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ABSTRACT
Characterizing transcriptomes in non-model organisms has resulted in a massive
increase in our understanding of biological phenomena. This boon, largely made
possible via high-throughput sequencing, means that studies of functional,
evolutionary, and population genomics are now being done by hundreds or even
thousands of labs around the world. For many, these studies begin with a de novo
transcriptome assembly, which is a technically complicated process involving several
discrete steps. The Oyster River Protocol (ORP), described here, implements a
standardized and benchmarked set of bioinformatic processes, resulting in an
assembly with enhanced qualities over other standard assembly methods.
Specifically, ORP produced assemblies have higher Detonate and TransRate scores
and mapping rates, which is largely a product of the fact that it leverages a multi-
assembler and kmer assembly process, thereby bypassing the shortcomings of any
one approach. These improvements are important, as previously unassembled
transcripts are included in ORP assemblies, resulting in a significant enhancement
of the power of downstream analysis. Further, as part of this study, I show that
assembly quality is unrelated with the number of reads generated, above 30 million
reads. Code Availability: The version controlled open-source code is available at
https://github.com/macmanes-lab/Oyster_River_Protocol. Instructions for software
installation and use, and other details are available at http://oyster-river-protocol.rtfd.org/.

Subjects Bioinformatics, Genomics
Keywords Transcriptome, Assembly, Bioinformatics

INTRODUCTION
For all biology, modern sequencing technologies have provided for an unprecedented
opportunity to gain a deep understanding of genome level processes that underlie a very
wide array of natural phenomena, from intracellular metabolic processes to global
patterns of population variability. Transcriptome sequencing has been influential
(Mortazavi et al., 2008; Wang, Gerstein & Snyder, 2009), particularly in functional
genomics (Lappalainen et al., 2013; Cahoy et al., 2008), and has resulted in discoveries
not possible even just a few years ago. This in large part is due to the scale at which
these studies may be conducted (Li et al., 2017; Tan et al., 2017). Unlike studies of
adaptation based on one or a small number of candidate genes (Fitzpatrick et al., 2005;
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Panhuis, 2006), modern studies may assay the entire suite of expressed transcripts—the
transcriptome—simultaneously. In addition to issues of scale, as a direct result of enhanced
dynamic range, newer sequencing studies have increased ability to simultaneously
reconstruct and quantitate lowly- and highly-expressed transcripts (Wolf, 2013; Vijay
et al., 2013). Lastly, improved methods for the detection of differences in gene expression
(Robinson, McCarthy & Smyth, 2010; Love, Huber & Anders, 2014) across experimental
treatments have resulted in increased resolution for studies aimed at understanding
changes in gene expression.

As a direct result of their widespread popularity, a diverse tool set for the assembly of
transcriptome exists, with each potentially reconstructing transcripts others fail to
reconstruct. Amongst the earliest of specialized de novo transcriptome assemblers were the
packages Trans-ABySS (Robertson et al., 2010), Oases (Schulz et al., 2012), and
SOAPdenovoTrans (Xie et al., 2014), which were fundamentally based on the popular
de Bruijn graph-based genome assemblers ABySS (Simpson et al., 2009), Velvet
(Zerbino & Birney, 2008), and SOAP (Li et al., 2008), respectively. These early efforts gave
rise to a series of more specialized de novo transcriptome assemblers, namely Trinity

(Haas et al., 2013), and IDBA-Tran (Peng et al., 2013). While the de Bruijn graph approach
remains powerful, newly developed software explores novel parts of the algorithmic
landscape, offering substantial benefits, assuming novel methods reconstruct different
fractions of the transcriptome. BinPacker (Liu et al., 2016), for instance, abandons the de
Bruijn graph approach to model the assembly problem after the classical bin packing
problem, while Shannon (Kannan et al., 2016) uses information theory, rather than a set of
software engineer-decided heuristics. These newer assemblers, by implementing
fundamentally different assembly algorithms, may reconstruct fractions of the
transcriptome that other assemblers fail to accurately assemble.

In addition to the variety of tools available for the de novo assembly of transcripts,
several tools are available for pre-processing of reads via read trimming (e.g., Skewer;
Jiang et al., 2014, Trimmomatic; Bolger, Lohse & Usadel, 2014, Cutadapt; Martin, 2011),
read normalization (khmer; Pell et al., 2012), and read error correction (SEECER;
Le et al., 2013, RCorrector; Song & Florea, 2015, Reptile; Yang, Dorman & Aluru,
2010). Similarly, benchmarking tools that evaluate the quality of assembled transcriptomes
including TransRate (Smith-Unna et al., 2016), BUSCO (Benchmarking Universal
Single-Copy Orthologs; Simão et al., 2015), and Detonate (Li et al., 2014) have been
developed. Despite the development of these evaluative tools, this manuscript describes the
first systematic effort coupling them with the development of a de novo transcriptome
assembly pipeline.

The ease with which these tools may be used to produce and characterize transcriptome
assemblies belies the true complexity underlying the overall process (Ungaro et al., 2017;
Wang & Gribskov, 2017; Moreton, Izquierdo & Emes, 2015; Yang & Smith, 2013).
Indeed, the subtle (and not so subtle) methodological challenges associated with
transcriptome reconstruction may result in highly variable assembly quality. In particular,
while most tools run using default settings, these defaults may be sensible only for one
specific (often unspecified) use case or data type. Because parameter optimization is both
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dataset-dependent and factorial in nature, an exhaustive optimization particularly of entire
pipelines, is never possible. Given this, the production of a de novo transcriptome assembly
requires a large investment in time and resources, with each step requiring careful
consideration. Here, I propose an evidence-based protocol for assembly that results in
the production of high quality transcriptome assemblies, across a variety of commonplace
experimental conditions or taxonomic groups.

This manuscript describes the development of The Oyster River Protocol (ORP)1 for
transcriptome assembly. It explicitly considers and attempts to address many of the
shortcomings described in Vijay et al. (2013), by leveraging a multi-kmer and multi-
assembler strategy. This innovation is critical, as all assembly solutions treat the sequence read
data in ways that bias transcript recovery. Specifically, with the development of assembly
software comes the use of a set of heuristics that are necessary given the scope of the assembly
problem itself. Given each software development team carries with it a unique set of ideas
related to these heuristics while implementing various assembly algorithms, individual
assemblers exhibit unique assembly behavior. By leveraging a multi-assembler approach, the
strengths of one assembler may complement the weaknesses of another. In addition to biases
related to assembly heuristics, it is well known that assembly kmer-length has important
effects on transcript reconstruction, with shorter kmers more efficiently reconstructing
lower-abundance transcripts relative to more highly abundant transcripts. Given this,
assembling with multiple different kmer lengths, then merging the resultant assemblies may
effectively reduce this type of bias. Recognizing these issue, I hypothesize that an assembly
that results from the combination of multiple different assemblers and lengths of
assembly-kmers will be better than each individual assembly, across a variety of metrics.

In addition to developing an enhanced pipeline, the work suggests an exhaustive way
of characterizing assemblies while making available a set of fully-benchmarked reference
assemblies that may be used by other researchers in developing new assembly algorithms
and pipelines. Although many other researchers have published comparisons of
assembly methods, up until now these have been limited to single datasets assembled a few
different ways (Marchant et al., 2016; Finseth & Harrison, 2014), thereby failing to provide
more general insights.

METHODS
Datasets
In an effort at benchmarking the assembly and merging protocols, I downloaded a set
of publicly available RNAseq datasets (Table 1) that had been produced on the Illumina
sequencing platform. These datasets were chosen to represent a variety of taxonomic
groups, so as to demonstrate the broad utility of the developed methods. Because datasets
were selected randomly with respect to sequencing center and read number, they are likely
to represent the typical quality of Illumina data circa 2014–2017.

Software
The ORP can be installed on the Linux platform, and does not require superuser privileges,
assuming Linuxbrew (Jackman & Birol, 2016) is installed. The software is implemented

1 Named the Oyster River Protocol
because the ideas, and some of the code,
was developed while overlooking the
Oyster River, located in Durham, New
Hampshire. NB, the naming assembly of
protocols after bodies of water was, to the
best of my knowledge, first done by
C. Titus Brown (The Eel Pond Protocol:
http://khmer-protocols.readthedocs.io/
en/latest/mrnaseq/index.html), and may
have subconsciously influenced me in
naming this protocol.
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as a stand-alone makefile which coordinates all steps described below. All scripts are
available at https://github.com/macmanes-lab/Oyster_River_Protocol, and run on the
Linux platform. The software is version controlled and openly-licensed to promote sharing
and reuse. A guide for users is available at http://oyster-river-protocol.rtfd.io.

Pre-assembly procedures
For all assemblies performed, Illumina sequencing adapters were removed from both ends
of the sequencing reads, as were nucleotides with quality Phred �2, using the program
Trimmomatic version 0.36 (Bolger, Lohse & Usadel, 2014), following the
recommendations from MacManes (2014). After trimming, reads were error corrected
using the software RCorrector version 1.0.2 (Song & Florea, 2015), following
recommendations from MacManes & Eisen (2013). The code for running this step of
the ORPs is available at https://github.com/macmanes-lab/Oyster_River_Protocol/blob/
master/oyster.mk#L145. The trimmed and error corrected reads were then subjected to
de novo assembly.

Assembly
I assembled each trimmed and error corrected dataset using three different de novo
transcriptome assemblers and three different kmer lengths, producing four unique
assemblies. First, I assembled the reads using Trinity release 2.4.0 (Haas et al., 2013),
and default settings (k = 25), without read normalization. The decision to forgo
normalization is based on previous work (MacManes, 2015) showing slightly worse

Table 1 Lists the datasets used in this study.

Type Accession Species Number of
reads (M)

Read
length (bp)

Animalia ERR489297 Anopheles gambiae 206 100

Animalia DRR030368 Echinococcus multilocularis 73 100

Animalia ERR1016675 Heterorhabditis indica 51 100

Animalia SRR2086412 Mus musculus 54 100

Animalia DRR036858 Mus musculus 114 100

Animalia DRR046632 Oncorhynchus mykiss 82 76

Animalia SRR1789336 Oryctolagus cuniculus 31 100

Animalia SRR2016923 Phyllodoce medipapillata 86 100

Animalia ERR1674585 Schistosoma mansoni 39 100

Plant DRR082659 Aeginetia indica 69 90

Plant DRR053698 Cephalotus follicularis 126 90

Plant DRR069093 Hevea brasiliensis 103 100

Plant SRR3499127 Nicotiana tabacum 30 150

Plant DRR031870 Vigna angularis 60 100

Protozoa ERR058009 Entamoeba histolytica 68 100

Note:
All datasets are publicly available for download by accession number at the European Nucleotide Archive or NCBI Short
Read Archive.
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performance of normalized datasets. Next, the SPAdes RNAseq assembler (version 3.10)
(Chikhi & Medvedev, 2014) was used, in two distinct runs, using kmer sizes 55 and 75.
Lastly, reads were assembled using the assembler Shannon version 0.0.2 (Kannan
et al., 2016), using a kmer length of 75. These assemblers were chosen based on the fact that
they (1) use an open-science development model, whereby end-users may contribute code,
(2) are all actively maintained and are undergoing continuous development, and
(3) occupy different parts of the algorithmic landscape.

This assembly process resulted in the production of four distinct assemblies. The
code for running this step of the ORPs is available at https://github.com/macmanes-lab/
Oyster_River_Protocol/blob/master/oyster.mk#L148.

Assembly merging via OrthoFuse
To merge the four assemblies produced as part of the ORP, I developed new software that
effectively merges transcriptome assemblies. Described in brief, OrthoFuse begins by
concatenating all assemblies together, then forms groups of transcripts by running a
version of OrthoFinder (Emms & Kelly, 2015) packaged with the ORP, modified to
accept nucleotide sequences from the merged assembly. These groupings represent
groups of homologous transcripts. While isoform reconstruction using short-read data
is notoriously poor, by increasing the inflation parameter by default to I = 4, it
attempts to prevent the collapsing of transcript isoforms into single groups. After
Orthofinder has completed, a modified version of TransRate version 1.0.3
(Smith-Unna et al., 2016) which is packaged with the ORP, is run on the merged
assembly, after which the best (= highest contig score) transcript is selected from each
group and placed in a new assembly file to represent the entire group. The resultant file,
which contains the highest scoring contig for each orthogroup, may be used for all
downstream analyses. OrthoFuse is run automatically as part of the ORP, and
additionally is available as a stand alone script, https://github.com/macmanes-lab/
Oyster_River_Protocol/blob/master/orthofuser.mk.

Assembly evaluation
All assemblies were evaluated using ORP-TransRate, Detonate version 1.11 (Li et al.,
2014), shmlast version 1.2 (Scott, 2017), and BUSCO version 3.0.2 (Simão et al., 2015).
TransRate evaluates transcriptome assembly contiguity by producing a score based on
length-based and mapping metrics, while Detonate conducts an orthogonal analysis,
producing a score that is maximized by an assembly that is representative of input
sequence read data. BUSCO evaluates assembly content by searching the assemblies for
conserved single copy orthologs found in all Eukaryotes. I report default BUSCO metrics as
described in Simão et al. (2015). Specifically, “complete orthologs,” are defined as
query transcripts that are within two standard deviations of the length of the BUSCO group
mean, while contigs falling short of this metric are listed as “fragmented.” Shmlast
implements the conditional reciprocal best hits test (Aubry et al., 2014), conducted in this
case against the Swiss-Prot protein database (downloaded October, 2017) using an
e-value of 1E-10.
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In addition to the generation of metrics to evaluation the quality of transcriptome
assemblies, I generated a distance matrix of assemblies for each dataset using the
sourmash package (Titus Brown & Irber, 2016), in an attempt at characterizing the
algorithmic landscape of assemblers. Specifically, each assembly was characterized using
the compute function using 5,000 independent sketches. The distance between assemblies
was calculated using the compare function and a kmer length of 51. These distance
matrices were visualized using the isoMDS function of the MASS package (https://CRAN.
R-project.org/package=MASS).

Statistics
All statistical analyses were conducted in R version 3.4.0 (R Core Development Team,
2011). Violin plots were constructed using the beanplot (Kampstra, 2008) and the
beeswarm R packages (https://CRAN.R-project.org/package=beeswarm). Expression
distributions were plotted using the ggridges package (https://CRAN.R-project.org/
package=ggridges).

RESULTS AND DISCUSSION
A total of 15 RNAseq datasets, ranging in size from (30–206 M paired end reads) were
assembled using the ORP and with Trinity. Each assembly was evaluated using the
software BUSCO, shmlast, Detonate, and TransRate. From these, several metrics were
chosen to represent the quality of the produced assemblies. Of note, all the assemblies
produced as part of this work are available at DOI 10.5281/zenodo.1320141. A file
containing the evaluative metrics is available at https://github.com/macmanes-lab/Oyster_
River_Protocol/blob/master/manuscript/orp.csv, while the distance matrices are available
within the folder https://github.com/macmanes-lab/Oyster_River_Protocol/blob/master/
manuscript/. R code used to conduct analyses and make figures is found at https://github.
com/macmanes-lab/Oyster_River_Protocol/blob/master/manuscript/R-analysis.Rmd.

Assembled transcriptomes
The Trinity assembly of trimmed and error corrected reads generally completed
on a standard Linux server using 24 cores, in less than 24 h. RAM requirement is
estimated to be close to 0.5 Gb per million paired-end reads. The assemblies on average
contained 176 k transcripts (range 19–643 k) and 97 Mb (range 14 MB–198 Mb). Other
quality metrics will be discussed below, specifically in relation to the ORP produced
assemblies.

Oyster River Protocol assemblies generally completed on a standard Linux server
using 24 cores in 3 days. Typically Trinity was the longest running assembler, with
the individual SPAdes assemblies being the shortest. RAM requirement is estimated
to be 1.5–2 Gb per million paired-end reads, with SPAdes requiring the most.
The assemblies on average contained 153 k transcripts (range 23–625 k) and 64 Mb
(range 8 MB–181 Mb).

MinHash sketch signatures (Ondov et al., 2016) of each assemblies of a given dataset
were calculated using sourmash (Titus Brown & Irber, 2016), and a MDS plot was
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generated (Fig. 1) from their distances. Interestingly, each assembler tends to produce a
specific signature which is relatively consistent between the fifteen datasets. Shannon
differentiates itself from the other assemblers on the first (x) MDS axis, while the other
assemblers (SPAdes and Trinity) are separated on the second (y) MDS axis.

Assembly structure
The structural integrity of each assembly was evaluated using the TransRate and
Detonate software packages. As many downstream applications depend critically on
accurate read mapping, assembly quality is correlated with increased mapping rates.
The split violin plot presented in Fig. 2A visually represents the mapping rates of each
assembly, with lines connecting the mapping rates of datasets assembled with Trinity

and with the ORP, respectively. The average mapping rate of the Trinity assembled
datasets was 87% (sd = 8%), while the average mapping rates of the ORP assembled
datasets was 93% (sd = 4%). This test is statistically significant (one-sided Wilcoxon rank
sum test, p = 2E-2). Mapping rates of the other assemblies are less than that of the ORP
assembly, but in most cases, greater than that of the Trinity assembly. This aspect of
assembly quality is critical. Specifically mapping rates measure how representative the
assembly is of the reads. If I assume that the vast majority of generated reads come

Figure 1 MDS plot describing the similarity within and between assemblers. Colored x’s mark
individual assemblies, with red marks corresponding to the ORP assemblies, green marks corresponding
to the Shannon assemblies, blue marks corresponding to the SPAdes55 assemblies, orange marks cor-
responding to the SPAdes75 assemblies, and the black marks corresponding to the Trinity assemblies. In
general assemblies produced by a given assembler tend to cluster together.

Full-size DOI: 10.7717/peerj.5428/fig-1
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from the biological sample under study, when reads fail to map, that fraction of the biology
is lost from all downstream analysis and inference. This study demonstrates that across a
wide variety of taxa, assembling RNAseq reads with any single assembler alone may
result in a decrease in mapping rate and in turn, the lost ability to draw conclusions from
that fraction of the sample.

Figure 2B describes the distribution of TransRate assembly scores, which is a synthetic
metric taking into account the quality of read mapping and coverage-based statistics.
The Trinity assemblies had an average optimal score of 0.35 (sd = 0.14), while the
ORP assembled datasets had an average score of 0.46 (sd = 0.07). This test is statistically
significant (one-sided Wilcoxon rank sum test, p-value = 1.8E-2). Optimal scores of
the other assemblies are less than that of the ORP assembly, but in most cases, greater than
that of the Trinity assembly. Figure 2C describes the distribution of Detonate scores.
The Trinity assemblies had an average score of -6.9E9 (sd = 5.2E9), while the ORP
assembled datasets had an average score of -5.3E9 (sd = 3.5E9). This test not is statistically
significant, though in all cases, relative to all other assemblies, scores of the ORP assemblies
are improved (become less negative), indicating that the ORP produced assemblies of
higher quality.

In addition to reporting synthetic metrics related to assembly structure, TransRate
reports individual metrics related to specific elements of assembly quality. One such
metric estimates the rate of chimerism, a phenomenon which is known to be problematic
in de novo assembly (Ungaro et al., 2017; Singhal, 2013). Rates of chimerism are relatively
constant between all assemblers, ranging from 10% for the Shannon assembly, to 12%
for the SPAdes75 assembly. The chimerism rate for the ORP assemblies averaged
10.5% (± 4.7%). While the new method would ideally improve this metric by exclusively
selecting non-chimeric transcripts, this does not seem to be the case, and may be related to
the inherent shortcomings of short-read transcriptome assembly.

Of note, consistent with all short-read assemblers (Ungaro et al., 2017), the ORP
assemblies may not accurately reflect the true isoform complexity. Specifically, because of
the way that single representative transcripts are chosen from a cluster of related
sequences, some transcriptional complexity may be lost. Consider the cluster containing
contigs {AB, A, B} where AB is a false-chimera, selecting a single representative
transcript with the best score could yield either A or B, thereby excluding an important
transcript in the final output. I believe this type of transcript loss is not common, based
on how contigs are scored (Table 1; Fig. 3; Smith-Unna et al., 2016), though strict
demonstration of this is not possible, given the lack of high-quality reference genomes for
the majority of the datasets. More generally, mapping rates, Detonate and TransRate

score improvements suggest that this type of loss is not widespread.

Figure 2 TransRate and Detonate generated statistics. (A–C) Split violin plots depict the relationship
between Trinity assemblies (brown color) and ORP produced assemblies (blue color). Red and black dots
indicate the value of a given metric for each assembly. Lines connecting the red and black dots connect
datasets assembled via the two methods. Full-size DOI: 10.7717/peerj.5428/fig-2
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Assembly content
The genic content of assemblies was measured using the software package Shmlast, which
implements the conditional reciprocal blast test against the Swiss-prot database. Presented
in Table 2 and in Fig. 3A, ORP assemblies recovered on average 13,364 (sd = 3,391)
blast hits, while all other assemblies recovered fewer (minimum Shannon, mean = 10,299).
In every case across all assemblers, the ORP assembler retained more reciprocal blast hits,
though only the comparison between the ORP assembly and Shannon was significant
(one-sided Wilcoxon rank sum test, p = 4E-3). Notably, in all cases, each assembler was
both missing transcripts contained in other assemblies, and contributed unique transcripts
to the final merged assembly (Table 2), highlighting the utility of using multiple
assemblers.

Regarding BUSCO scores, Trinity assemblies contained on average 86% (sd = 21%) of
the full-length orthologs as defined by the BUSCO developers, while the ORP assembled
datasets contained on average 86% (sd = 13%) of the full length transcripts. Other

Figure 3 Shmlast and BUSCO generated statistics. (A and B) Split violin plots depict the relationship
between Trinity assemblies (brown color) and ORP produced assemblies (blue color). Red and black dots
indicate the value of a given metric for each assembly. Lines connecting the red and black dots connect
datasets assembled via the two methods. Full-size DOI: 10.7717/peerj.5428/fig-3
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assemblers contained fewer full-length orthologs. The Trinity and ORP assemblies were
missing, on average 4.5% (sd = 8.7%) of orthologs. The Trinity assembled datasets
contained 9.5% (sd = 17%) of fragmented transcripts while the ORP assemblies each
contained on average 9.4% (sd = 9%) of fragmented orthologs. The other assemblers in
all cases contained more fragmentation. The rate of transcript duplication, depicted in
Fig. 3B is 47% (sd = 20%) for Trinity assemblies, and 34% (sd = 15%) for ORP

Table 2 Describes the number of genes contained in the assemblies, with the row labeled concatenated
representing the combined average (± standard deviation) number of genes contained in all assemblies
of a given dataset.

Assembly Genes Delta Unique

Concatenated 14,674 ± 3,590

SPAdes55 -1,739 ± 758 570 ± 266

SPAdes75 -2,711 ± 2,047 301 ± 195

Shannon -4,375 ± 3,508 302 ± 241

Trinity -1,952 ± 803 520 ± 301

Note:
The other rows contain information about each assembly. The column labeled delta contains the average number
(± standard deviation) of genes missing, relative to the concatenated number. The unique column contains the average
number of genes (± standard deviation) unique to that assembly.

Figure 4 Plot describes the percent contribution of each assembler to the final ORP assembly. The
proportion of the final transcripts contained in the merged assembly that are a product of each assembler
is shown. Violin plots illustrate that Shannon contributes on average the fewest number of transcripts
(<20% of transcripts) to the final merged assembly, while Trinity contributes on average the most. Small
dashed lines on each side of the plot mark the median of the distribution.

Full-size DOI: 10.7717/peerj.5428/fig-4
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assemblies. This result is statistically significant (One sided Wilcoxon rank sum test,
p-value = 0.02). Of note, all other assemblers produce less transcript duplication than
does the ORP assembly, but none of these differences arise to the level of statistical
significance.

While the majority of the BUSCO metrics were unchanged, the number of orthologs
recovered in duplicate (>1 copy), was decreased when using the ORP. This difference is
important, given that the relative frequency of transcript duplication may have important
implications for downstream abundance estimation, with less duplication potentially
resulting in more accurate estimation. Although gene expression quantitation software
(Patro et al., 2017; Bray et al., 2016) probabilistically assigns reads to transcripts in an
attempt at mitigating this issue, a primary solution related to decreasing artificial transcript
duplication could offer significant advantages.

Assembler contributions
To understand the relative contribution of each assembler to the final merged assembly
produced by the ORP, I counted the number of transcripts in the final merged assembly

Figure 5 Distribution of gene expression for each assembler.Distribution of gene expression (log(TPM+1)),
broken down by individual assembly, for four representative datasets are shown. As predicted, the use
of a higher kmer value with the SPAdes assembler resulted in biasing reconstruction toward more
highly expressed transcripts. Interestingly, Shannon uniquely exhibits a bias towards the reconstruc-
tion of high-expression transcripts (or away from low-abundance transcripts).

Full-size DOI: 10.7717/peerj.5428/fig-5

MacManes (2018), PeerJ, DOI 10.7717/peerj.5428 12/18

http://dx.doi.org/10.7717/peerj.5428/fig-5
http://dx.doi.org/10.7717/peerj.5428
https://peerj.com/


Figure 6 No relationship betweenmetrics and dataset size. The relationship between a subset of assembly metrics and the number of read pairs are
shown and is not significant. (A) ORP mapping; (B) Trinity mapping; (C) ORP score; (D) Trinity score; (E) ORP complete; (F) Trinity complete;
(G) ORP duplicated; (H) Trinity duplicated. In all cases the x-axis is millions of paired-end reads. Full-size DOI: 10.7717/peerj.5428/fig-6

MacManes (2018), PeerJ, DOI 10.7717/peerj.5428 13/18

http://dx.doi.org/10.7717/peerj.5428/fig-6
http://dx.doi.org/10.7717/peerj.5428
https://peerj.com/


that originated from a given assembler (Fig. 4). On average, 36% of transcripts in the
merged assembly were produced by the Trinity assembler. A total of 16% were produced
by Shannon. SPAdes run with a kmer value of length = 55 produced 28% of transcripts,
while SPAdes run with a kmer value of length = 75 produced 20% of transcripts.

To further understand the potential biases intrinsic to each assembler, I plotted the
distribution of gene expression estimates for each merged assembly, broken down by the
assembler of origin (Fig. 5, depicting four randomly selected representative assemblies).
As is evident, most transcripts are lowly expressed, with SPAdes and Trinity both
doing a sufficient job in reconstructing these transcripts. Of note, the SPAdes assemblies
using kmer-length = 75 is biased, as expected, toward more highly expressed
transcripts relative to kmer-length 55 assemblies. Shannon demonstrates a unique
profile, consisting of, almost exclusively high-expression transcripts, showing a
previously undescribed bias against low-abundance transcripts. These differences may
reflect a set of assembler-specific heuristics which translate into differential recovery of
distinct fractions of the transcript community. Figure 5 and Table 2 describe the
outcomes of these processes in terms of transcript recovery. Taken together, these
expression profiles suggest a mechanism by which the ORP outperforms single-
assembler assemblies. While there is substantial overlap in transcript recovery, each
assembler recovers unique transcripts (Table 2; Fig. 5) based on expression (and
potentially other properties), which when merged together into a final assembly,
increases the completeness.

Quality is independent of read depth
This study included read datasets of a variety of sizes. Because of this, I was interested
in understanding if the number of reads used in assembly was strongly related to the
quality of the resultant assembly. Conclusively, this study demonstrates that between
30 million paired-end reads and 200 million paired-end reads, no strong patterns in
quality are evident (Fig. 6). This finding is in line with previous work (MacManes, 2015),
suggesting that assembly metrics plateau at between 20 and 40 M read pairs, with
sequencing beyond this level resulting in minimal gain in performance.
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