF-hand motif, and C1 domains.

Enzymatic characterization of DGKa reveals that Km values to ATP (0.24 mM) and DG
(1.1 mol%) are very similar to those obtained using DGKa partially purified from porcine
thymus (0.1 mM for ATP and 3.3 mol% for DG, respectively) (Sakane et al., 1991) or
DGKa expressed in COS-7 cells (0.1–0.25 mM for ATP and 1.9–3.4 mol% for DG,
respectively) (Sato et al., 2013; Liu et al., 2016), further demonstrating the effectiveness of
baculovirus insect cell expression system for producing DGKa not only in soluble and
homogeneous form, but also in its active one.

In summary, this study demonstrates that the production of full-length DGKa, not
DGKa-CD alone, using the baculovirus-insect cell expression is a very promising
approach to produce DGKa samples for future in vitro structural and functional studies.
Firstly, DGKa has been purified by Ni-affinity and size-exclusion chromatographies to
near-homogeneity, and purified DGKa remains in soluble and monomeric form, and can
be concentrated without any significant loss of the protein, which are prerequisites for
protein crystallization. Purified DGKa sample, however, still contains slight amounts of
contaminant proteins which might non-specifically bind to DGKa. Further modification
and optimization of the protein construct and purification conditions must be required.
Secondly, the obtained yield of DGKa, 1.3 mg per one L cell culture, is enough to initiate
crystal screening. Thirdly, the purified DGKa is catalytically competent. The measured
kinase activity and the Km values to ATP and DG are comparable to those obtained with
native form of DGKa partially purified from porcine thymus and DGKa expressed in
mammalian cells.

CONCLUSION
We demonstrate that the baculovirus-insect cell expression of the full-length form of
DGKa, not DGKa-CD alone, represents a promising approach to produce protein sample
suitable for structural studies of DGKa. We believe that this study will encourage future
pursuits to determine crystal structures of mammalian DGKs that has still remained
enigmatic for almost 60 years since its identification (Hokin & Hokin, 1959).
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