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ABSTRACT
Bird pollination is relatively common in the tropics, and especially in the Americas.
In the predominantly Neotropical tribe Myrteae (Myrtaceae), species of two genera,
Acca and Myrrhinium, offer fleshy, sugary petals to the consumption of birds that
otherwise eat fruits, thus pollinating the plants in an unusual plant-animal interaction.
The phylogenetic position of these genera has been problematic, and therefore, so was
the understanding of the evolution of this interaction. Here we include new sequences
of Myrrhinium atropurpureum in a comprehensive molecular phylogeny based on a
balanced sample of two plastid and two nuclear markers, with the aim of providing
the historical framework of pollination by frugivorous birds in Myrteae. We developed
13 flower and inflorescence characters that comprehensively depict the macroscopic
morphological components of this interaction. Bayesian and parsimony phylogenies
concur in placing both Acca and Myrrhinium in a clade with Psidium species; with
Myrrhinium sister to Psidium. Mapping of morphological characters indicated some
degree of convergence (e.g., fleshy petals, purplish display) but also considerable
divergence in key characters that point to rather opposing pollination strategies and
also different degrees of specialization in Acca versus Myrrhinium. Pollination by
frugivorous birds represents a special case ofmutualism that highlights the evolutionary
complexities of plant-animal interactions.

Subjects Ecology, Evolutionary Studies, Plant Science
Keywords Myrrhinium, Fleshy petals, Plant-animal interactions, Phylogeny, Acca, Pimenta-
group, Myrteae

INTRODUCTION
A wide array of evidence supports a strong association between specific floral traits and
functional groups of pollinators that exert similar selective pressures on key aspects
of the plant reproductive biology (Fenster et al., 2004). One well-known suite of floral
traits is associated with the bird pollination syndrome—ornithophily, which is present
in some 65 flowering plant families (Cronk & Ojeda, 2008). Most cases likely represent
parallel origins of ornithophily from bee-pollinated ancestors (Cronk & Ojeda, 2008). This
type of pollination is characterised by a passive pollen transport; nectar is the primary
reward for pollinating birds (Stiles, 1981; Proctor, Yeo & Lack, 1996; Armbruster, 2011).
Specialized ornithophilous flowers in the classical sense (Faegri & Van der Pijl, 1979) are
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very often red in colour, tubular and/or pendant or brush-like and produce abundant,
diluted nectar; characteristically, these flowers lack scent or chemical attractors that are
so frequently associated with other animal pollinators, particularly daytime insects (Faegri
& Van der Pijl, 1979; Stiles, 1981; Proctor, Yeo & Lack, 1996; Cronk & Ojeda, 2008). Bird
pollination is widespread in tropical areas of the World but reaches its highest diversity in
the Americas owing to the evolution of hummingbirds (Trochilidae; Proctor, Yeo & Lack,
1996). Hummingbirds are highly diverse (363 species), small-sized, highly efficient, almost
exclusively nectar-feeding birds that are capable of hovering flight—the most expensive
mode of locomotion (Norberg, 1994). Flower products are also used by functionally less
specialized birds (as comparedwith hummingbirds) that nonetheless depend completely on
flowers: perching birds in different families chiefly, but not exclusively, across the World
tropics (see Zanata et al., 2017). Perching nectar-feeding birds include both legitimate
pollinators and nectar thieves (Proctor, Yeo & Lack, 1996); the most remarkable groups
of perching nectarivorous are from the Old World, and are the sunbirds (Passeriformes,
Nectariniidae, 132 species) occurring in tropical Africa, SE Asia and Oceania, and the
honeyeaters (Passeriformes, Meliphagidae, 175 species), which are found in SE Asia
and Oceania (Zanata et al., 2017). Perching nectarivorous birds also belong in other
families such as the NewWorld Thraupidae (Diglossinae, Coerebinae), Icteridae (Icterinae,
Cacicinae), and Fringillidae (Carduelinae), among other (see Faegri & Van der Pijl, 1979;
Proctor, Yeo & Lack, 1996). With different exploitation strategies, both groups of birds
(hovering and perching) visit flowers of different morphologies and inflorescences that
also present diverse architectures (Rocca & Sazima, 2008; Rocca & Sazima, 2010).

In the Myrtaceae family of the New World, the presence of nectar is uncommon and
pollen is generally the main resource available to pollinators (Gressler, Pizo & Morellato,
2006). Myrtaceae comprises c. 5,500 currently recognized, extant species, classified in
140 genera distributed, with minor exceptions, in tropical and temperate regions of
the southern-hemisphere continents. Fossils are also known from these continents and
Antarctica (Poole, Hunt & Cantrill, 2001; Thornhill & Macphail, 2012; Vasconcelos et al.,
2017). Bees are the most important group of pollinators of Myrtaceae (Lughadha &
Proença, 1996). Bird pollination is often derived from bee pollination (and the reverse
is less frequent; Thomson & Wilson, 2008); bird pollination is relatively common among
Australian species of Myrtaceae, but it is only scarcely represented (<1% of species) among
theNewWorldmembers of the family (Roitman, Montaldo & Medan, 1997). The only cases
of bird pollination reported among Myrtaceae native to the Americas are those of Acca
O.Berg and Myrrhinium Schott, two small endemic South American genera with flowers
bearing numerous red and robust stamens (Fig. 1), similar to those of many bird-pollinated
Myrtaceae from Australasia (Lughadha & Proença, 1996). However, Myrrhinium and Acca
are not pollinated by nectarivorous birds; both taxa, which produce neither nectar nor
scent, offer fleshy petals as reward to be consumed by birds that otherwise eat fruits, not
flower products; by these means, typically frugivorous birds act as effective pollinators
in these plants (Roitman, Montaldo & Medan, 1997). Previous studies have reported that
the flowers of Acca sellowiana (O.Berg) Burret are visited by fruit-eating birds, as well
as by some insects (Popenoe, 1912; Mattos, 1986; Stewart, 1986; Stewart & Craig, 1989;

Nadra et al. (2018), PeerJ, DOI 10.7717/peerj.5426 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.5426


Figure 1 Flowers and Inflorescences. Myrrhinium atrupurpureum (A, B, C): (A) Flowers. (B) Cauliflor-
ous inflorescences with closed flower buds; note the degree of branching of paracladia supported by each
brachyblast. (C) Inflorescences with floral buds and open flowers; note the different degree of develop-
ment and colour of petals and the typical appearance of brush-like inflorescence. Acca sellowiana (D, E):
(D) Flowers. (E) Inflorescence with uniflorous paracladia in the axil of leaves. Photo credits: A and B,
María Gabriela Nadra; C, Alfredo Grau, Universidad Nacional de Tucumán, Argentina; D, Andrés Gonza-
lez via http://floranativadeuruguay.blogspot.com.ar; E, Pat Breen, Oregon State University.

Full-size DOI: 10.7717/peerj.5426/fig-1

Ducroquet & Hickel, 1997; Roitman, Montaldo & Medan, 1997; Hickel & Ducroquet, 2000;
Degenhardt et al., 2001; Sazima & Sazima, 2007). Roitman, Montaldo & Medan (1997)
studied in detail the pollination biology ofMyrrhinium atropurpureum Schott, confirming
that the main pollinators of this species are fruit and seed-eating birds. These are perching
birds and consume the petals, thereby carrying pollen inadvertently on their heads and
body to other flowers and trees.

Fleshy petals are among resources alternative to nectar and functional pollen reportedly
offered by plants to pollinators, including tissues such as food scales, food bodies,
pseudopollen, and other sweet tissues (Simpson & Neff, 1981). Floral or extrafloral food
body rewards are functional in bird pollination, including the petals of Myrrhinium and
Acca (Proctor, Yeo & Lack, 1996; Sersic & Cocucci, 1996; Dellinger et al., 2014). The petals
in Acca and Myrrhinium differ in size, and the flowers differ greatly in their arrangement
within inflorescences and other characters across species. Acca exhibits single large, multi-
staminate flowers, each offering a copious pollen production, while the small flowers of
Myrrhinium are clumped in dense cauliflorous inflorescences and show amarked reduction
in the number of stamens, as compared to related genera (i.e., genera in the Pimenta group
sensu Lucas et al., 2007). This reduction in per-flower pollen production, together with
other features such as the compact arrangement of flowers, and changes in the coloration of
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the petals during anthesis, has been suggested to represent a greater tendency towards bird
pollination inMyrrhinium as compared with Acca (Roitman, Montaldo & Medan, 1997).

Despite differences in degree of adaptation, whether this peculiar pollination interaction
is unique, i.e., inherited from an ancestor common to Acca andMyrrhinium, or convergent
in the two genera, remains unknown due to uncertainties in the systematics of Myrtae
that we briefly revise here. The current classification of Myrtaceae proposed by Wilson et
al. (2005) and Wilson (2011) recognizes two subfamilies and 17 tribes, including the tribe
Myrteae to which both Acca and Myrrhinium belong (Australasian species pollinated by
perching birds occur in other tribes, particularly Syzygieae, Eucalypteae, Melaleuceae, and
Chamelaucieae). Myrteae DC. (sensuWilson et al., 2005) is a pantropical group constituted
by trees and shrubs (McVaugh, 1968; Lucas et al., 2007; Biffin et al., 2010; Vasconcelos et al.,
2017). The tribe comprises 49 genera and 2,500 species and its diversity peaks in Central
and South America (McVaugh, 1968; Govaerts et al., 2008). The tribe is distinguished from
other closely related tribes mainly by the presence of fleshy fruits (Lucas et al., 2007). The
phylogeny of Lucas et al. (2007), based on DNA sequence data, supported a division of the
tribe into seven informal groups. One of them was the ‘‘Pimenta group’’ that contained
Acca as well as five other genera (Amomyrtus (Burret) D. Legrand & Kausel, Legrandia
Kausel, Campomanesia Ruiz & Pav., Psidium L., and Pimenta Lindl.); Myrrhinium was
not included in the analysis. Several authors have linked Myrrhinium to Acca, or to other
genera in the Pimenta group (e.g., Kausel, 1956; Kausel, 1966; McVaugh, 1968). Landrum
(1986) suggested that Acca and Myrrhinium are related, based on a shared set of floral
features: tetramerous flowers, red, pink, or purple-coloured, exerted rigid stamens, and
fleshy, sweet petals–all features very distinctive from what is commonly found in the
Pimenta group. Also, Thornhill et al. (2012) observed that Acca and Myrrhinium share a
pollen type slightly different from other Neotropical Myrteae. Vasconcelos et al. (2017)
recently included Myrrhinium in a major phylogenetic analysis of Myrteae, but a level
of uncertainty existed in regard to the position of this and other genera mainly due to
the poor support of a Pimenta group that included Acca but not Myrrhinium. The later
was recovered in a widely separated clade that placed Myrrhinium as sister to Psidium,
in the Vasconcelos et al. (2017) Psidium group. Therefore, at present there are conflicting
hypotheses of relationships among the genera relevant for the evolution of pollination by
frugivorous birds in the tribe Myrteae.

Here we first generate a new, solid phylogenetic hypothesis that solves the position of the
Neotropical ornithophilous genus within the Myrteae, building upon the efforts of Lucas
et al. (2007), Biffin et al. (2010), and Vasconcelos et al. (2017), who successfully established
the molecular basis for the classification of Myrteae. We revisit the systematic problem
of the uncertain placement of Neotropical genera pollinated by frugivorous birds using
more terminals in the groups of interest and contributing new sequences of Myrrhinium
and other taxa. The newly generated sequences of Myrrhinium resolve the uncertainty
around its phylogenetic position and allow for a strong test on the existence of a single
evolutionary origin of this interaction inMyrteae. Second, we dissect the structure of flowers
and inflorescences in Acca, Myrrhinium, and closely related genera in order to define a
set of macroscopic characters relevant to assessing the fruit-bird ornitophily evolutionary
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problem. We mapped the characters onto our phylogeny and examine hypotheses of
evolution of pollination by frugivorous birds in Myrteae.

MATERIALS & METHODS
Taxonomic sampling
We selected taxa following natural groupings established in Lucas et al. (2007), choosing
a total of 86 terminals. We included 76 taxa considered to be part of the tribe Myrteae,
14 of which belong in the Pimenta group and may represent the closest relatives to Acca
according to Lucas et al. (2007) and perhaps alsoMyrrhinium. Ten other taxa from different
genera belonging to four other tribes of Myrtoideae (sensu Wilson et al., 2005) were also
included. We followed Nixon & Carpenter (1993) in considering many outgroups as a
general taxonomic sampling principle, and also because the positions of the Pimenta group
members and other related taxa are not well resolved in previously published phylogenies.
In particular, the position of Acca sellowiana is either unresolved or poorly supported. Our
taxonomic sample thus represented 30 genera in Myrteae with four molecular markers
(matK, psbA-trnH, ITS/5.8S and ETS). Of these, 282 sequences were downloaded from
GenBank (see Table S1 for accesion numbers) while 11 accesions were sequenced for the
matK, psbA-trnH, and ITS/5.8S markers for the present study (see Table S1 and below).

DNA sequencing
Total genomic DNA was extracted from leaves of plants collected in the field and dried in
silica gel using CTAB protocol (Doyle & Doyle, 1987). Three DNA regions were amplified:
the plastid intergenic spacer psbA-trnH, the plastid matK gene, and the nuclear ITS/5.8S
region. These three regions were amplified by polymerase chain reaction (PCR).

The matK gene was amplified using the primers matK 700F and matK 1710R of
Gruenstaeudl et al. (2009) and Samuel et al. (2005) respectively. The plastid psbA-trnH
spacer was amplified using the primers psbA and trnH of Hamilton (1999). The PCR for
the psbA-trnH andmatKwas carried out using the following parameters: one cycle of 94 ◦C
for 5 min, 38 cycles of 94 ◦C for 30 s, 50 ◦C for 1 min, and 72 ◦C for 1 min, and a final
extension cycle of 72 ◦C for 10 min. For the species that failed this protocol, variations in
the annealing temperature (48–52 ◦C) were used. The ITS/5.8S region was amplified using
the primers ITS4 and ITS5 of White et al. (1990) and the following PCR parameters: one
cycle of 94 ◦C for 5 min, 38 cycles of 94 ◦C for 30 s, 58 ◦C for 1 min, and 72 ◦C for 1 min,
and a final extension cycle of 72 ◦C for 10 min. For the species that failed this protocol,
variations in the annealing temperature (56–58 ◦C) were used.

PCR reactions were performed in 25 µl final volumes with 50–100 ng of template DNA
(concentration quantified with BioPhotometer c©, Eppendorf, Hamburg, Germany), 0.2 µl
of each primer, 25 µM dNTP, 5 mM MgCl2 1 × buffer and 0.3 units of Taq polymerase
provided by Invitrogen Life Technologies. A negative control with no template was included
for each series of amplifications to eliminate the possibility of contamination. PCR products
were run out on a 1% TBE agarose gel stained with SYBR Safe DNA gel stain (Invitrogen)
and visualized in a blue-light transilluminator. Automated sequencing was performed by
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Macrogen, Inc. The presence of a single peak corresponding to each nucleotide base was
confirmed in all chromatograms; sequences with multiple peaks were discarded.

Phylogenetic analyses
Sequences were aligned using the programMafft 7 (Kantoh & Standley, 2013). The resulting
alignment was checked and improved manually in BioEdit ver. 5.0.9 (Hall, 1999). The
aligned matrix (Database S1) was submitted to TreeBASE (https://treebase.org/treebase-
web/search/study/summary.html?id=22811). The matK dataset included 73 sequences
with an aligned length of 683 bp. The psbA-trnH dataset included 77 sequences and was
388 bp long when aligned. The ITS/5.8S alignment included 76 sequences of 688 bp. The
ETS alignment included 67 sequences of 624 bp. Of these nucleotide positions, 11% (76
bp), 20% (76 bp), 27% (184 bp) and 33% (207 bp) were parsimony informative for the
alignments of matK, psbA-trnH, ITS/5.8S, and ETS, respectively. The datasets including
the plastid and nuclear DNA sequences were analysed separately and in combination using
Bayesian inference (BI) and maximum parsimony (MP).

The Akaike information criterion (AIC) implemented in jModeltest2 v2.1.6 (Darriba
et al., 2012) selected the following models of nucleotide substitution per marker: TVM
+ G (matK), TVM + I + G (psbA-trnH), TIM1 + G (ETS), TIM2 + I + G (ITS1),
TIM3ef + I + G (5.8S) and TVM + I + G (ITS2). Bayesian inference analyses (BI) were
conducted using MrBayes version 3.2.6 (Ronquist et al., 2012) through the CIPRES portal
(Cyberinfrastructure for Phylogenetic Research) cluster at the San Diego Supercomputer
Center (Miller, Pfeiffer & Schwartz, 2010). As applied to Bayesian analysis, we used the
following models of nucleotide substitution: GTR + G for matK and ETS, and GTR +
I + G for psbA-trnH, ITS1, 5.8S and ITS2). The priors on state frequencies, rates and
shape of the gamma distribution were estimated automatically from the data assuming no
prior knowledge about their values (uniform Dirichlet prior). Four simultaneous analyses,
starting from different random trees and with four Markov Monte Carlo chains were
run for 15 million generations, sampling every 1,000 generations to ensure independence
of the successive samples. The convergence and effective sample size were checked with
the Average standard deviation of split frequencies (ASDSF) <0.01, the potential scale
reduction Factor (PSRF) ∼1, and verifying with Tracer v. 1.6.0 (Rambaut et al., 2014) that
effective sample size (ESS) for all parameters was over 300. The first 3,750 trees (25% of
total trees) were discarded as burn-in; the remaining samples of each run were combined,
and a Maximum Clade Credibility Tree (MCCT) was calculated using TreeAnnotator
v1.8.3 (Drummond & Rambaut, 2007).

The maximum parsimony analyses were conducted using TNT ver. 1.1 (Goloboff, Farris
& Nixon, 2008). All characters were equally weighted and treated as unordered. Gaps were
scored as missing data. We used the option Driven Search which is especially indicated
for large data matrices, set to find the minimum length 100 times with default settings
for Sectorial Searches and Tree Fusing (Goloboff, 1999). All searches were done with
random seed 0. The resulting trees were submitted to Ratchet (Nixon, 1999) and Tree
Drifting (Goloboff, 1999), in both cases using default settings with 1,000 iterations. After
the number of trees had stabilized, TNT was set to stop searching and the resulting trees
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were used to calculate a strict consensus tree. As a measure of clade stability, Jackknife (JK)
values (see Farris et al., 1996) were calculated bymeans of 10,000 resampling iterations with
a removal probability of 36%, using 10 replicates of Ratchet to find the minimum length
once in each replication. Only JK values above 50% are reported. The Bremer support (BS)
values (Bremer, 1994; Goloboff & Farris, 2001) were determined by sequencially search for
trees 1–15 steps longer than optimal trees.

Morphological analyses
Morphological studies were based on herbarium specimens deposited at Instituto de
Botánica Darwinion, San Isidro, Buenos Aires, Argentina (SI; acronym follows Thiers,
2016) and specimens examined available from the authors. Five to ten herbarium sheets
per species were analysed. We also examined fresh material ofMyrrhinium atropurpureum
var octandrum Benth. and Acca sellowiana cultivated at the garden of the Botanical Institute
Darwinion and material collected in field in Tucumán Province, NW Argentina. Available
literature on Myrtaceae inflorescences (Briggs & Johnson, 1979; Kawasaki, 1989; Landrum,
1986; Landrum, 1988a; Landrum, 1988b; Landrum & Donoso, 1990; Landrum & Kawasaki,
1997; Landrum & Salywon, 2004; Rotman, 1976a; Rotman, 1976b; Rotman, 1979; Rotman,
1986) was used when herbarium specimens were unavailable.

Thirty-two species belonging to the Pimenta, Eugenia, and Myrteola informal groups of
Lucas et al. (2007)were included in themorphological study (see Table 1). The terminology
used to describe the inflorescence’s architecture is based on Briggs & Johnson (1979),
Weberling (1965), Weberling, Schwantes & Fleck (1981) and Rua (1999) unless otherwise
stated.

We explored the morphology of flowers and inflorescences to identify characters that
may compose the characters that are adaptive for fruit bird pollination. We developed
13 characters that could potentially contribute to identify changes for reconstructing
the evolution of pollination by frugivorous birds in the group. We also coded the main
pollination type, i.e., by bees versus by frugivorous bird as a fourteenth character. The 14
developed characters were the following: Branching degree of the paracladium (char.0),
Development of apical meristem of paracladium (char. 1), Number of first order branching
within the paracladium (char. 2), Complexity of the first order branches within the
paracladium (char. 3), Elongation of internodes of the floriferous branches (char. 4), Type
of foliage supporting the paracladia (char. 5), Fleshy petal presence (char. 6), Numbers of
petals (char. 7), Length of petals (char. 8), Presence of pigments in petals (char. 9), Number
of stamens (char. 10), Length of stamens (char. 11), Presence of purpureous pigments in
filaments (char. 12) , Main pollination agent (char. 13).

The intraspecific variation observed was coded as double states for discrete characters.
Multistate characters were considered additive. In addition, we coded two characters, length
of petals (char. 8) and length of stamens (char. 11) as continuously varying characters scored
as ranges. The character list and character definition is given in Suppl. File 2, and character
codification in Table 1.

The characters were optimized onto the Bayesian consensus subtree containing the
species of interest. We used parsimonious character reconstruction and continuous
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Table 1 Morphological character matrix. Characters compiled for Pimenta, Eugenia andMyrteola groups (38 taxa) included in this study. Biblio-
graphical references are indicated in the text.

ESPECIES/CHARACTER 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Acca_sellowiana 0 1 – – [0 1] [0 1] 1 0 15 1 2 13–24 1 1
Amomyrtus_luma 0 1 – – [0 1] [0 1] 0 1 3 0 2 4–5 0 0
Amomyrtus_meli [0 1] 1 0 – [0 1] [0 1] 0 1 3.5 0 2 5–7 0 0
Campomanesia_guazumifolia 0 1 – – 0 0 0 1 15–20 0 4 5–15 0 0
Eugenia_biflora 0 1 – – [0 1] [0 1] 0 0 – 0 2 3.5–5.5 0 0
Eugenia_bimarginata 0 1 – – 1 1 0 – – 0 – – 0 0
Eugenia_convexinervia 0 1 – – 0 0 0 – – 0 2 – 0 0
Eugenia_cuprea 0 1 – – [0 1] [0 1] 0 0 – 0 – – 0 0
Eugenia_dysenterica 0 1 – – [0 1] [0 1] 0 – – 0 2 – 0 0
Eugenia_sulcata 0 1 – – [0 1] [0 1] 0 0 7–9 0 2 – 0 0
Eugenia_uniflora 0 1 – – [0 1] [0 1] 0 0 2.5–4 0 2 3–7 0 0
Hexachlamys_edulis 0 1 – – [0 1] [0 1] 0 1 5–9 0 – 5-9 0 0
Hexachlamys_hamiltonii 0 1 – – [0 1] [0 1] 0 – – 0 – – 0 0
Hexachlamys_itatiaiensis 0 1 – – [0 1] [0 1] 0 – – 0 – – 0 0
Legrandia_concinna 0 1 – – 0 0 0 0 7–10 0 4 7–12 0 0
Lenwebbia_prominens 0 1 – – 0 0 0 0 2–6 0 [3 4] 3–7 0 0
Lophomyrtus_bullata 0 1 – – 0 0 0 0 – 0 – – 0 0
Lophomyrtus_obcordata 0 1 – – 0 0 0 0 – 0 – – 0 0
Myrcianthes_cisplatensis [1 2] 1 0 – 0 0 0 1 – 0 2 3–5 0 0
Myrcianthes_cisplatensis_11 [1 2] 1 0 – 0 0 0 1 – 0 2 3–5 0 0
Myrcianthes_fragrans [1 2] 1 0 – 0 0 0 0 – 0 2 – 0 0
Myrcianthes_pseudomato [1 2] 1 0 – 0 0 0 0 5–7 0 2 6–10 0 0
Myrcianthes_pseudomato_15 [1 2] 1 0 – 0 0 0 0 5–7 0 2 6–10 0 0
Myrcianthes_pungens 0 1 – – 0 0 0 0 7 0 3 9–11 0 0
Myrcianthes_pungens_6 0 1 – – 0 0 0 0 7 0 3 9–11 0 0
Myrrhinium_atropurpureum_1 [3 4] 0 [0 1] 0 2 1 1 0 3.5–5 1 0 12–21 1 1
Myrrhinium_atropurpureum_2 [3 4] 0 [0 1] 0 2 1 1 0 3.5–5 1 0 12–21 1 1
Myrteola_nummularia [0 1] 1 0 – 0 0 0 [0 1] 3.5 0 1 4–5 0 0
Neomyrtus_pedunculata 0 1 – – 0 0 0 0 4–5 0 – – 0 0
Pimenta_dioica [3 4] 1 2 1 0 0 0 0 2 0 [2 3] 2–4 0 0
Pimenta_pseudocaryophyllus 3 1 2 1 0 0 0 0 3–5 0 [2 3] 4–6 0 0
Pimenta_racemosa [3 4] 1 2 1 0 0 0 1 2 0 [2 3] 4–5 0 0
Psidium_cattleianum 0 1 – – 0 0 0 [0 1] 5 0 – 5–7 0 0
Psidium_friedrichsthalianum 0 1 – – 1 0 0 1 12 0 4 10–15 0 0
Psidium_guajava 0 1 – – [0 1] [0 1] 0 [0 1] 13–22 0 4 7–15 0 0
Psidium_guineense 1 1 0 – 1 0 0 1 7–11 0 [3 4] 7–10 0 0
Ugni_molinae [0 1] 1 0 – 0 0 0 [0 1] 5–8 1 2 2–4 0 0

characters scored as ranges were optimized as such (for details on the optimization of
continuous characters see Goloboff, Mattoni & Quinteros, 2006). All optimizations were
done using the program TNT (Goloboff, Farris & Nixon, 2008). In addition, to provide
statistics for character reconstruction we also performed the ‘‘Trace Character over Trees’’
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routine implementing Parsimony in Mesquite v 3.50 (Maddison & Maddison, 2018). To
account for topological uncertainty, the character state reconstruction was performed over
a set of 2,000 trees resulting from the Bayesian analyses (last 500 trees per Markov chain).
We did not reconstruct the optimization of the continuous characters with this method, as
these are coded as ranges (not taken in Mesquite; to our knowledge, continuous characters
coded as ranges can presently only be optimized in TNT).

RESULTS
Phylogenetic analyses
Individual analyses of the four DNA datasets exhibited a poorly resolved tree topology
(Fig. S1). The combined plastid and nuclear data matrix consisted of 86 terminals and
2,383 aligned characters with 23% of the nucleotide positions informative. Contrary to the
individual marker analyses, the combined data matrix revealed considerable phylogenetic
structure, described below.

Parsimony analysis of the combined dataset resulted in 2,380 MP trees of 2,707 steps,
with consistency index, CI = 0.483 and retention index, RI = 0.594 (as defined in Kluge,
1989; Kluge & Farris, 1969). The strict consensus tree is shown in Fig. S2. The BI analysis
resulted in 45,000 trees summarized in the MCCT shown in Fig. 2. The MCCT of BI and
the strict consensus parsimony tree were congruent.

In both BI and MP analyses, all species of Myrteae were grouped in a well-supported
clade, with maximal (=1) posterior probabilities (PP), Bremer support (BS) = 12, and
jackknife proportion JK = 100. Several distinct clades were identified within the tribe,
and most informal groups suggested originally by Lucas et al. (2007) were also recovered
in the present analyses. All groups were well supported, more than 0.89 PP, except the
Australasian group that appeared polyphyletic. Our focal group Pimenta (sensu Lucas et
al., 2007) was only recovered as monophyletic in the BI analysis. This Pimenta group of the
BI analysis is composed of a clade joining Legrandia and Amomyrtus that is sister to the
clades (Pimenta + Campomanesia) and (Acca + (Psidium +Myrrhinium)).

In all combined analyses both ornithophilous taxa, Acca and Myrrhinium, were found
in the same clade, our expanded Psidium group (Fig. 2—cf. Vasconcelos et al., 2017), and
phylogenetic relationships inside this group were compatible across the analyses presented
here. In both analyses Acca was sister (PP= 1) toMyrrhinium+ Psidium (PP= 1, JK= 94,
BS = 3). Psidium was only monophyletic (but poorly supported) in the BI analysis while
collapsed when using parsimony.

Morphological character mapping
Optimization of our 14 characters, as codified in Table 1, is shown in Fig. 3 and
Fig. S3. Changes specifically relevant to Acca and Myrrhinium are shown in Table 2
and inflorescences architecture types in Fig. 4. These analyses of inflorescence and floral
architecture suggested that the ancestral inflorescence of the Pimenta group, and closely
related genera, was a simple, unbranched inflorescence (char. 0, char. 2), with a single
terminal flower (char. 1), supported by frondose leaves (char. 5) and elongate internodes
(char. 4); see Fig. 4A. Mapping of inflorescence characters 0–5 indicated little or no change
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from ancestral states in Acca (Figs. 4A–4C and Appendix S1), but a greatly increased
inflorescence complexity in Myrrhinium. The inflorescence in Myrrhinium (Fig. 4G and
Appendix S1) evolved a larger number of paracladia, branched in complex ways (characters
0, 2, 3); the internodes were strongly reduced to form a brachyblast (character 4); and the
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Char 2: Number of first order branching within the paracladium. 

Char 1: Development of apical meristem of paracladium. 

-Equivocal reconstruc�on: 99.6%               -Elongated (state 0): 0.4%

-Non-branching (state 0): 90.85%             -Equivocal reconstruc�ons: 9.15%

Char 4: Elonga�on of internodes of the floriferous branches. 

Char 3: Complexity of the first order branches within the paracladium. 

Char 0: Branching degree of the paracladium.  

-One first order branch (state 0): 93.4%   -Equivocal reconstruc�ons: 6.6% 

-Frondose (state 0): 100%

-Equivocal reconstruc�ons: 100%

Char 5: Type of foliage suppor�ng the paracladia.

Developing a terminal flower (state 1): 100%

-Equivocal reconstruc�on: 64.8%     -Absent (state 0): 35.2%   

Char 7: Numbers of petals.

Char 6: Fleshy petal presence. 

-Four petals (state 0): 98.5%          			-Equivocal reconstruc�on: 1.5%

-Equivocal reconstruc�on: 64.8%     -Absent (state 0): 35.2%    

-Equivocal reconstruc�on: 64.8%     -By Bees (state 0): 35.2%
Char 13: Main pollina�on type. 

Char 12: Presence of purpureous pigments in filaments. 

-26-100 stamens (state 2): 65.3%     -Equivocal reconstruc�on: 34.7%
Char 10: Number of stamens.

Char 9: Presence of pigments in petals.
-Equivocal reconstruc�on: 64.8%     -Absent (state 0): 35.2%    
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Figure 3 Character mapping. Mapping of main pollination type on 2,000 Bayesian subtrees (see ‘Meth-
ods’). Pie charts show the proportion of inferred states at each node. Below are the statistics of the remain-
der of characters for the ancestral node of the Psidium group (indicated in yellow on the tree).

Full-size DOI: 10.7717/peerj.5426/fig-3

foliose protection of each paracladium was reduced to bracts (character 5), which gave
pollinators free access to the small fleshy petals of the individual flowers (Table 2).

Acca and Myrrhinium primarily shared the presence of fleshy petals (char. 6). The
mapping of this character onto our final Bayesian tree is ambiguous: either presence or
absence of fleshy petals in the relevant ancestor of the Psidium group, inclusive of Acca,
Myrrhinium and Psidium (see above). When this character is mapped independently onto
the last 2,000 Bayesian trees (500 from each of four Markov chains), 1,296 reconstructions
remain ambiguous and 704 favour petals that are not fleshy in the ancestor (see also Fig. 3).
As expected, the characters with identical distribution (pigmentation of petals and stamens,
and main pollination type) are also reconstructed in the same way.

Conservation or increase of flower display in Acca was reflected in the lengthening
of petals (char. 8) and stamens (char. 11), and in the pigmentation of petals (char. 9)
and staminal filaments (char. 12). The latter three character states are also present in
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Table 2 Character transformations in Acca andMyrrhinium as mapped in the Bayesian tree (Fig. 2). Character definition in the text. We report
changes from ancestral states to states observed in each genus. For instance, the transformation 0–1 (arrow) represents the change from state 0 in the
immediate ancestor to state 1 in the terminal, either Acca orMyrrhinium. No change is indicated with ‘‘=’’ (e.g., 0= 0). Ambiguity is represented
with ‘‘/’’ (e.g., 0/1 means state 0 or 1). Characters 8 (length of petals) and 11 (length of stamens) are continuous and states are expressed in mm.

Character Acca Myrrhinium Interpretation of change

0 0= 0 0→ 3/4 Increased degree of branching inMyrrhiniuma

1 1= 1 1→ 0 Truncated terminal of paracladia inMyrrhinium
2 NC 0→ 0/1 Increased number of first-order branching inMyrrhiniuma

3 NC 0/1→ 0 Ambiguous in ancestor ofMyrrhiniumb

4 0/1= 0/1 1→ 2 Internode shortening led to brachyblasts inMyrrhinium
5 0→ 0/1 0→ 1 Reduction of foliose protection of paracladia inMyrrhinium

6 01→ 1 01→ 1 Acquisition of fleshy petals in Acca andMyrrhinium
7 0= 0 0→ 0 Ambiguous in ancestor ofMyrrhinium
8 7→ 15 7= 3.5–5 Lengthening (2X) of petals in Acca, no change (overlap with

ancestor) inMyrrhinium
9 01→ 1 01→ 1 Pigmented (purpureous) petalsc

10 2→ 2 2→ 0 Reduction of stamen number inMyrrhinium
11 10–12→ 13–24 10–12→ 12–21 Lengthening of stamens in Acca andMyrrhinium
12 01→ 1 01→ 1 Pigmented (purpureous) filaments in Acca andMyrrhinium

Notes.
NC, state non-comparable in the terminal.

aConvergent with Pimenta
bDiffers from Pimenta (state 2)
cConvergent in Ugni

Myrrhinium, but a reduction of individual-flower display inMyrrhinium was manifested in
the shortening of petals (char. 8), and reduction of stamen number to just 4–8 (char. 10).

DISCUSSION
Phylogenetic position of Acca and Myrrhinium
The MCCT tree and the strict consensus from the parsimony analysis were congruent,
Myrteae was monophyletic and well-supported (1PP, 12 BS, 100 JK). Most informal groups
suggested by Lucas et al. (2007) were also recovered here. Our focal group Pimenta (sensu
Lucas et al., 2007) was recovered as monophyletic in the BI analysis, but not in the MP
analysis, nor it was supported in the recent analysis of Vasconcelos et al. (2017).

Here, we recovered both ornithophilous taxa, Acca and Myrrhinium, in the same clade,
our expanded Psidium group (Fig. 2—cf. Vasconcelos et al., 2017). Acca was sister to
Myrrhinium + Psidium, with Psidium monophyletic in the BI analysis but collapsed when
using parsimony. Thus, the ornithophilous taxa were recovered in the same group, as we
expected, however, never as sister groups. The latter clade was a version of the Psidium
group of Vasconcelos et al. (2017), here also including Acca in addition to Psidium and
Myrrhinium.

This result differed notably from Vasconcelos et al. (2017), who found the former
Pimenta group sensu Lucas et al. (2007) to be split into two distantly positioned groups, the
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Figure 4 Schematic drawing of inflorescences. (A) Non-branching paracladium (branching degree of
the paracladium 0; e.g., Psidium guajava). (B) Non-branching paracladium with foliose and bracteose
leaves supporting the paracladia (e.g., Acca). (C) Non-branching paracladium, internode shortenings
(dotted line; e.g., Eugenia, sometimes in Acca). (D) Branching degree of the paracladium 0 and first-order
branching in the same plant (e.g., Ugni, Myrteola). (E) First-order branching (e.g., Psidium guineense). (F)
Second order branching (e.g.,Myrcianthes). (G) Third and fourth order branching, up to two homoge-
neous first order branches (e.g.,Myrrhinium). (H) Third and fourth order branching, three or more first
order branches with different degree of development, present only in Pimenta.

Full-size DOI: 10.7717/peerj.5426/fig-4
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Pimenta and Psidium groups, plus one isolated terminal, Amomyrtus luma. The Pimenta
group included Acca, Campomanesia, Legrandia, Pimenta, and Curitiba in Vasconcelos
et al. (2017), and their new Psidium group included Myrrhynium, Psidium, and Mosiera
(the latter not included in our study). In the Maximum Likelihood and BI analyses from
Vasconcelos et al. (2017), Acca was sister to Campomanesia in the Pimenta group but with
low support, and Psidium was sister to Myrrhinium with high support; the latter grouping
was also found in our results.

We argue that the different position of Acca in Vasconcelos et al. (2017) and in our study
may reveal a nuclear vs. plastid conflict. This affects the perceived evolution of pollination
by frugivorous birds because Acca and Myrrhinium are not closely related in Vasconcelos
et al. (2017), but they belong in the same group here. The nuclear markers ITS/5.8S and
ETS placed Acca in a group with Psidium and Myrrhinium in our study (Fig. S4), whereas
Acca appeared distant from this group in our plastid phylogeny (using markers matK and
psbA-trnH; Fig. S5). Acca was in a group with Psidium in Biffin et al. (2010) using 18S–26S
rDNA, ITS and 2 plastid markers and inMurillo, Stuessy & Ruiz (2013);Murillo, Stuessy &
Ruiz (2016) using ITS/5.8S+ ETS, but only in the ITS/5.8S tree of Vasconcelos et al. (2017);
the latter authors used 8 plastid markers for their ITS/5.8S-plastid phylogeny in which
the relationship of Acca and Psidium was lost, along with the link to Myrrhinium. Our
hypothesis is that the nuclear evidence, here represented by ITS/5.8S and ETS, groups Acca,
Psidium, and Myrrhinium, a grouping that is in conflict with at least part of the plastid
evidence, that places Acca elsewhere. A nuclear-plastid conflict has been reported in the
familyMyrtaceae (Schuster et al., 2018) and in other large groups (e.g., in Ficus;Bruun-Lund
et al., 2017). In our balance of evidence, we accept the result using our concatenated matrix
and study the morphological characters on that topology (see below).

Evolution of pollination by frugivorous birds in Myrteae
Our phylogenetic reconstruction of the tribe was essentially concatened with previous
reports, except in details regarding the specific relationships of our focus taxa, Acca and
Myrrhinium, which we place in the Myrteae phylogeny with an increased certainty. We
found that the taxa do belong in the same group—our expanded Psidium group also
inclusive of Acca (Fig. 2—cf. Vasconcelos et al., 2017). While more species of Acca and
Psidium need to be included in future analyses, it is clear from the support values that we
report, that the taxa pollinated by frugivorous birds are not sister to each other. Instead,
Acca appeared as sister to Myrrhinium + Psidium, so either bird pollination originated at
the basal node of our expanded Psidium group and was lost in Psidium, or it appeared in
parallel in Acca andMyrrhinium.

Frugivorous birds visit Acca and Myrrhinium because they both offer fleshy sugary
petals (Roitman, Montaldo & Medan, 1997). However, because the structural details of
both flowers and inflorescences differ between the two genera we reconstructed the
way the plant characters of this interaction evolved in each genus. This was done by
mapping the 13 structural characters that we identified as relevant for understanding the
evolution of the pollination by birds on the Bayesian subtree of Myrteae (see above).
This subtree contained Acca, Myrrhinium, and related genera, the latter predominantly
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melitophilous (bee-pollinated) as in most Neotropical Myrtaceae (Lughadha & Proença,
1996); therefore, melittophily is the most likely ancestral pollination syndrome for the
entire group (Lughadha & Proença, 1996). As expected, Acca andMyrrhinium acquired the
same states in some characters along their evolutionary path to be pollinated by frugivorous
birds. Surprisingly, they diverged greatly in other characters, suggesting that the interaction
with fruit birds is modulated in ways idiosyncratic to each genus. The relatively little
convergence with predominantly bee-pollinated myrtaceous genera (limited to particular
character states also present in Pimenta and Ugni; see Table 2) strongly suggests that most
character changes were directly related to the evolution of pollination by frugivorus birds,
albeit the character states evolved quite differently in Acca and Myrrhinium. Specifically,
both Acca and Myrrhinium converged in offering fleshy petals and attracting pollinators
with a visual display of reddish or purpureous petals and stamens, the latter greatly
elongated; however, the evolution of display differed between these taxa in important ways,
as it appeared centred in enhancing traits of large individual flowers in Acca, and centred
in the proliferation of small flowers in complex inflorescences inMyrrhinium.

Centring on flowers versus inflorescences for display may have consequences for the
interaction with frugivorous birds, which often spend a very short time period during
a particular visit to a plant (e.g., Blendinger et al., 2015). Because this interaction, from
the plant perspective, consists of pollen transfer (export and reception), the display of
one or few large flowers per inflorescence, each with many stamens, as in Acca, may
facilitate massive pollen export. The many-flowered, brush-like, complex inflorescence
in Myrrhinium may in turn facilitate successful pollen reception, as the visiting bird may
contact many styles in one feeding bout. Interestingly, this does not necessarily compromise
pollen export in this taxon, because stamens are few per flower but are available from the
many flowers of the visited inflorescence. In addition, stamens in Myrrhinium are greatly
elongated and much more exposed than in Acca. Whether these seemingly different
strategies impact significantly in the pollination success of each species remains to be
investigated. But previous authors, particularly Roitman, Montaldo & Medan (1997), have
already pointed out differences between Acca and Myrrhinium, assigning a larger degree
of adaptation to the latter. This suggestion is confirmed here in an explicit phylogenetic
and evolutionary framework. These strategies rely upon the modular nature of flower parts
and the inflorescence (see Niklas, 1994), which here seem to play a central role to enhance
either or both adaptive functions of pollen export and import by means of repetition and
subdivision of the variously nested modular components.

The presence of floral or extrafloral food bodies as reward for legitimate pollinators,
whatever their nature, is extremely rare among flowering plants (Simpson & Neff, 1981).
Dellinger et al. (2014) reported examples of food bodies offered by plants to birds; examples
include the presence of edible bracts surrounding the flowers in Pandanaceae; glucose-rich
corolla appendages in Calceolaria (Calceolariaceae); and the only known case of floral
food-body reward associated with reproductive structures, the bulbous stamen appendages
in Axinaea (Melastomataceae). The few examples compiled by Dellinger et al. (2014) also
include the freshy petals found in Acca andMyrrhinium. Thus, the presence of edible petals
as reward is extremely uncommon among angiosperms; in South America it has only
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been reported in the closely related myrtaceous genera Myrrhinium and Acca and in the
unrelated Calceolaria (Roitman, Montaldo & Medan, 1997). This highlights the importance
of this mutualism as a special case of evolution of plant-animal interactions.

CONCLUSIONS
The South American myrtaceous genera Acca and Myrrhinium are known to share several
characters (fleshy petals, reddish or purplish coloration and long stamens) that make them
attractive as food bodies eaten by otherwise typical frugivorous birds. Our phylogenetic
results indicate that A. sellowiana and M. atropurpureum are closely related and belong in
the same group but they are not sister taxa but are successive sisters to a monophyletic
Psidium—our expanded Psidium group. We cannot rule out a single evolutionary origin of
some of the characters that appear ambiguous and may have contributed to the evolution
of bird pollination in the common ancestor of our expanded Psidium group, which would
be subsequently lost in species of the Psidium complex. This scenario may change with the
inclusion of more related species in the phylogeny. Acca and Myrrhinium differ strikingly
in other floral characters relevant for the interaction with fruit-eating birds and we suggest
two strategies of flower exposure: large solitary flowers with numerous stamens, which
maximize pollen export only (Acca), versus inflorescences with many small flowers, each
with few, greatly exposed stamens, which simultaneously maximize both pollen reception
and export functions (Myrrhinium). We thus confirm thatMyrrhinium, as compared with
Acca, evolved a greater degree of adaptation to be pollinated by frugivorous birds, and
highlight the complexities thatmay be involved in the evolution ofmutualistic plant-animal
interactions.
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