
Early-season crop mapping using
improved artificial immune network
(IAIN) and Sentinel data
Pengyu Hao1,2, Huajun Tang1, Zhongxin Chen1 and Zhengjia Liu3

1Key Laboratory of Agricultural Remote Sensing, Institute of Agricultural Resources and Regional
Planning, Chinese Academy of Agricultural Sciences, Beijing, China

2 Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of the National
Administration of Surveying, Mapping and GeoInformation & Shenzhen Key Laboratory of
Spatial Smart Sensing and Services, Shenzhen University, Shenzhen, China

3 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
Beijing, China

ABSTRACT
Substantial efforts have been made to identify crop types by region, but few studies
have been able to classify crops in early season, particularly in regions with
heterogeneous cropping patterns. This is because image time series with both high
spatial and temporal resolution contain a number of irregular time series, which
cannot be identified by most existing classifiers. In this study, we firstly proposed an
improved artificial immune network (IAIN), and tried to identify major crops in
Hengshui, China at early season using IAIN classifier and short image time series. A
time series of 15-day composited images was generated from 10 m spatial resolution
Sentinel-1 and Sentinel-2 data. Near-infrared (NIR) band and normalized difference
vegetation index (NDVI) were selected as optimal bands by pair-wise Jeffries–
Matusita distances and Gini importance scores calculated from the random forest
algorithm. When using IAIN to identify irregular time series, overall accuracy of
winter wheat and summer crops were 99% and 98.55%, respectively. We then used
the IAIN classifier and NIR and NDVI time series to identify major crops in the study
region. Results showed that winter wheat could be identified 20 days before harvest,
as both the producer’s accuracy (PA) and user’s accuracy (UA) values were higher
than 95% when an April 1–May 15 time series was used. The PA and UA of cotton
and spring maize were higher than 95% with image time series longer than
April 1–August 15. As spring maize and cotton mature in late August and
September–October, respectively, these two crops can be accurately mapped 4–6
weeks before harvest. In addition, summer maize could be accurately identified
after August 15, more than one month before harvest. This study shows the potential
of IAIN classifier for dealing with irregular time series and Sentinel-1 and Sentinel-2
image time series at early-season crop type mapping, which is useful for crop
management.
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INTRODUCTION
The increase of global population increase has led to huge pressure on global food security
(Alexander et al., 2015). As cropland distribution maps are the basement of the crop
growth monitoring work and also important inputs of the crop production models, there
is an urgent need of accurate in-season cropland mapping, particularly for major staple
food crops such as wheat and maize (Wu et al., 2014).

Satellite observations have demonstrated good potential for identifying crop types.
Multi-temporal data are most commonly used for crop type classification, since image time
series can describe the phenological differences among different crops (Atzberger, 2013;
Pan et al., 2011). However, there remain drawbacks to this technique. Generally,
early-season crop type maps are important inputs for regional and global crop monitoring
systems (Chen et al., 2011; Waldner et al., 2015). Most existing studies use image time
series of the entire growing season to generate crop type maps; however, such maps are
often acquired too late to inform crop management (Whitcraft, Becker-Reshef &
Justice, 2015; Zhong et al., 2016). Furthermore, to identify crop types in the early
season, there is a need of high temporal frequency image time series. Most high temporal
frequency data are provided at coarse spatial resolution, such as EOS-MODIS and
NOAA-AVHRR data, which can observe the land surface once daily (Van Leeuwen, Huete
& Laing, 1999). Conversely, data with better spatial resolution has a lower temporal
frequency, such as the most commonly used Landsat TM/ETM+/OLI data, which provides
30 m resolution images at a 16-day temporal frequency (NASA, 2003; USGS, 2013, 2017).
Furthermore, the remote sensing data from moderate resolution optical satellites (such
as Landsat) are further limited by missed observations due to cloud obscuring the Earth’s
surface (Marshall, Dowdeswell & Rees, 1994). Therefore, moderate spatial resolution image
time series are always irregular, which is a problem for early season crop type mapping.
Although some gap-filling methods and high spatial and temporal resolution image fusion
methods have been proposed to generate 30 m image time series with good temporal
frequency (Gao et al., 2006; Wu et al., 2017; Zhu, Liu & Chen, 2012), the methods are
generally time consuming and the results always have some uncertainty for crop type
classification. In addition, these methods need to use images covering the entire growing
season as input, which limits their ability for early season crop type mapping.

An alternative method is the image composition strategy, which uses the median value
of all available pixels during one month as a composited value for each month. This
method makes full use of the available observations and is simple to interpret.
However, there is a contradiction between the period of composition and the
information contained in the composited image time series. Long composition periods
(e.g., 6 months) are less informative and cannot support crop type identification, while
short composition periods (e.g., 15–30 days) lead to “missing value” pixels in the
image time series (Van Leeuwen, Huete & Laing, 1999; Wolfe, Roy & Vermote, 1998;
Xiong et al., 2017). Although various classifiers have been proposed for image
classification, such as classification tree-based classifiers and machine learning classifiers,
those methods have difficulty dealing with irregular image time series with missing values
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(Breiman et al., 2013;Howard &Wylie, 2014;Mountrakis, Im &Ogole, 2011;Waheed et al.,
2006). Therefore, classifiers that can handle irregular time series are important for
early season crop type mapping based on short period compositions of image time series
(15–30 days or even shorter).

In addition, most existing crop type classification results were derived using image time
series with coarse or moderate resolution, such as those of MODIS and Landsat. However,
the relatively coarse spatial resolution results in many mixed pixels (pixels containing
several crop types) in images of small fields (Lobell & Asner, 2004; Muchoney et al., 2000).
In addition, the pixels at the crop field boundary may become mixtures of crops fields,
roads and other land cover types. Thus, the mixed pixels cause spectrum variation and
misclassification (Hao, Wang & Niu, 2015b). Several works have conducted crop type
mapping using very high-resolution image time series, such as Gaofen-1, RapidEye and
Quickbird images (Hao, Wang & Niu, 2015b; Turker & Ozdarici, 2011). However, the
regions studied were generally small (<20 � 20 km), and the data are not freely available
worldwide. As the Sentinel mission provides both C-Band SAR (Sentinel-1) data and
optical (Sentinel-2) data at high spatial resolution (10 m) and high revisit frequency (6 days
for Sentinel-1 and 5 days for Sentinel-2), it is worth investigating the potential of early
season crop type mapping using Sentinel image time series (Drusch et al., 2012; ESA, 2015,
2016; Van Der Meer, Van Der Werff & Van Ruitenbeek, 2014).

In this study, we tried to identify crop types in the early season from 10 m
resolution Sentinel-1 and Sentinel-2 data. The objectives were (1) to propose a method
which can deal with missing values in satellite remote sensing data for crop type mapping
and (2) to evaluate how early in the growing season accurate crop type maps can be
generated.

STUDY AREA AND DATA SETS
Hebei Province is located in the North China Plain and it is one of Chinese main cropping
provinces. Hengshui City is situated between 115�10′–116�34′E and 37�03′–38�23′N,
and occupies an area of 8.12 � 105 ha, of which farmland occupies 5.71 � 105 ha
(approximately 70.3%) (Liu et al., 2015). The study region has a warm temperate
continental monsoon climate that is characterized by hot, rainy summers and cold,
dry winters. The main land cover/use types within this area are cropland, grassland,
residential land, industrial land and water areas. The study area is representative of regions
that rotate crops of winter-wheat and summer maize (Fig. 1). The major crop types in the
study region are winter wheat, summer maize, spring maize and cotton. Winter wheat
is harvested in June, while spring maize and cotton are mature in late August and
September–October, respectively. Summer maize is sown after the harvest of winter
wheat and is harvested in late September to early October. The croplands are mostly
arranged in long, narrow fields (Fig. 2), which have a high potential for producing mixed
pixels on Landsat images. In addition, shortages of water further affect crop production
(Liu et al., 2015; Xie, Cheng & Lv, 2017). Therefore, early season crop type maps are
urgently needed to improve crop growth monitoring and harvest management.
Sentinel image may provide an opportunity to solve these problems.
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The remote sensing data used in this study were Sentinel-1 and Sentinel-2 data obtained
from April 1 to October 31, 2017. Sentinel-1A provides C-band images at a 6-day
revisit frequency. The Level 1 ground range detected (GRD) product in the interferometric
wide swath model was used in this study. The images have dual-polarization vertical
transmission/vertical receiving (VV) and vertical transmission/horizontal receiving (VH)
bands. The images have high geometric accuracy and were provided as backscatter
coefficient in decibels. Sentinel-2 data were provided at 10 m spatial resolution with a
5-day revisit frequency; such data has shown potential to identify crop types (Belgiu &
Csillik, 2018). There were 96 scenes of Sentinel-1 images and 254 scenes of Sentinel-2
images utilized in this study. All of the Sentinel-1 and Sentinel-2 data were processed using
JavaScript application programming interfaces on the Google Earth Engine platform
(GEE), which provides a fast and large-area computational service (Google, 2015; Gorelick
et al., 2017). The spatial resolution of Sentinel-1A images were 10 m on the GEE, and the
data is available in GEE as the “COPERNICUS/S1_GRD” image collection. A 15-day
composition was used to process the Sentinel-1 data, and the maximum value among each
15-day composition period was used to represent the Sentinel-1 signal of the 15-day
period. Of the 14 composited images, all were used in this study except for the July 1–15
image, because it was not fully covered by effective observations (Table 1). Sentinel-2
data were Level 1C top of atmosphere (TOA) reflectance data (image collection
COPERNICUS/S2 on GEE). Cloud-cover pixels were selected and removed using the
automatic phenology-based synthesis classification algorithm (Simonetti et al., 2015),
and 15-day composition image time series were then generated on GEE, with the middle
value of each composition period used in the composition. As the spatial resolution of
the blue band (Band 2), green band (Band 3), red band (Band 4) and near-infrared (NIR)
band (Band 8) were 10 m, we only included these four bands. Next, the normalized

Figure 1 Study area. The blue dots in this figure represent the in situ surveyed fields. Full-size DOI: 10.7717/peerj.5431/fig-1
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difference vegetation index (NDVI) for each composition period was calculated using the
corresponding TOA reflectance (Rouse et al., 1974). Among the 14 composited images
generated, four had cloud cover that was greater than 50% and were therefore discarded.
The Sentinel-2 data used in this study is listed in Table 1.

Crop fields are typically long and narrow, at only 20–50 m wide, so that the images with
20/30 m spatial resolution have a lot of mixed pixels representing multiple crops.
Therefore, we only used the four optical bands (Band 2 blue, Band 3 green, Band 4 red,
Band 8 NIR) of Sentinel-2 images and the NDVI calculated from the optical bands with 10 m
resolution. In addition, we generated 15-day composite images from the Sentinel-1
and Sentinel-2 images, the 15-day composite images reduce the frequency of missing value
pixels and described crop growth effectively. During the image composition procedure,

Figure 2 High-resolution images of the crop fields in the study area. (A) Sub-region 1, (B) Sub-region 2, (C) Sub-region 3, (D) Sub-region 4.
Full-size DOI: 10.7717/peerj.5431/fig-2
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we simply calculated TOA reflectance using the median value of all available observations
in the composition period. We did not consider the solar zenith angle, observation angle
and bidirectional reflectance distribution function, as the number of available observations
was limited (Huete et al., 2002; Wardlow, Egbert & Kastens, 2007).

Ground reference data were collected during a field survey of Hengshui in August
2017. The surveyed fields were selected to include the major crop types across the study
areas. A total of 373 fields were surveyed in-situ, and the crop types and geographic
coordinates of the surveyed fields were recorded. Afterward, the boundaries of the
surveyed crop fields were digitized as polygons using ArcGIS. For each crop type,
the polygons were equally divided as training polygons and validation polygons. Next,
the polygons were converted to Sentinel-2 pixels and boundary pixels were removed to
ensure that all samples contained pure pixels. Finally, 17,542 training samples (pixels)

Table 1 Crop calendars of the study area and satellite data acquired.

Composition periods Winter wheat Cotton Spring maize Summer maize Sentinel-1 Sentinel-2

April 1st–15th Developing Y (8) N

April 16–30th Developing Y (4) Y (12)

May 1st–15th Developing Sowing Sowing Y (10) N

May 16th–31st Developing Developing Developing Y (6) Y (18)

June 1st–15th Maturation Developing Developing Y (8) Y (17)

June 16–30th Maturation Developing Developing Y (6) Y (15)

July 1st–15th Developing Developing Sowing N Y (17)

July 16th–31st Developing Developing Developing Y (8) N

August 1st–15th Developing Developing Developing Y (6) Y (27)

August 16th–31st Developing Maturation Developing Y (10) Y (12)

September 1st–15th Maturation Maturation Developing Y (6) N

September 16–30th Maturation Maturation Y (4) Y (25)

October 1st–15th Maturation Maturation Y (6) Y (9)

October 16th–31st Y (10) Y (17)

Notes:
The “Y” indicates that the 15-day composition data was acquired in the corresponding composition period, and “N” indicates that the data was not acquired. The number
in the table indicates the number of images used for the corresponding composition.

Table 2 Number of training and validation samples.

Crop type Number of surveyed
polygons for training

Number of samples
for training

Number of surveyed
polygons for validation

Number of samples
for validation

Cotton 23 1,811 24 1,944

Spring-maize 12 946 15 576

Summer-maize 10 802 12 1,372

Wheat-maize 79 14,287 78 14,763

Orchard 17 2,523 21 2,462

Seedling nursery 13 854 14 1,011

Woods 27 4,412 28 2,996

Notes:
“Spring-maize” fields contained maize planted in April, while “Summer-maize” was planted in June. “Wheat-maize” denotes fields where winter-wheat and summer
maize crops were rotated (which is the most popular crop rotation in the North China Plain).
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and 25,124 validation samples (pixels) were acquired. The classifier was trained using the
training samples and the classification results were validated using the validation samples.
This study used all validation samples to verify the classification accuracy because the
pixel-based classifier was employed in this study. The numbers of surveyed polygons and
training/validation samples are shown in Table 2.

METHODOLOGY

Methodology overview
Figure 3 depicts the flowchart of this study. First, 15-day compositions of Sentinel-1 and
Sentinel-2 data were generated. As winter wheat was harvested in June and cotton,
spring maize and summer maize were harvested in September, we used images from
April to May for early-season winter wheat identification and images from April to
August for early-season cotton, spring maize and summer maize identification. We
firstly used Jeffries–Matusita (JM) distance and the Gini importance score from the
random forest (RF) algorithm to evaluate the crop separability and contribution of each
feature on crop classification, and generated image time series of the optimal bands.
Then, we proposed an improved artificial immune network (IAIN) which could deal
with the missing values in the image time series. Finally, we varied time series
length, used IAIN to identify crop types and evaluated the effect of time series length on
crop classification accuracies. Based on these results, we determined how early the
accurate distribution maps of winter wheat, cotton, spring maize and summer maize
can be acquired.

Feature importance estimation
We used both Gini importance scores from the RF algorithm and JM distances to select
the optimal features for early-season crop type classification (Breiman, 2001; Bruzzone,
Roli & Serpico, 1995). The JM distance ranges from 0 to 2, and larger JM distance indicates
higher level of separability between the two classes. We selected JM distance in this
study to estimate pair-wise crop separability for each feature because previous studies
proved that JM distance have high potential to measure crop separability (Medjahed et al.,
2016), and the JM distance was implemented in Matlab 2012B in this study. In addition,
Gini index generated from RF was used to measure the importance of the features
when considering all crops. The RFmodel combines multiple classification trees, and when
training the RF model, each tree is constructed using two-thirds of the training records,
the remaining records are used for a test classification with an error referred to the
“out-of-bag error”. There are two free parameters of RF; the number of trees (ntree)
and the number of features to split the nodes (mtry) were defined as 1,000 and the square
root of the total number of input features in this study. During the training procedure
of RF, every time a split of a node is made on a variable, the Gini impurity criterion for the
descendent nodes is less than that of the parent node. The importance score is the sum
of the Gini decreases for each individual variable over all trees in the classification forest.
The Gini importance score were implemented using the Randomforest package in R
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(Breiman et al., 2013). Finally, the optimal features for identifying crop types in Hengshui
were selected by considering both RF Gini index and JM distance.

The improved artificial immune networks classifier
In this study, we IAIN algorithms for crop type identification. The IAIN methods are
inspired by the human immune system and have shown high potential to solve pattern
recognition problems (Gong, Im & Mountrakis, 2011). There are two procedures in IAIN:
training and classification. The training procedure is to use training samples as “antigens,”
then generate “antibodies” from the “antigens.” The classification procedure uses
“antibodies” to classify images by identifying new crop “antigens.” Normally, “antibodies”
contain three attributes: the crop type label of the antibody, the center vector, and
recognition radius. An antibody can identify the antigens within its recognizing radius.
“Antigens” contain two attributes: the crop type label and center vector.

After normalizing all features to a range of 0–1, the normal training procedures involve
five steps: pre-selection, cloning, mutation, adaptive calculation of new antibodies and
antibody reorganization (Zhong & Zhang, 2012). Pre-selection (Step 1) requires selection
of an antigen which best represents the unrecognized antigens; Step 2 (cloning) is to
clone a large number pre-selected antigens; Step 3 (mutation) is to mutate the cloned
antigens randomly and generate “possible antibodies.” Afterward, the most complex step
(Step 5, adaptively calculating new artificial antibodies) uses all “possible antibodies”
to identify all the unrecognized antigens. The antibody that can identify the most antigens
is then defined as a new antibody. Antigens that can be recognized by the new
antibody are labeled as recognized antigens, and the other antigens remain as
unrecognized antigens for generating the next antibody. Finally, when all antigens
have been identified by the antibodies, the training procedure concludes. During the
training procedure, a similarity measurement is used to estimate the distance between the
antibody/antigen center vectors. This study used the Euclidean distance for this purpose as
it is easily calculated (Lhermitte et al., 2011).

To deal with image time series containing missing values, we IAIN classifier in the
classification procedure by adaptively selecting classification features from “antibodies”
(Fig. 4). For example, if the “antibodies” have n features but feature “F4” of pixel x is
missing, the IAIN first detects the indexes of the available features of pixel x, then generates

Figure 3 Flowchart illustrating the process of this study.
Full-size DOI: 10.7717/peerj.5431/fig-3
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“sub-antibodies” only containing the available features of pixel x. Then the Euclidean
distances between pixel x and the center vectors of all “sub-antibodies” are calculated.
Finally, the pixels are labeled according to the crop type label of the antibody with the
lowest distance.

Early-season crop identification evaluation
To evaluate the earliest time phase that we could accurately identify the major crops in
the study region, we set the April 16–30th as the start point, and extended the time series
length by 15-day. The April 16–30th was set as the start point of this study because the
Sentinel-2 data of April 1–15th composition contain too few cloud-free pixels. Next,
we acquired several image series with different lengths, and then used the IAIN to classify

Figure 4 Classification procedure of the improved artificial immune networks (IAIN) algorithm.
Note: This figure shows the condition that the feature F4 is left out.

Full-size DOI: 10.7717/peerj.5431/fig-4

Figure 5 Threshold selection for the sparse vegetation mask mapping.
Full-size DOI: 10.7717/peerj.5431/fig-5
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Figure 6 Top 10 features with high Gini importance scores for the April–May image time series.
4 = April, 5 = May, A = the composition for the 1–15th of each month, B = the composition for the
16–30th/31st of each month. For example, NIR5B = the NIR band of the May 16–31 composition.

Full-size DOI: 10.7717/peerj.5431/fig-6

Figure 7 JM distance and Gini scores of the features for orchard, woods, seedling nursery and winter
wheat. (A) JM distance; (B) Gini importance score. Full-size DOI: 10.7717/peerj.5431/fig-7
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these image time series. The classification accuracies were then assessed using the validation
samples, and the influence of time series length on crop identification accuracies were
evaluated based on these classification accuracies. Commonly, the classification accuracies
increase with the time series length, and then become saturated. We compared the time

Table 3 Features for early-season winter wheat identification with time series of different lengths.

Time series lengths Gained features

April 1st–15th VH and VV of April 1st–15th period

April 1st–30th 4 Optical bands and NDVI of April 16–30th

April 1st–May 15th VH and VV of May 1st–15th period

April 1st–May 31st 4 Optical bands and NDVI of May 16th–31st

Note:
The features listed in this table were gained by increasing the time series duration. For example, for the time series
increased from April 1–15 to April 1–30, 4 optical bands and the NDVI of April 16– 30 were added for early-season
winter wheat classification.

Figure 8 JM distance and Gini scores of the features for cotton, spring maize, summer maize and
winter wheat. (A) JM distance; (B) Gini importance score.

Full-size DOI: 10.7717/peerj.5431/fig-8
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Figure 9 Top 10 features with high Gini importance scores for the April–August image time series.
4 = April, 5 = May, A = the composition for the 1–15th of each month, B = the composition for the
16–30th/31st of each month. For example, NIR4B = the NIR band of the April 16–31 composition.

Full-size DOI: 10.7717/peerj.5431/fig-9

Figure 10 JM distance and Gini score of the features of seedling nurseries, spring maize, summer
maize and cotton. (A) JM distance; (B) Gini importance score.

Full-size DOI: 10.7717/peerj.5431/fig-10
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phases that classification accuracies saturated and the harvest time of each
crop, and finally deduced how long we could generate crop type distribution maps
before the harvests.

Non-vegetation masks
Although the time series signals of different crops have unique characteristics, there can be
some noise caused by miscellaneous factors such as residential regions. We generated a
sparse vegetation mask which could remove alkaline land, residential regions, water
surfaces and other land with low vegetation cover. The mask used the maximum NIR
TOA value during the growing season as the NIR band shows good potential for
discriminating between vegetation and non-vegetation (Zhu & Woodcock, 2014). Figure 5
shows the maximum NIR TOA values of different land cover types during the growing
season. The threshold was defined by subtracting the mean value of vegetation land
cover (cropland and natural vegetation) from the standard deviation. In this study,
the non-vegetation threshold was defined as 0.3.

Figure 11 JM distance and Gini scores of the features of orchards, woods, summer maize and cotton.
(A) JM distance; (B) Gini importance score. Full-size DOI: 10.7717/peerj.5431/fig-11
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RESULTS AND DISCUSSION

Optimal feature selection
As the winter wheat was harvested in early June, we used the April and May features
for early-season winter wheat identification. When considering all crop types, the Gini
score for the May NIR band was 75.3 (Fig. 6), which was the highest among all
features during April and May. Then, pair-wise JM distances and Gini importances were
calculated for each feature (Tables S1 and S2 in the supporting files). Figures 7 and 8
show that all four optical bands and the NDVI of April 16–30 and May 16–31 periods had
high JM distances (generally higher than 1.5) and Gini scores (higher than 30) when
separating winter wheat from cotton, spring maize and summer maize. Therefore,
the optimal features and NDVI were used for winter wheat classification (Table 3).
For the April 1–May 15 periods, we also included VH and VV data of May 1–15 as
Sentinel-2 optical images were not acquired in this time phase.

Figure 12 JM distances and Gini scores of the features distinguishing orchards, seed nurseries,
wheat-maize and spring maize. (A) JM distance; (B) Gini importance score.

Full-size DOI: 10.7717/peerj.5431/fig-12
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We used the image time series of April–August for early identification of the summer
crops (cotton, spring maize and summer maize). Five NIR features (from the April 16–30,
May 16–31, June 1–15, June 16–30 and August 16–31 compositions) and three NDVI
features (April 16–30, June 1–15, June 16–30 compositions) were selected among the
top 10 features with high Gini scores (Fig. 9). Figures 10 and 11 show that NDVI and
NIR data of April and May could separate cotton from woods, orchards and winter
wheat, as these crops green up earlier than cotton. Then, spring maize was separable
from cotton using June features, and summer maize was separable from cotton using
June and July 1–15 composition features. Figures 12 and 13 show that woods, orchards
and winter wheat were separable from spring maize in April and May, and features of the
June 16–30 and July 1–15 compositions could discriminate spring maize and summer
maize. For summer maize identification, as summer maize is mainly sown in late June and
early July, its feature separability and importance during June–August were estimated.
Woods, orchards and cotton crops were separable from summer maize in June

Figure 13 JM distance and Gini scores of the features distinguishing cotton, summer maize, woods
and spring maize. (A) JM distance; (B) Gini importance score.

Full-size DOI: 10.7717/peerj.5431/fig-13
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(Figs. 14 and 15). However, summer maize and seedling nurseries had lower separability
as their JM distances were lower than 1.0 during June and August. Only the NDVI of
the August 1–15 composition had relatively high JM distance (0.91). Generally,
as NDVI and NIR contributed the most to separating the summer crops, we used
NDVI and NIR time series identify summer crops in early season, VH and VV data of
May 1–15 were included because Sentinel-2 data were not acquired (Table 4).

Feature contribution results showed that features from April and May could
discriminate summer crops (such as cotton and spring maize) from natural vegetation
(such as woods) in this study, as natural vegetation greens up earlier than crops. June
was the fast growing season of cotton and spring maize; therefore, features from this
period can be used to discriminate between them as they green up at different speeds
(Wardlow, Egbert & Kastens, 2007). Among the features used in this study, NDVI and
NIR had the highest separability and contributed most to crop classification. This is
consistent with Zhu & Woodcock (2014), who observed that NIR could best discriminate
between agricultural land and forest. Although texture features are effective for

Figure 14 JM distance and Gini scores of the features distinguishing orchards, seeding nurseries and
summer maize. (A) JM distance; (B) Gini importance score.

Full-size DOI: 10.7717/peerj.5431/fig-14

Hao et al. (2018), PeerJ, DOI 10.7717/peerj.5431 16/30

http://dx.doi.org/10.7717/peerj.5431/fig-14
http://dx.doi.org/10.7717/peerj.5431
https://peerj.com/


Figure 15 JM distance and Gini scores of the features distinguishing cotton, spring maize, woods
and summer maize. (A) Gini importance score; (B) JM distance.

Full-size DOI: 10.7717/peerj.5431/fig-15

Table 4 Features for early-season summer crop identification with different time series lengths.

Time series lengths Gained features

April 16–30th NIR band and NDVI of April 16–30th

April 16th–May15th VH and VV of May 1st–15th period

April 16th–May31st NIR band and NDVI of May 16th–31st

April 16th–June 15th NIR band and NDVI of June 1st–15th

April 16th–June 30th NIR band and NDVI of June 16–30th

April 16th–July 15th NIR band and NDVI of July 1st–15th

April 16th–July 31st VH and VV of July 16th–31st period

April 16th–August 15th NIR band and NDVI of August 1st–15th

April 16th–August 31st NIR band and NDVI of August 16th–31st

Note:
Early season identification of spring maize and cotton were conducted using NDVI and NIR data from the April 16–
August 31 time series, and the early-season summer maize was identified using NDVI and NIR data from the June 1–
August 31 time series.
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discriminating between cropland and woods in very high-resolution images, such as
Gaofen-1 data at 2 m resolution (Turker & Ozdarici, 2011), these features were not
considered in this study because the spatial resolution of the Sentinel images used was 10
m.Hao, Wang & Niu (2015a) reported that cotton and spring maize in Xinjiang were often
confused, but this was not the case in this study. Basically, the optimal time phases selected
for early season crop type classification varied in different years and study regions, as the
growing season of crops have inter-annual and spatial phenological variation (Hao et al.,
2016; Zhang, Tan & Yu, 2014). Therefore, when training to identify crop types at early
season in a new study region, the contribution of the time phases for crop classification
should be reevaluated.

Classification accuracies of IAIN for “missing value” pixels
Although the 15-day composition method was used to improve the quality of the
image time series and reduce the number of missing values, there are still some pixels
containing “NaN” values. Meanwhile, most existing classifiers, such as maximum
likelihood classification, support vector machine and RF, cannot deal with missing values,
if the input data contain “NaN” value, the these classifiers will return “not classified”
as output. In this study, we proposed IAIN classifier to deal with the “missing value”
problem.

To assess the potential of the IAIN of dealing with “missing value” pixels, we firstly
used April–June and April–August image time series to identify winter wheat and summer
crops, and used validation samples with “missing value” to verify the classification
accuracies. We acquired 4,293 samples during April–June for winter wheat validation, and
8,065 samples during April–August for summer crops validation. Results (Tables 5 and 6)
show that IAIN could identify pixels with “missing value,” the OAs of winter wheat
and summer crops were 99% and 98.55%, respectively. Only a few winter wheat,

Table 5 Confusion matrix of winter wheat identification using irregular time series and IAIN
classifier.

Winter-wheat Non-winter PA UA

Winter-wheat 1,727 0 97.57 100

Non-winter 43 2,523 100 98.32

Note:
OA = 99.00% and Kappa coefficient = 0.9793.

Table 6 Confusion matrix of summer crops identification using irregular time series and IAIN
classifier.

Cotton Spring maize Summer maize Non-crop PA UA

Cotton 1,045 0 0 0 98.21 100

Spring maize 0 101 0 0 100 100

Summer maize 0 0 4,348 0 97.8 100

Non-crop 19 0 98 2,454 100 95.45

Note:
OA = 98.55% and Kappa coefficient = 0.9754.
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cotton and summer maize samples were mislabeled as “Non-crop.” While, as the
number of spring maize was small (only 101 with “missing value”), the producer’s
accuracy (PA) and user’s accuracy (UA) of spring maize classification maybe not 100%
in reality.

Figure 16 Subset images of winter wheat mapping for “missing value” patterns. (A) NDVI composed image (R: NDVI of April, G: NDVI of May,
B: NDVI of June) of Sub-region 1; (B) Crop classification maps of Sub-region 1; (C) NDVI composed image (R: NDVI of April, G: NDVI of May,
B: NDVI of June) of Sub-region 2; (D) Crop classification maps of Sub-region 2. Full-size DOI: 10.7717/peerj.5431/fig-16
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Some subset images of winter wheat and summer crop classification maps are shown
in Figs. 16 and 17. The red patterns in Fig. 16 and green/blue pattern in Fig. 17 were
“missing value” patterns. And the classification results showed that the “missing value”
patterns were generally correctly classified. However, there are still possible shortages
when using IAIN classifier to deal with missing value. Firstly, the high separable features

Figure 17 Subset images of summer crops mapping for “missing value” patterns. (A) NDVI composed image (R: NDVI of August, G: NDVI of
June, B: NDVI of May) of Sub-region 1; (B) Crop classification maps of Sub-region 1; (C) NDVI composed image (R: NDVI of August, G: NDVI
of June, B: NDVI of May) of Sub-region 2; (D) Crop classification maps of Sub-region 2. Full-size DOI: 10.7717/peerj.5431/fig-17
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should be acquired for crop type classification, crops cannot be identified if only low
separable features were used as inputs for the IAIN classifier. In addition, the similarity
measurement used in this study is Euclidean distance, it is sensitive to the noise in the time
series although it is easy calculating (Lhermitte et al., 2011). Thus, other similarity
measurements could be considered to further improve the robustness of the IAIN
classifier.

Early-season winter wheat, cotton, spring maize and summer maize
mapping
Figure 18 shows that the VH and VV polarization data from the April 1–15 composition
could not identify winter wheat, as both the PA and UA for winter wheat were low.
Both PA and UA increased when the optical-band and NDVI data from the April 16–30
composition were used. For the April 1–May 15 and April 1–May 31 data, both PA
and UA were higher than 95% (96.12% and 96.19% for May 15, and 99.28% and
95.42% for May 31, respectively). This indicated that winter wheat could be identified
at May 15, which is approximately 20 days before the winter wheat harvest (early June).
As both winter wheat and woody plants had high vegetation fractions, the misclassification
of winter wheat is mainly due to confusion with orchards. This is consistent with
the low separability of orchards, woods, seedling nurseries and winter wheat crops
(Fig. 6). Figure 19 shows the spatial distribution of winter wheat generated from the
April 1–May 31 data. Winter wheat was the dominant crop type in the study area and
was present in each county. The winter wheat map was generated at 10 m resolution
and shows the field boundaries clearly.

Figure 18 Producer’s (PA) and user’s accuracies (UA) of winter wheat with different time series
lengths. April 15th = classification accuracies acquired using the April 1–15 image time series, April
30th = classification acquired using the April 1–30 image time series, and so forth for the other time series
lengths. Full-size DOI: 10.7717/peerj.5431/fig-18
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Figures 20 and 21 show that images obtained during April 1–May 30 could not
identify cotton and spring maize, as the PAs and UAs were lower than 60% in most cases.
This was mainly because the crops were in their early stage, and the early signatures
captured by satellites cannot discriminate between cotton and spring maize. When the
June 1–15 image composition was used, the PAs and UAs of cotton and spring maize
began to increase, which was consistent with the high JM distance between the two
crops. Then, both the PAs and UAs of cotton and spring maize became greater than 95%
when the length of the time series was increased to April 1–July 15 (PA and UA were
95.42% and 99.30% for cotton, and 97.92% and 98.95% for spring maize, respectively,

Figure 19 Spatial distribution of winter wheat in the study region (map acquired using the image time series of April 1–May 31, 2017).
Sub-figure (A) Spatial distribution of winter wheat, (B, D, F, H, J) remote-sensed NDVI images composited by R: NDVI of September, G: NDVI
of July and B: NDVI of May. As the winter wheat fields are rotated with summer maize, these fields have high NDVIs in September and low NDVIs
in July, so that these were “pink parcels” on the composited NDVI image. (C, E, G, I, K) Winter wheat maps derived from the corresponding NDVI
composited images. Full-size DOI: 10.7717/peerj.5431/fig-19
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at July 15). Use of the longer image time series did not increase the classification
accuracies of these two crops. Spring maize was harvested in late August and cotton was
harvested during September and October. Hence, an accurate distribution map was
generated from April 1–July 15 data, which was more than one month before the
harvests of these crops.

Figure 22 shows that PAs and UAs were higher than 80% using images composited from
June 1–15 and June 16–30 data. The relatively high accuracies obtained for early-stage
summer maize was consistent with its high separability (Figs. 15 and 20) caused
by its low vegetation fraction in the early season. With image time series lengths

Figure 21 Producer’s (PA) and user’s accuracies (UA) of spring maize with different time series
lengths. Full-size DOI: 10.7717/peerj.5431/fig-21

Figure 20 Producer’s (PA) and user’s accuracies (UA) of cotton with different time series lengths.
Full-size DOI: 10.7717/peerj.5431/fig-20
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of June 1–August 15, the PA and UA were higher than 95% (95.81% and 99.88%,
respectively, for summer maize at August 15), and use of a longer image time series
did not improve the classification accuracy. The summer maize was harvested in
late September and early October. Hence, an accurate early summer maize map could
be generated from August 15 data—one month earlier than the harvest.

Figure 23 shows the spatial distribution of cotton, spring maize and summer maize
generated from April 1–August 15 data. Summer maize was the dominant crop in the
study area as it was sown after the harvest of winter wheat, while cotton was mainly
planted in the southwest of the study area. Although some pixels had missing values due to
cloud, the IAIN classifier used in this study could deal with these problems and generate
crop maps of high quality. In addition, we only conducted pixel-based classification as
the object-segment may introduce some uncertainty for heterogeneous cropland.
The results clearly showed the field boundaries, which proves the potential of using
Sentinel images for mapping fragmented crop fields.

We then estimated how early we could acquire accurate crop distribution maps.
Our result shows that: (1) the classification accuracies of winter wheat is saturated
with April 1–May 15 image time series, which is 20 days before harvest time (early
June). (2) The classification accuracies of cotton and spring maize were saturated
using the April 1–July 15 image time series, which was 4–6 weeks earlier than
harvest time. (3) The classification accuracies of summer maize were saturated using
the April 1–August 15 time series, which is one month earlier than the summer
maize harvest. This study evaluated the potential for early season identification of
multiple crops (winter wheat, cotton, spring maize and summer maize) at finer (10 m)
spatial resolution than similar existing studies (Hao et al., 2015c; Skakun et al., 2017;
Song et al., 2017; Vaudour, Noirot-Cosson & Membrive, 2015). It provides valuable
information for crop growth monitoring and management in regions with fragmented
crop fields.

Figure 22 Producer’s (PA) and user’s Accuracies (UA) of summer maize with different time series
lengths. Full-size DOI: 10.7717/peerj.5431/fig-22

Hao et al. (2018), PeerJ, DOI 10.7717/peerj.5431 24/30

http://dx.doi.org/10.7717/peerj.5431/fig-22
http://dx.doi.org/10.7717/peerj.5431
https://peerj.com/


CONCLUSIONS
In this study, we proposed an IAIN algorithm to deal with the irregular image time series.
Then, we tried to identify major crops in the early season at 10 m resolution and
determined how early we could acquire accurate crop distribution maps. The main
conclusions are as follows:

1. The IAIN algorithm proposed in this study demonstrated potential to deal with
missing values in image time series. The OAs of the classifier for winter wheat and

Figure 23 Spatial distribution of cotton, spring maize and summer maize in the study region (map derived from the April 1–August 15, 2017
time series). Sub-figure (A) is the spatial distribution of the winter wheat, the remote sensed images (sub-figures B, D, F, H, J) are NDVI images
composited by R: NDVI of September, G: NDVI of July and B: NDVI of May. Winter wheat fields are rotated with summer maize, hence they have
high NDVI in September and low NDVI in July, denoted by “pink parcels” on the composited NDVI image. Summer crops, such as cotton and
maize, always have high a vegetation fraction in July and some crops also have a high vegetation fraction in September, so these fields were denoted
by green or yellow parcels in the NDVI composition map. (C, E, G, I, K) are the winter wheat maps of the corresponding NDVI composited images.

Full-size DOI: 10.7717/peerj.5431/fig-23

Hao et al. (2018), PeerJ, DOI 10.7717/peerj.5431 25/30

http://dx.doi.org/10.7717/peerj.5431/fig-23
http://dx.doi.org/10.7717/peerj.5431
https://peerj.com/


summer crops identification were 99% and 98.55%, respectively. The capability of
IAIN to deal with irregular image time series is the basement of early season crop type
mapping.

2. In the study area, winter wheat could be accurately identified 20 days before
harvest. This was based on April 1–May 15 images, in which the PAs and UAs
were greater than 95%. The PAs and UAs of cotton and spring maize were greater
than 95% using an April 1–July image time series. This allowed maps to be generated
4–6 weeks earlier than the harvest of those crops. The PAs and UAs of summer
maize were above 95% when using image time series longer than April 1–August 15,
indicating that summer maize can be accurately mapped more than one month
before harvest.

Future studies of early season crop type mapping should analyze further features at finer
spatial resolutions (<10 m) to discover new features that can distinguish between crops
even earlier. In addition, some new similarity measurements could be used to further IAIN
algorithms.
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