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Characterizing transcriptomes in non-model organisms has resulted in a massive increase

in our understanding of biological phenomena. This boon, largely made possible via high-

throughput sequencing, means that studies of functional, evolutionary and population

genomics are now being done by hundreds or even thousands of labs around the world.

For many, these studies begin with a de novo transcriptome assembly, which is a

technically complicated process involving several discrete steps. The Oyster River Protocol

(ORP), described here, implements a standardized and benchmarked set of bioinformatic

processes, resulting in an assembly with enhanced qualities over other standard assembly

methods. Specifically, ORP produced assemblies have higher Detonate and TransRate

scores and mapping rates, which is largely a product of the fact that it leverages a multi-

assembler and kmer assembly process, thereby bypassing the shortcomings of any one

approach. These improvements are important, as previously unassembled transcripts are

included in ORP assemblies, resulting in a significant enhancement of the power of

downstream analysis. Further, as part of this study, I show that assembly quality is

unrelated with the number of reads generated, above 30 million reads. Code Availability:

The version controlled open-source code is available at https://github.com/macmanes-

lab/Oyster_River_Protocol. Instructions for software installation and use, and other details

are available at http://oyster-river-protocol.rtfd.org/.
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ABSTRACT11

Characterizing transcriptomes in non-model organisms has resulted in a massive increase in the un-

derstanding of biological phenomena. This boon, largely made possible via high-throughput sequenc-

ing, means that studies of functional, evolutionary and population genomics are now being done by

hundreds or even thousands of labs around the world. For many, these studies begin with a de

novo transcriptome assembly, which is a technically complicated process involving several discrete

steps. The Oyster River Protocol (ORP), described here, implements a standardized and bench-

marked set of bioinformatic processes, resulting in an assembly with enhanced qualities over other

standard assembly methods. Specifically, ORP produced assemblies have higher Detonate and

TransRate scores and mapping rates, which is largely a product of the fact that it leverages a multi-

assembler and kmer assembly process, thereby bypassing the shortcomings of any one approach.

These improvements are important, as previously unassembled transcripts are included in ORP as-

semblies, resulting in a significant enhancement of the power of downstream analysis. Further, as

part of this study, I show that assembly quality is unrelated with the number of reads generated,

above 30 million reads. Code Availability: The version controlled open-source code is available

at https://github.com/macmanes-lab/Oyster_River_Protocol. Instructions for software in-

stallation and use, and other details are available at http://oyster-river-protocol.rtfd.org/.
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1 INTRODUCTION28

For all biology, modern sequencing technologies have provided for an unprecedented opportunity to gain a29

deep understanding of genome level processes that underlie a very wide array of natural phenomena, from30

intracellular metabolic processes to global patterns of population variability. Transcriptome sequencing31

has been influential (Mortazavi et al., 2008; Wang et al., 2009), particularly in functional genomics32

(Lappalainen et al., 2013; Cahoy et al., 2008), and has resulted in discoveries not possible even just a33

few years ago. This in large part is due to the scale at which these studies may be conducted (Li et al.,34

2017; Tan et al., 2017). Unlike studies of adaptation based on one or a small number of candidate genes35

(e.g., (Fitzpatrick et al., 2005; Panhuis, 2006)), modern studies may assay the entire suite of expressed36

transcripts – the transcriptome – simultaneously. In addition to issues of scale, as a direct result of37

enhanced dynamic range, newer sequencing studies have increased ability to simultaneously reconstruct38

and quantitate lowly- and highly-expressed transcripts (Wolf, 2013; Vijay et al., 2013). Lastly, improved39

methods for the detection of differences in gene expression (e.g., (Robinson et al., 2010; Love et al., 2014))40

across experimental treatments have resulted in increased resolution for studies aimed at understanding41

changes in gene expression.42

43

As a direct result of their widespread popularity, a diverse tool set for the assembly of transcriptome44

exists, with each potentially reconstructing transcripts others fail to reconstruct. Amongst the earliest of45
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specialized de novo transcriptome assemblers were the packages Trans-ABySS (Robertson et al., 2010),46

Oases (Schulz et al., 2012), and SOAPdenovoTrans (Xie et al., 2014), which were fundamentally47

based on the popular de Bruijn graph-based genome assemblers ABySS (Simpson et al., 2009), Velvet48

(Zerbino and Birney, 2008), and SOAP (Li et al., 2008) respectively. These early efforts gave rise to49

a series of more specialized de novo transcriptome assemblers, namely Trinity (Haas et al., 2013),50

and IDBA-Tran (Peng et al., 2013). While the de Bruijn graph approach remains powerful, newly51

developed software explores novel parts of the algorithmic landscape, offering substantial benefits,52

assuming novel methods reconstruct different fractions of the transcriptome. BinPacker (Liu et al.,53

2016), for instance, abandons the de Bruijn graph approach to model the assembly problem after the54

classical bin packing problem, while Shannon (Kannan et al., 2016) uses information theory, rather than55

a set of software engineer-decided heuristics. These newer assemblers, by implementing fundamentally56

different assembly algorithms, may reconstruct fractions of the transcriptome that other assemblers fail to57

accurately assemble.58

In addition to the variety of tools available for the de novo assembly of transcripts, several tools are59

available for pre-processing of reads via read trimming ((e.g., Skewer (Jiang et al., 2014), Trimmomatic60

(Bolger et al., 2014), Cutadapt (Martin and 2011, 2011)), read normalization (khmer (Pell et al.,61

2012)), and read error correction (SEECER (Le et al., 2013) and RCorrector (Song and Florea, 2015),62

Reptile (Yang et al., 2010)). Similarly, benchmarking tools that evaluate the quality of assembled63

transcriptomes including TransRate (Smith-Unna et al., 2016), BUSCO (Benchmarking Universal64

Single-Copy Orthologs - (Simão et al., 2015)), and Detonate (Li et al., 2014) have been developed.65

Despite the development of these evaluative tools, this manuscript describes the first systematic effort66

coupling them with the development of a de novo transcriptome assembly pipeline.67

The ease with which these tools may be used to produce and characterize transcriptome assemblies68

belies the true complexity underlying the overall process (Ungaro et al., 2017; Wang and Gribskov, 2017;69

Moreton et al., 2015; Yang and Smith, 2013). Indeed, the subtle (and not so subtle) methodological70

challenges associated with transcriptome reconstruction may result in highly variable assembly quality. In71

particular, while most tools run using default settings, these defaults may be sensible only for one specific72

(often unspecified) use case or data type. Because parameter optimization is both dataset-dependent and73

factorial in nature, an exhaustive optimization particularly of entire pipelines, is never possible. Given74

this, the production of a de novo transcriptome assembly requires a large investment in time and resources,75

with each step requiring careful consideration. Here, I propose an evidence-based protocol for assembly76

that results in the production of high quality transcriptome assemblies, across a variety of commonplace77

experimental conditions or taxonomic groups.78

79

This manuscript describes the development of The Oyster River Protocol1 for transcriptome assembly.80

It explicitly considers and attempts to address many of the shortcomings described in (Vijay et al.,81

2013), by leveraging a multi-kmer and multi-assembler strategy. This innovation is critical, as all82

assembly solutions treat the sequence read data in ways that bias transcript recovery. Specifically, with the83

development of assembly software comes the use of a set of heuristics that are necessary given the scope84

of the assembly problem itself. Given each software development team carries with it a unique set of ideas85

related to these heuristics while implementing various assembly algorithms, individual assemblers exhibit86

unique assembly behavior. By leveraging a multi-assembler approach, the strengths of one assembler87

may complement the weaknesses of another. In addition to biases related to assembly heuristics, it is well88

known that assembly kmer-length has important effects on transcript reconstruction, with shorter kmers89

more efficiently reconstructing lower-abundance transcripts relative to more highly abundant transcripts.90

Given this, assembling with multiple different kmer lengths, then merging the resultant assemblies may91

effectively reduce this type of bias. Recognizing these issue, I hypothesize that an assembly that results92

from the combination of multiple different assemblers and lengths of assembly-kmers will be better than93

each individual assembly, across a variety of metrics.94

In addition to developing an enhanced pipeline, the work suggests an exhaustive way of characterizing95

assemblies while making available a set of fully-benchmarked reference assemblies that may be used by96

other researchers in developing new assembly algorithms and pipelines. Although many other researchers97

have published comparisons of assembly methods, up until now these have been limited to single datasets98

assembled a few different ways (Marchant et al., 2016; Finseth and Harrison, 2014), thereby failing to99
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provide more general insights.100

2 METHODS101

2.1 Datasets102

In an effort at benchmarking the assembly and merging protocols, I downloaded a set of publicly available103

RNAseq datasets (Table 1) that had been produced on the Illumina sequencing platform. These datasets104

were chosen to represent a variety of taxonomic groups, so as to demonstrate the broad utility of the105

developed methods. Because datasets were selected randomly with respect to sequencing center and read106

number, they are likely to represent the typical quality of Illumina data circa 2014-2017.107

Table 1108

Type Accession Species Num. Reads Read Length

Animalia ERR489297 Anopheles gambiae 206M 100bp

Animalia DRR030368 Echinococcus multilocularis 73M 100bp

Animalia ERR1016675 Heterorhabditis indica 51M 100bp

Animalia SRR2086412 Mus musculus 54M 100bp

Animalia DRR036858 Mus musculus 114M 100bp

Animalia DRR046632 Oncorhynchus mykiss 82M 76bp

Animalia SRR1789336 Oryctolagus cuniculus 31M 100bp

Animalia SRR2016923 Phyllodoce medipapillata 86M 100bp

Animalia ERR1674585 Schistosoma mansoni 39M 100bp

Plant DRR082659 Aeginetia indica 69M 90bp

Plant DRR053698 Cephalotus follicularis 126M 90bp

Plant DRR069093 Hevea brasiliensis 103M 100bp

Plant SRR3499127 Nicotiana tabacum 30M 150bp

Plant DRR031870 Vigna angularis 60M 100bp

Protozoa ERR058009 Entamoeba histolytica 68M 100bp

109

Table 1 lists the datasets used in this study. All datasets are publicly available for download by accession110

number at the European Nucleotide Archive or NCBI Short Read Archive.111

2.2 Software112

The Oyster River Protocol can be installed on the Linux platform, and does not require superuser113

privileges, assuming Linuxbrew (Jackman and Birol, 2016) is installed. The software is implemented114

as a stand-alone makefile which coordinates all steps described below. All scripts are available at115

https://github.com/macmanes-lab/Oyster_River_Protocol, and run on the Linux116

platform. The software is version controlled and openly-licensed to promote sharing and reuse. A guide117

for users is available at http://oyster-river-protocol.rtfd.io.118

2.3 Pre-assembly procedures119

For all assemblies performed, Illumina sequencing adapters were removed from both ends of the se-120

quencing reads, as were nucleotides with quality Phred ≤ 2, using the program Trimmomatic version121

0.36 (Bolger et al., 2014), following the recommendations from (MacManes, 2014). After trimming,122

reads were error corrected using the software RCorrector version 1.0.2 (Song and Florea, 2015),123

following recommendations from (MacManes and Eisen, 2013). The code for running this step of the124

Oyster River protocols is available at https://github.com/macmanes-lab/Oyster_River_125

Protocol/blob/master/oyster.mk#L134. The trimmed and error corrected reads were then126

subjected to de novo assembly.127

1Named the Oyster River Protocol because the ideas, and some of the code, was developed while overlooking the Oyster

River, located in Durham, New Hampshire. NB, the naming assembly of protocols after bodies of water was, to the best of my

knowledge, first done by C. Titus Brown (The Eel Pond Protocol: http://khmer-protocols.readthedocs.io/en/

latest/mrnaseq/index.html), and may have subconsciously influenced me in naming this protocol.
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2.4 Assembly128

I assembled each trimmed and error corrected dataset using three different de novo transcriptome as-129

semblers and three different kmer lengths, producing 4 unique assemblies. First, I assembled the reads130

using Trinity release 2.4.0 (Haas et al., 2013), and default settings (k=25), without read normalization.131

The decision to forgo normalization is based on previous work (MacManes, 2015) showing slightly132

worse performance of normalized datasets. Next, the SPAdes RNAseq assembler (version 3.10) (Chikhi133

and Medvedev, 2014) was used, in two distinct runs, using kmer sizes 55 and 75. Lastly, reads were134

assembled using the assembler Shannon version 0.0.2 (Kannan et al., 2016), using a kmer length of 75.135

These assemblers were chosen based on the fact that they [1] use an open-science development model,136

whereby end-users may contribute code, [2] are all actively maintained and are undergoing continuous137

development, and [3] occupy different parts of the algorithmic landscape.138

This assembly process resulted in the production of four distinct assemblies. The code for running139

this step of the Oyster River protocols is available at https://github.com/macmanes-lab/140

Oyster_River_Protocol/blob/master/oyster.mk#L142.141

2.5 Assembly Merging via OrthoFuse142

To merge the four assemblies produced as part of the Oyster River Protocol, I developed new software that143

effectively merges transcriptome assemblies. Described in brief, OrthoFuse begins by concatenating144

all assemblies together, then forms groups of transcripts by running a version of OrthoFinder (Emms145

and Kelly, 2015) packaged with the ORP, modified to accept nucleotide sequences from the merged146

assembly. These groupings represent groups of homologous transcripts. While isoform reconstruction147

using short-read data is notoriously poor, by increasing the inflation parameter by default to I=4, it148

attempts to prevent the collapsing of transcript isoforms into single groups. After Orthofinder has149

completed, a modified version of TransRate version 1.0.3 (Smith-Unna et al., 2016) which is packaged150

with the ORP, is run on the merged assembly, after which the best (= highest contig score) transcript is151

selected from each group and placed in a new assembly file to represent the entire group. The resultant file,152

which contains the highest scoring contig for each orthogroup, may be used for all downstream analyses.153

OrthoFuse is run automatically as part of the Oyster River Protocol, and additionally is available154

as a stand alone script, https://github.com/macmanes-lab/Oyster_River_Protocol/155

blob/master/orthofuser.mk.156

2.6 Assembly Evaluation157

All assemblies were evaluated using ORP-TransRate, Detonate version 1.11 (Li et al., 2014),158

shmlast version 1.2 (Scott, 2017), and BUSCO version 3.0.2 (Simão et al., 2015). TransRate evalu-159

ates transcriptome assembly contiguity by producing a score based on length-based and mapping metrics,160

while Detonate conducts an orthogonal analysis, producing a score that is maximized by an assembly161

that is representative of input sequence read data. BUSCO evaluates assembly content by searching the162

assemblies for conserved single copy orthologs found in all Eukaryotes. I report default BUSCO metrics as163

described in (Simão et al., 2015). Specifically, ”complete orthologs”, are defined as query transcripts that164

are within 2 standard deviations of the length of the BUSCO group mean, while contigs falling short of165

this metric are listed as ”fragmented”. Shmlast implements the conditional reciprocal best hits (CRBH)166

test (Aubry et al., 2014), conducted in this case against the Swiss-Prot protein database (downloaded167

October, 2017) using an e-value of 1E-10.168

169

In addition to the generation of metrics to evaluation the quality of transcriptome assemblies, I170

generated a distance matrix of assemblies for each dataset using the sourmash package (Titus Brown171

and Irber, 2016), in an attempt at characterizing the algorithmic landscape of assemblers. Specifically,172

each assembly was characterized using the compute function using 5000 independent sketches. The173

distance between assemblies was calculated using the compare function and a kmer length of 51.174

These distance matrices were visualized using the isoMDS function of the MASS package (https:175

//CRAN.R-project.org/package=MASS).176

2.7 Statistics177

All statistical analyses were conducted in R version 3.4.0 (R Core Development Team, 2011). Violin178

plots were constructed using the beanplot (Kampstra, 2008) and the beeswarm R packages (https:179
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//CRAN.R-project.org/package=beeswarm). Expression distributions were plotted using the180

ggridges package (https://CRAN.R-project.org/package=ggridges).181

3 RESULTS AND DISCUSSION182

Fifteen RNAseq datasets, ranging in size from (30-206M paired end reads) were assembled using the183

Oyster River Protocol and with Trinity. Each assembly was evaluated using the software BUSCO,184

shmlast, Detonate, and TransRate. From these, several metrics were chosen to represent the185

quality of the produced assemblies. Of note, all the assemblies produced as part of this work are available at186

https://www.dropbox.com/sh/ehxvd0ont9ge8id/AABZxRCwcpaxb7rXWclTBbJga, and187

will be moved to dataDryad after acceptance. A file containing the evaluative metrics is available at188

https://github.com/macmanes-lab/Oyster_River_Protocol/blob/master/manuscript/189

orp.csv, while the distance matrices are available within the folder https://github.com/190

macmanes-lab/Oyster_River_Protocol/blob/master/manuscript/. R code used to191

conduct analyses and make figures is found at https://github.com/macmanes-lab/Oyster_192

River_Protocol/blob/master/manuscript/R-analysis.Rmd.193

3.1 Assembled transcriptomes194

The Trinity assembly of trimmed and error corrected reads generally completed on a standard Linux195

server using 24 cores, in less than 24 hours. RAM requirement is estimated to be close to 0.5Gb per196

million paired-end reads. The assemblies on average contained 176k transcripts (range 19k - 643k) and197

97Mb (range 14MB - 198Mb). Other quality metrics will be discussed below, specifically in relation to198

the ORP produced assemblies.199

ORP assemblies generally completed on a standard Linux server using 24 cores in three days. Typically200

Trinity was the longest running assembler, with the individual SPAdes assemblies being the shortest.201

RAM requirement is estimated to be 1.5Gb - 2Gb per million paired-end reads, with SPAdes requiring202

the most. The assemblies on average contained 153k transcripts (range 23k - 625k) and 64Mb (range203

8MB - 181Mb).204

MinHash sketch signatures (Ondov et al., 2016) of each assemblies of a given dataset were calculated205

using sourmash (Titus Brown and Irber, 2016), and a MDS plot was generated (Figure 1) from their206

distances. Interestingly, each assembler tends to produce a specific signature which is relatively consistent207

between the fifteen datasets. Shannon differentiates itself from the other assemblers on the first (x) MDS208

axis, while the other assemblers (SPAdes and Trinity) are separated on the second (y) MDS axis.209
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Figure 1210

211

Figure 1. MDS plot describing the similarity within and between assemblers. Colored x’s mark212

individual assemblies, with red marks corresponding to the ORP assemblies, green marks corresponding213

to the Shannon assemblies, blue marks corresponding to the SPAdes55 assemblies, orange marks214

corresponding to the SPAdes75 assemblies, and the black marks corresponding to the Trinity215

assemblies. In general assemblies produced by a given assembler tend to cluster together.216

3.1.1 Assembly Structure217

The structural integrity of each assembly was evaluated using the TransRate and Detonate software218

packages. As many downstream applications depend critically on accurate read mapping, assembly quality219

is correlated with increased mapping rates. The split violin plot presented in figure 2A visually represents220

the mapping rates of each assembly, with lines connecting the mapping rates of datasets assembled221

with Trinity and with the ORP, respectively. The average mapping rate of the Trinity assembled222

datasets was 87% (sd = 8%), while the average mapping rates of the ORP assembled datasets was 93%223

(sd=4%). This test is statistically significant (one-sided Wilcoxon rank sum test, p = 2E-2). Mapping224

rates of the other assemblies are less than that of the ORP assembly, but in most cases, greater than that225

of the Trinity assembly. This aspect of assembly quality is critical. Specifically mapping rates measure226

how representative the assembly is of the reads. If I assume that the vast majority of generated reads227

come from the biological sample under study, when reads fail to map, that fraction of the biology is lost228

from all downstream analysis and inference. This study demonstrates that across a wide variety of taxa,229

assembling RNAseq reads with any single assembler alone may result in a decrease in mapping rate and230

in turn, the lost ability to draw conclusions from that fraction of the sample.231

Figure 2B describes the distribution of TransRate assembly scores, which is a synthetic metric232

taking into account the quality of read mapping and coverage-based statistics. The Trinity assemblies233

had an average optimal score of 0.35 (sd = .14), while the ORP assembled datasets had an average score234

of 0.46 (sd = .07). This test is statistically significant (one-sided Wilcoxon rank sum test, p-value =235

1.8E-2). Optimal scores of the other assemblies are less than that of the ORP assembly, but in most236

cases, greater than that of the Trinity assembly. Figure 2C describes the distribution of Detonate237

scores. The Trinity assemblies had an average score of -6.9E9 (sd = 5.2E9), while the ORP assembled238

datasets had an average score of -5.3E9 (sd = 3.5E9). This test not is statistically significant, though in all239

cases, relative to all other assemblies, scores of the ORP assemblies are improved (become less negative),240

indicating that the ORP produced assemblies of higher quality.241

In addition to reporting synthetic metrics related to assembly structure, TransRate reports individual242

metrics related to specific elements of assembly quality. One such metric estimates the rate of chimerism,243

a phenomenon which is known to be problematic in de novo assembly (Ungaro et al., 2017; Singhal,244

2013). Rates of chimerism are relatively constant between all assemblers, ranging from 10% for the245

Shannon assembly, to 12% for the SPAdes75 assembly. The chimerism rate for the ORP assemblies246

6/15

PeerJ reviewing PDF | (2017:08:19951:2:0:NEW 11 Jul 2018)

Manuscript to be reviewed



averaged 10.5% (± 4.7%). While the new method would ideally improve this metric by exclusively247

selecting non-chimeric transcripts, this does not seem to be the case, and may be related to the inherent248

shortcomings of short-read transcriptome assembly.249

Of note, consistent with all short-read assemblers (Ungaro et al., 2017), the ORP assemblies may not250

accurately reflect the true isoform complexity. Specifically, because of the way that single representative251

transcripts are chosen from a cluster of related sequences, some transcriptional complexity may be lost.252

Consider the cluster containing contigs {AB, A, B} where AB is a false-chimera, selecting a single253

representative transcript with the best score could yield either A or B, thereby excluding an important254

transcript in the final output. I believe this type of transcript loss is not common, based on how contigs are255

scored (Table 1, Figure 3, (Smith-Unna et al., 2016)), though strict demonstration of this is not possible,256

given the lack of high-quality reference genomes for the majority of the datasets. More generally, mapping257

rates, Detonate and TransRate score improvements suggest that this type of loss is not widespread.258

Figure 2259

260

Figure 2. TransRate and Detonate generated statistics. Split violin plots depict the relationship261

between Trinity assemblies (brown color) and ORP produced assemblies (blue color). Red and262

black dots indicate the value of a given metric for each assembly. Lines connecting the red and black263

dots connect datasets assembled via the two methods.264

3.1.2 Assembly Content265

The genic content of assemblies was measured using the software package Shmlast, which implements266

the conditional reciprocal blast test against the Swiss-prot database. Presented in Table 2 and in Figure 3A,267

ORP assemblies recovered on average 13364 (sd=3391) blast hits, while all other assemblies recovered268

fewer (minimum Shannon, mean=10299). In every case across all assemblers, the ORP assembler269

retained more reciprocal blast hits, though only the comparison between the ORP assembly and Shannon270

was significant (one-sided Wilcoxon rank sum test, p = 4E-3). Notably, in all cases, each assembler was271

both missing transcripts contained in other assemblies, and contributed unique transcripts to the final272

merged assembly (Table 2), highlighting the utility of using multiple assemblers.273

274

Table 2275
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Assembly Genes Delta Unique

Concatenated 14674 ± 3590

SPAdes55 −1739 ± 758 570 ± 266

SPAdes75 −2711 ± 2047 301 ± 195

Shannon −4375 ± 3508 302 ± 241

Trinity −1952 ± 803 520 ± 301

276

Table 2 describes the number of genes contained in the assemblies, with the row labeled concatenated277

representing the combined average (± standard deviation) number of genes contained in all assemblies278

of a given dataset. The other rows contain information about each assembly. The column labeled delta279

contains the average number (± standard deviation) of genes missing, relative to the concatenated280

number. The unique column contains the average number of genes (± standard deviation) unique to281

that assembly.282

Regarding BUSCO scores, Trinity assemblies contained on average 86% (sd = 21%) of the full-283

length orthologs as defined by the BUSCO developers, while the ORP assembled datasets contained on284

average 86% (sd = 13%) of the full length transcripts. Other assemblers contained fewer full-length285

orthologs. The Trinity and ORP assemblies were missing, on average 4.5% (sd = 8.7%) of orthologs.286

The Trinity assembled datasets contained 9.5% (sd = 17%) of fragmented transcripts while the ORP287

assemblies each contained on average 9.4% (sd = 9%) of fragmented orthologs. The other assemblers in288

all cases contained more fragmentation. The rate of transcript duplication, depicted in figure 3B is 47%289

(sd = 20%) for Trinity assemblies, and 34% (sd = 15%) for ORP assemblies. This result is statistically290

significant (One sided Wilcoxon rank sum test, p-value = 0.02). Of note, all other assemblers produce291

less transcript duplication than does the ORP assembly, but none of these differences arise to the level of292

statistical significance.293

While the majority of the BUSCO metrics were unchanged, the number of orthologs recovered in294

duplicate (>1 copy), was decreased when using the ORP. This difference is important, given that the295

relative frequency of transcript duplication may have important implications for downstream abundance296

estimation, with less duplication potentially resulting in more accurate estimation. Although gene297

expression quantitation software (Patro et al., 2017; Bray et al., 2016) probabilistically assigns reads298

to transcripts in an attempt at mitigating this issue, a primary solution related to decreasing artificial299

transcript duplication could offer significant advantages.300

Figure 3301
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302

Figure 3. Shmlast and BUSCO generated statistics. Split violin plots depict the relationship between303

Trinity assemblies (brown color) and ORP produced assemblies (blue color). Red and black dots304

indicate the value of a given metric for each assembly. Lines connecting the red and black dots connect305

datasets assembled via the two methods.306

3.1.3 Assembler Contributions307

To understand the relative contribution of each assembler to the final merged assembly produced by the308

Oyster River Protocol, I counted the number of transcripts in the final merged assembly that originated309

from a given assembler (Figure 4). On average, 36% of transcripts in the merged assembly were produced310

by the Trinity assembler. 16% were produced by Shannon. SPAdes run with a kmer value of311

length=55 produced 28% of transcripts, while SPAdes run with a kmer value of length=75 produced312

20% of transcripts313

Figure 4314
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315

Figure 4 depicts the proportion of the final transcripts contained in the merged assembly that are a316

product of each assembler. Violin plots illustrate that Shannon contributes on average the fewest number317

of transcripts (<20 % of transcripts) to the final merged assembly, while Trinity contributes on average318

the most. Small dashed lines on each side of the plot mark the median of the distribution.319

To further understand the potential biases intrinsic to each assembler, I plotted the distribution of320

gene expression estimates for each merged assembly, broken down by the assembler of origin (Figure 5,321

depicting four randomly selected representative assemblies). As is evident, most transcripts are lowly322

expressed, with SPAdes and Trinity both doing a sufficient job in reconstructing these transcripts.323

Of note, the SPAdes assemblies using kmer-length=75 is biased, as expected, towards more highly324

expressed transcripts relative to kmer-length 55 assemblies. Shannon demonstrates a unique profile,325

consisting of, almost exclusively high-expression transcripts, showing a previously undescribed bias326

against low-abundance transcripts. These differences may reflect a set of assembler-specific heuristics327

which translate into differential recovery of distinct fractions of the transcript community. Figure 5 and328

Table 2 describe the outcomes of these processes in terms of transcript recovery. Taken together, these329

expression profiles suggest a mechanism by which the ORP outperforms single-assembler assemblies.330

While there is substantial overlap in transcript recovery, each assembler recovers unique transcripts (Table331

2 and Figure 5) based on expression (and potentially other properties), which when merged together into332

a final assembly, increases the completeness333

Figure 5334
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335

Figure 5 depicts the density distribution of gene expression (log(TPM+1)), broken down by individual336

assembly, for four representative datasets. As predicted, the use of a higher kmer value with the SPAdes337

assembler resulted in biasing reconstruction towards more highly expressed transcripts. Interestingly,338

Shannon uniquely exhibits a bias towards the reconstruction of high-expression transcripts (or away339

from low-abundance transcripts).340

3.2 Quality is independent of read depth341

This study included read datasets of a variety of sizes. Because of this, I was interested in understanding342

if the number of reads used in assembly was strongly related to the quality of the resultant assembly.343

Conclusively, this study demonstrates that between 30 million paired-end reads and 200 million paired-end344

reads, no strong patterns in quality are evident (Figure 6). This finding is in line with previous work,345

(MacManes, 2015) suggesting that assembly metrics plateau at between 20M and 40M read pairs, with346

sequencing beyond this level resulting in minimal gain in performance.347

Figure 6348
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349

Figure 6 depicts the relationship between a subset of assembly metrics and the number of read pairs.350

There is no significant relationship. In all cases the x-axis is millions of paired-end reads.351
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Figure 1

MDS plot describing the similarity within and between assemblers.

Colored x's mark individual assemblies, with red marks corresponding to the ORP assemblies,

green marks corresponding to the Shannon assemblies, blue marks corresponding to the

SPAdes55 assemblies, orange marks corresponding to the SPAdes75 assemblies, and the

black marks corresponding to the Trinity assemblies. In general assemblies produced by a

given assembler tend to cluster together.

PeerJ reviewing PDF | (2017:08:19951:2:0:NEW 11 Jul 2018)

Manuscript to be reviewed

https://github.com/macmanes-lab/Oyster_River_Protocol
https://github.com/macmanes-lab/Oyster_River_Protocol
http://oyster-river-protocol.rtfd.org/


Figure 2

TransRate and Detonate generated statistics.

Split violin plots depict the relationship between Trinity assemblies (brown color) and ORP

produced assemblies (blue color). Red and black dots indicate the value of a given metric for

each assembly. Lines connecting the red and black dots connect datasets assembled via the

two methods.
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Figure 3

Shmlast and BUSCO generated statistics.

Split violin plots depict the relationship between Trinity assemblies (brown color) and ORP

produced assemblies (blue color). Red and black dots indicate the value of a given metric for

each assembly. Lines connecting the red and black dots connect datasets assembled via the

two methods.

PeerJ reviewing PDF | (2017:08:19951:2:0:NEW 11 Jul 2018)

Manuscript to be reviewed

https://github.com/macmanes-lab/Oyster_River_Protocol
https://github.com/macmanes-lab/Oyster_River_Protocol
http://oyster-river-protocol.rtfd.org/


PeerJ reviewing PDF | (2017:08:19951:2:0:NEW 11 Jul 2018)

Manuscript to be reviewed



Figure 4

Plot describes the percent contribution of each assembler to the final ORP assembly.
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Figure 5

Distribution of gene expression for each assembler

Figure 5 depicts the distribution of gene expression (log(TPM+1)), broken down by individual

assembly, for four representative datasets. As predicted, the use of a higher kmer value with

the SPAdes assembler resulted in biasing reconstruction towards more highly expressed

transcripts. Interestingly, Shannon uniquely exhibits a bias towards the reconstruction of

high-expression transcripts (or away from low-abundance transcripts).
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Figure 6

No relationship between metrics and dataset size

Figure 6 depicts the relationship between a subset of assembly metrics and the number of

read pairs. There is no significant relationship. In all cases the x-axis is millions of paired-end

reads.
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