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ABSTRACT
Model-free methods are widely used for the processing of brain fMRI data collected
under natural stimulations, sleep, or rest. Among them is the popular fuzzy c-mean
algorithm, commonly combined with cluster validity (CV) indices to identify the ‘true’
number of clusters (components), in an unsupervised way. CV indices may however
reveal different optimal c-partitions for the same fMRI data, and their effectiveness
can be hindered by the high data dimensionality, the limited signal-to-noise ratio, the
small proportion of relevant voxels, and the presence of artefacts or outliers. Here,
the author investigated the behaviour of seven robust CV indices. A new CV index
that incorporates both compactness and separation measures is also introduced. Using
both artificial and real fMRI data, the findings highlight the importance of looking at the
behavior of different compactness and separation measures, defined here as building
blocks of CV indices, to depict a full description of the data structure, in particular when
no agreement is found between CV indices. Overall, for fMRI, it makes sense to relax
the assumption that only one unique c-partition exists, and appreciate that different
c-partitions (with different optimal numbers of clusters) can be useful explanations of
the data, given the hierarchical organization of many brain networks.

Subjects Bioinformatics, Computational Biology, Neuroscience
Keywords Functional MRI, Data-driven analysis, Unsupervised fuzzy clustering, Brain networks,
Cluster validity, Fuzzy compactness and separation

INTRODUCTION
There are many contexts where model-based methods are inadequate to map brain
function, including for instance tasks that cannot be fully controlled (e.g., sleep, learning,
natural stimulation, continuous rest; Bartels & Zeki, 2004; Bartels & Zeki, 2005; Hasson et
al., 2004; Lee et al., 2012; Malinen, Hlushchuk & Hari, 2007; Zacks et al., 2001) or when the
hemodynamic correlates of neural activity are altered in unknown ways (e.g., patients with
impaired vasculature). In such cases, approaches without a priori knowledge, known also
as model-free or data-driven methods, are of great help.

Several data-driven methods have previously been used in fMRI (DonGiovanni &
Vaina, 2016; Thirion et al., 2014), including fuzzy clustering (Baumgartner, Windis-
chberger & Moser, 1998; Fadili et al., 2000; Golay et al., 1998; Jahanian et al., 2004)
and independent component analysis (McKeown et al., 1998). These methods have
been used in many scenarios to extract meaningful information from fMRI data in
the absence of any prior knowledge (Aljobouri et al., 2018; Baumgartner et al., 2000;
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Lange et al., 2004; Ma et al., 2011; Smolders et al., 2007; Tang et al., 2015; Wismuller et al.,
2004). One popular data-driven clustering method is based on the classic fuzzy c-mean
(FCM) algorithm (Bezdek, 1981). Although FCM allows high computational flexibility,
its robustness may depend on several methodological issues. Specifically, these include
the initialisation problem, the choice of similarity or distance metric, and the usually
unknown optimal number of classes or prototypes (e.g., Alexiuk & Pizzi, 2004; Esposito
et al., 2002; Fatemizadeh, Taalimi & Davoudi, 2009; Jahanian, Soltanian-Zadeh & Hossein-
Zadeh, 2005; Lange et al., 2004; Moller et al., 2002; Quiqley et al., 2002; Soltanian-Zadeh et
al., 2004;Windischberger et al., 2003). This study focuses on the issue of the optimal number
of clusters that can be extracted from fMRI data.

It is critical for any reliable clustering method to be able to determine whether: (i) the
data contains any structure and (ii) the segregated clusters are ‘true’ representations of the
data (Dubes, 1987;Windham, 1981). This issue is generally expressed in terms of the ability
of the algorithm, here FCM, to cluster the data into an optimal number of clusters (copt).
To do that, previous studies have introduced many measures, called cluster validity (CV)
indices, to estimate copt in an unsupervised manner (for a review see Bezdek & Pal, 1998;
Hammah & Curran, 2000; Kim & Ramakrishna, 2005; Maulik & Bandyopadhyay, 2002;
Wang & Zhang, 2007; Zhou et al., 2014). The rationale behind these CV indices is that a
good and useful clustering should yield compact and well-separated clusters. Indeed, it is
not surprising that many proposed CV indices combine different measures of compactness
(cohesiveness) and separation (isolation) among clusters, and would reach their optimal
values for the best c-partition (i.e., data clustered into copt clusters).

A few studies have previously investigated the effectiveness of CV indices in the context
of fMRI data clustering (e.g., Alexiuk & Pizzi, 2004; Fadili et al., 2000; Fadili et al., 2001;
Goutte et al., 1999;Moller et al., 2002; Seghier & Price, 2009). Some known features of fMRI
data may make the clustering particularly challenging (Thirion et al., 2014), including
for instance the huge number of points (i.e., voxels) in a typical fMRI dataset, the poor
signal-to-noise ratio in fMRI (noisy data), the small proportion of voxels of interest
that might be considered as relevant (i.e., an ill-balanced problem), and the presence of
artefacts or outliers (i.e., caused by head motion or signal loss). Given this complexity, it
might be the case that reliance on a single CV index might not be enough, in particular
when the data are noisy and the expected number of clusters is relatively high. Here, the
author compared the identified optimal c-partition when applying different CV indices
to the same datasets. In particular, the author investigated the behaviour of different
measures of compactness and separation when using previously published CV indices.
The current study also aims to introduce a new CV index that specifically incorporates
suitable compactness and separation measures that are useful for data with larger optimal
number of clusters.
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METHODS
Fuzzy clustering
Our clustering method was based on the popular fuzzy c-mean (FCM) algorithm (Bezdek,
1981; Bezdek et al., 1997). In the context of fMRI, the FCM algorithm can segregate or
cluster n brain voxels (feature vectors) into c expected clusters (c ≥ 2). Each voxel i is a
vector Xi of p properties (e.g., number of collected volumes or scans). Each cluster j is
characterised by a centroid Vj , that represents its characteristic timecourse (prototype).
The resemblance between each voxel i and each centroid Vj is assessed by the distance
Dij between Xi and Vj . The degree of membership Uij is calculated for each voxel i by
comparing Dij for each cluster j to all other clusters.

In brief, the standard FCM algorithm iteratively minimises the following objective
function Jm:

Jm=
n∑

i=1

c∑
j=1

Um
ij ·D

2
ij (1)

where ‘‘m’’ is the degree of fuzziness.
Degrees of membership U and centroids V are updated as following:

Uij =
1∑c

k=1

(
Dij
Dik

)2/m−1 (2)

Vj =

∑n
i=1U

m
ij ·Xi∑n

i=1U
m
ij

. (3)

Optimal clustering depends on the choice of the similarity D, the degree of fuzziness m
and the optimal number of clusters copt , as detailed below.

Similarity measure D
Here I used a modified version of the hyperbolic correlation distance proposed previously
by Golay et al. (1998). In their work, D was defined as (Golay et al., 1998):

Dij =
1−CCij

1+CCij
. (4)

Where CCij is the Pearson correlation coefficient between Xi and Vj .
Here, a modified version of D was used:

Dij =

√∣∣CCij
∣∣−CCij√∣∣CCij
∣∣+CCij

. (5)

This new formula uses the square root function, a monotonically increasing function
over x > 0 that satisfies the following inequality:

√
x ≥ x , for x ∈ [0,1]. The rationale

here was to increase the difference (i.e., discrimination power) between relatively close
correlation values in particular between mid and high correlations (cf. Fig. S1).
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Optimal number of clusters
A good and robust clustering should yield compact and well-separated clusters. This is
assumed to be the case when the number of clusters reaches an optimal value copt. The
exact copt value is however unknown in fMRI data. Previous reports have suggested that
copt can be found within the interval [2,

√
n] (Zahid, Limouri & Essaid, 1999); however

the exact copt can only be estimated empirically. Typically, FCM is repeated several times
with different c values (i.e., equivalent to an unsupervised fuzzy clustering analysis Fadili
et al., 2001) and the c value that optimises a given criterion, here a given CV index, is
considered as the optimal copt, and that criterion is typically defined as a trade-off between
compactness and separation.

Before introducing the different CV indices used here, it might be helpful to define the
core measures of compactness and separation using unified mathematical notations. These
measures can be seen as building blocks that can be combined into different CV indices.
Ultimately, the definition of those measures would help appreciate the inherent links (or
similarity) between previously suggested CV indices, before introducing the rationale of
the new CV index.

Compactness and separation measures
Two core quantities, noted nm,j and σm,j , were defined as following:

nm,j =
n∑

i=1

Um
ij (6)

σm,j =

n∑
i=1

Um
ij ·D

2
ij
. (7)

The measures n1,j and n2,j represent the fuzzy cardinality and the fuzzy partition of
cluster j respectively. The quantity σm,j denotes the fuzzy variation of cluster j, though
other studies have instead used σ1,j as a measure of fuzzy variation (e.g., Gath & Geva,
1989; Rezaee, Lelieveldt & Reider, 1998; Sun, Wang & Jiang, 2004).

Those core quantities can then be combined into different forms to give away different
measures of fuzzy compactness (cohesiveness) for a given c-partition. Using similar
notation as previous studies, quantities called πm,1 (Bensaid et al., 1996; Zahid et al., 1999),
πm,m (Bouguessa, Wang & Sun, 2006), and FC (Fadili et al., 2001; Zahid et al., 1999) were
computed as following:

πm,1=

c∑
j=1

σm,j

n1,j
(8)

πm,m=

c∑
j=1

σm,j

nm,j
(9)

FC =
∑n

i=1
(
maxj

(
Uij
))2∑n

i=1maxj
(
Uij
) . (10)
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Likewise, the fuzzy separation (isolation) between clusters was previously estimated with
several fuzzy separations quantities called Km (Fukuyama & Sugeno, 1989), FS (Fadili et al.,
2001; Zahid et al., 1999), S (Zahid et al., 1999) and SS (Rezaee, Lelieveldt & Reider, 1998):

Km=

c∑
j=1

nm,j ·
∥∥Vj−X

∥∥2 (11)

FS=
c−1∑
j=1

c−j∑
k=1

∑n
i=1
(
min

(
Uij,Ui,k+j

))2∑n
i=1min

(
Uij,Ui,k+j

) (12)

S=
1
c

c∑
j=1

∥∥Vj−X
∥∥2 (13)

SS=
c∑

j=1

1∑c
k=1

∥∥Vj−Vk
∥∥ (14)

where X stands for the global mean of the whole data.
Interestingly, the ratio FS/FC (i.e., separation divided by compactness) is known as the

fuzzy overlap (FO) coefficient (see Fadili et al., 2000 for more details).
Furthermore, different measures of between-centroid distance have been proposed,

including the minimum distance Vdmin (e.g., Schwämmle & Jensen, 2010; Xie & Beni,
1991), the maximum distance Vdmax (e.g., Rezaee, Lelieveldt & Reider, 1998), and the
minimum distance Vdmin,j between a cluster j and the remaining clusters (Wu & Yang,
2005):

Vdmin=min
j,k

(∥∥Vj−Vk
∥∥) (15)

Vdmax=max
j,k

(∥∥Vj−Vk
∥∥) (16)

Vdmin,j =min
k 6=j

(∥∥Vj−Vk
∥∥). (17)

These measures, based on the distance between estimated centroids, can be seen as
alternative separation measures. They can be handy when the clustering is showing
redundant clusters.

This section introduces two new measures of separation and discrimination between
voxels by combining different measures of fuzzy cardinality and variation (cf. Eqs. (6) and
(7)): a fuzzy intra-cluster (IDintra) dissimilarity coefficient and an inter-cluster (IDinter )
dissimilarity coefficient:

IDintra=max
j

(
n−n1,j
n1,j

·
σ1,j∑c

k=1,k 6=jσ1,k

)
(18)

IDinter =min
j

(
mink,k 6=j

(
σ1,k

)
σ1,j

)
. (19)

Small IDintra values would indicate that, across all clusters, voxels that are close to a given
cluster are well-isolated from voxels that are far from that cluster, whereas high IDinter
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values indicate well-discriminated voxels (i.e., small fuzzy overlap between clusters). Our
initial tests with noisy simulated data showed the need to define new separation measures
that are robust to noise and can handle c-partitions with higher number of clusters, hence
the new definitions in Eqs. (18) and (19).

Cluster validity measures
There are many CV indices in the literature (probably more than 50 indices), hence it
is beyond the scope of this study to test all of them. In a preliminary analysis (results
not shown here), about 20 selected CV indices were first tested on several simulated
datasets (as defined in Bezdek & Pal, 1998; Bouguessa, Wang & Sun, 2006; Dave, 1996;
Fukuyama & Sugeno, 1989;Geva et al., 2000;Kim, Park & Park, 2001;Kim, Lee & Lee, 2003;
Kim & Ramakrishna, 2005; Kwon, 1998; Pakhira, Bandyopadhyay & Maulik, 2004; Pakhira,
Bandyopadhyay & Maulik, 2005;Pal & Bezdek, 1995;Rezaee, Lelieveldt & Reider, 1998;Rhee
& Oh, 1996; Sun, Wang & Jiang, 2004; Tsekouras & Sarimveis, 2004; Wu & Yang, 2005; Xie
& Beni, 1991; Yu & Li, 2006; Zahid et al., 1999; Zahid, Limouri & Essaid, 1999). These CV
indices were selected from earlier studies (for a similar rationale, see recent comparison
study Zhou et al., 2014), and many of them are well-established indices. Some of these CV
indices have been used in previous fMRI studies. More recent CV indices (e.g., seeHe, Tan
& Fujimoto, 2016; Hu et al., 2011; Lin et al., 2016; Ren et al., 2016; Rezaee, 2010; Yang et al.,
2018; Zhang et al., 2014) were not explicitly tested here.

From this preliminary analysis, seven CV indices (out of twenty) were selected according
to the following four criteria: CV indices should (i) combine both measures of separation
and compactness; (ii) not suffer frommonotonic dependency with the number of expected
clusters; (iii) not necessitate the categorisation or the binarisation of U (i.e., crisp degrees
of membership) during CV computation; (iv) be fast to compute when n is expected to be
very high (e.g., hundreds of thousands of voxels in the context of fMRI data). The seven
selected CV indices that satisfied the different criteria are described below and listed in
Table 1.

(1)- The Rezaee-Lelieveldt-Reider index CVRLR (Rezaee, Lelieveldt & Reider, 1998):

CVRLR=

∑c
j=1σ1,j

c ·‖σX‖
+

1
α
·

(
Vdmax ·SS
Vdmin

)
. (20)

The constant α is a weighting constant and σX is the variance of the whole data set. The
best c-partition is obtained by minimising CVRLR with respect to the number of clusters c.
In the original definition of CVRLR, the constant α was set to 1; however, here α was set to
the value of Vdmax

Vdmin
·SS at the maximum number of clusters (cmax) as suggested previously

(Sun, Wang & Jiang, 2004).
(2)- The Zahid-Limouri-Essaid index CVZLE (Zahid et al., 1999; Zahid, Limouri &

Essaid, 1999):

CVZLE =α ·

(
S
πm,1

)
−

FS
FC
. (21)

The constant α is independent from c and was introduced here as a scaling factor to take
into account the difference in values between the two subtracted quantities. The constant α
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Table 1 List of the selected cluster validity (CV) indices.

CV index Proposed by Range Value at copt
CVRLR Rezaee-Lelieveldt-Reider index (1998). A modified

version was used here (Sun, Wang & Jiang, 2004)
[0,+∞[ Minimal

CVZLE Zahid-Limouri-Essaid index (1999) ]−∞,+∞[ Maximal
CVGV Geva index (2000) [0,+∞[ Maximal
CVKP Kim-Park index (2001) [0,+∞[ Minimal
CVPBM Pakhira-Bandyopadhyay-Maulik index (2004) [0,+∞[ Maximal
CVWY Wu-Yang index (2005) [−c , c] Maximal
CVBWS Bouguessa-Wang-Sun index (2006) [0,+∞[ Maximal
CVnew A new CV index [0,+∞[ Maximal

was set here to the value of the fuzzy overlap (FS/ FC) at c = cmax (note that in the original
paper of Zahid et al., α was set equal to 1). The best c-partition is obtained by maximising
CVZLE with respect to c. This CVZLE index has previously been used for fMRI analysis
(Fadili et al., 2001).

Note that the ratio
(

S
πm,1

)
in Eq. (21) is also known as the Pal-Bezdek cluster validity

index (Pal & Bezdek, 1995).
(3)- Among several CV indices suggested by Geva and colleagues (Geva et al., 2000), the

invariant index CVGV was selected here to measure the ratio of the between-cluster scatter
matrix to the within-cluster scatter matrix (Geva et al., 2000):

CVGV =
K1

c2 · J1
. (22)

The normalisation with the number of clusters c minimise the monotonically increase
of CVGV when c increased. This index should be maximal at the optimal c-partition.

(4)- The Kim-Park index, noted CVKP (Kim, Park & Park, 2001):

CVKP =
π1,1

c
+

1
α
·

(
c

Vdmin

)
. (23)

The best c-partition is obtained by minimising the index CVKP with respect to the
number of clusters c. This index has previously been used for fMRI analysis (Moller et al.,
2002).

(5)- The Pakhira-Bandyopadhyay-Maulik index CVPBM (Pakhira, Bandyopadhyay &
Maulik, 2004; Pakhira, Bandyopadhyay & Maulik, 2005):

CVPBM =
α

c
·
Vdmax

Jm
. (24)

With α as a constant term (e.g., α was set here to n). The best c-partition is obtained by
maximising CVPBM with respect to the number of clusters c.

(6)- The Wu-Yang index CVWY (Wu & Yang, 2005):

CVWY =

c∑
j=1

(
n1,j

maxj(n1,j)
−exp

(
−

V 2
dmin,j

S

))
. (25)
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This index compared the fuzzy partition of each cluster to its exponential separation,
with −c <CVWY < c , and CVWY is maximal at copt.

(7)- The Bouguessa-Wang-Sun index CVBWS index (Bouguessa, Wang & Sun, 2006):

CVBWS=
Km

πm,m
. (26)

This index CVBWS should be maximised with respect to c .
(8)- Our new CV index, noted CVnew , combined different measures of compactness

and separation as following:

CVnew =Km ·

(
IDinter

IDintra

)
·

(
FC
J1

)
. (27)

The best c-partition should maximise CVnew . The rationale behind incorporating those
specific compactness and separation measures (IDinter , Km, FC, IDintra, J 1) in the definition
of CVnew is illustrated below with simulated (noisy) datasets.

Simulated data
Twenty-two simulated datasets were generated as following. First, a fixed number c of
time-courses with p datapoints (p = 100) were generated from a unit normal distribution
(mean= 0, σ = 1). The Pearson correlation between these c time-courses was less than 0.1
for all simulated datasets. Second, each time-course was replicated rj times, with j = 1...copt,
and

∑c
j=1rj = n (where n is the total number of voxels, set here to 1,000). Third, n random

timecourses with p datapoints, generated from a normal distribution (mean = 0) but with
variable noise levels (σ = 1 or 4) were added to the replicated time-courses. This would
help to test the robustness of FCM at different noise levels (for a similar rational see Kim,
Park & Park, 2001; Wang & Zhang, 2007) and to monitor the behaviour of the different
CV indices when the fuzzy compactness of clusters became very low (i.e., high intra-class
dissimilarity in noisy data). This procedure generated a dataset X of n voxels, each with
p datapoints, with known and fixed numbers of classes. Multidimensional scaling (MDS)
tools were used to visualise the simulated c clusters.

Specifically, the following 22 datasets were generated: (i) a single-cluster dataset (noted
1-cluster; e.g., the ‘null’ case, see Tibshirani, Walther & Hastie, 2001) with highly similar
voxels (copt= 1; Fig. S2A); (ii) a dataset without any obvious structure (noted n-cluster
data; copt near to n; Fig. S2B), see Suleman (2017); (iii) ten datasets with known number
of clusters copt varying from 2 to 11 and low noise level (σ = 1, see illustration in Fig. S2C
with copt= 3); (iv) ten datasets with a known number of clusters copt varying from 2 to 11
and high noise level (σ = 4, see illustration in Fig. S2D with copt= 3).

All simulated datasets were clustered by FCM with c (i.e., number of expected clusters)
varying between cmin = 2 and cmax = 19. All analyses were carried out with homemade
Matlab-based scripts (MathWorks, Natick, MA, USA).

Real fMRI data
Real data consisted of single subject fMRI data with a block paradigmdesign (freely available
at: http://www.fil.ion.ucl.ac.uk/spm/data/auditory.html). The block paradigm consisted of
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alternated epochs between rest and auditory stimulation. 96 volumes were acquired on a
modified 2T Siemens MAGNETOM Vision system (TR = 7s, 64 contiguous slices). To
avoid T1 effects in the initial scans, the first 12 scans were discarded, leaving 84 scans for
further analysis (p = 84). The data were realigned, normalised (voxel size 2×2×2) and
smoothed (FWHM = 6×6×6 mm). This dataset was selected because it has been used in
many previous studies with clustering techniques including FCM (e.g., Gu et al., 2005; Lu,
Jiang & Zang, 2004). FCM was applied on this real fMRI dataset with c varying between
cmin= 2 and cmax= 39. To identify relevant FCM cluster(s) with activated auditory regions,
the centroids (prototype) Vj (j = 1...c) were correlated with the experimental block design
(Bandettini et al., 1993).

To appreciate the distribution of brain regions’ sizes in each c-partition, a morphological
granulometry was applied to all identified clusters after binarization (Soille, 2003).
This analysis estimated the size of each spatially distinct region or blob (26-connected
neighbourhood) for a given crisp FCM partition. Given that each voxel belongs to all
clusters at different degrees of membership (cf. Uij in Eq. (2)), the threshold was set to 0.5
so that each voxel belongs maximally to one cluster. Practically, for a given c-partition and
for each binary cluster j (j = 1...c), the size of each region as well as the number of isolated
voxels (i.e., single-voxel regions) were calculated.

This dataset was also analysed with SPM12 software package (Wellcome Trust Centre for
Neuroimaging, LondonUK; http://www.fil.ion.ucl.ac.uk/spm/) using standard procedures.
This allowed auditory activations to be identified using model-based methods.

Degree of fuzziness m
The degree of fuzziness m might influence the output of clustering (e.g., Bezdek, 1981;
Fadili et al., 2000; Fadili et al., 2001; Krishnapuram & Keller, 1993; Selim & Ismail, 1986;
Yu, Cheng & Huang, 2004): when m tends to 1 the classification becomes crisp and Uij

takes the value 0 (voxel i is not a member of cluster j) or 1 (voxel i belongs to cluster j) but
whenm tends to+∞ the classification is purely fuzzy (Uij is near to 1/c). The optimal value
ofmmay depend on the characteristics of the data. Previous empirical work approximated
m by a nonlinear function of the dimensions of the data (n and p); for example, Eq. (5) of
Schwämmle & Jensen (2010, Page 2845) yields m values of 1.044 and 1.019 for our artificial
and real datasets respectively. However, these estimated values are too low compared to
typical m values encountered in neuroimaging studies. Previous studies have explored the
influence of m on the computation of CV indices (e.g., Zhou, Fu & Yang, 2014), and they
found better clustering results withm between 1.2 and 2.5 for fMRI data (Fadili et al., 2000;
Fadili et al., 2001;Moller et al., 2002; Smolders et al., 2007).

More specifically, there are two issues to be considered when selecting m during
the computation of CV indices. First, several CV indices became inadequate with hard
c-partitions (i.e., m tends to 1). Specifically, any measures that are based exclusively on
the distribution of U values (e.g., FC, FS) would artificially reach their optimal values
independently from the number of clusters c. Second, according to Eq. (3), centroids
become close to the mean of the whole data set X when m tends towards +∞. In other
words, the c clusters would have comparable fuzzy cardinality values (i.e., Eq. (6)) for larger
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m values, which may be problematic when some clusters are expected to contain a small
number of voxels (see illustration in Fig. S3); for more details see (Selim & Ismail, 1986;
Tsekouras & Sarimveis, 2004; Yu, Cheng & Huang, 2004). This issue is particularly critical
when analysing task-related fMRI data because activated voxels are expected to represent
a small fraction of the whole brain.

Here, m was held to 1.5 throughout this study.

Voxel selection and the ill-balanced dataset problem in fMRI
One important issue during the clustering of fMRI datasets is the selection of the relevant
n voxels. Because the number of activated voxels is small (i.e., a few percent) compared
to the total number of voxels in a typical whole-brain fMRI dataset, previous studies have
suggested different approaches to overcome this ‘ill-balanced’ data problem. For instance,
FCM can be limited to relevant voxels within the gray matter, in specific anatomical brain
regions, or to voxels with some kind of task-related effects (e.g., see Fadili et al., 2000;
Goutte et al., 1999; Gu et al., 2005; Lee et al., 2012; Moller et al., 2002; Seghier, Friston &
Price, 2007). Voxel selection might be useful for: (i) reducing the high dimensionality of
the problem and improving both computational robustness and speed; (ii) minimising
the influence of redundant voxels; and (iii) increasing the accuracy of the clustering by
focusing mainly on meaningful voxels. However, the author preferred here to include
all brain voxels so that the robustness of the different CV indices can be appreciated
when noisy voxels (voxels with no effect of interest) and artefacts are present. FCM was
thus applied to all voxels of the real fMRI dataset, yielding a total number of voxels
n = 227,716.

FCM convergence and the initialisation problem
Depending on the initialisation of the degrees of membership U (Bezdek, 1981), the FCM
algorithm may converge to different c-partitions (e.g., local minima). This problem of
initialisation may lead to spurious c-partitions (Moller et al., 2002) when using CV indices.
One possible solution is to repeat the FCM algorithm on the same dataset with several
different random initialisations (e.g., Moller et al., 2002; Pena, Lozano & Larranaga, 1999),
with the expectation that it is unlikely that different starting conditions will lead to the
same local minima. Accordingly, for each c value, the FCM algorithm was re-run on the
real fMRI dataset ten times with random initialisations (for a similar procedure see Chuang
et al., 1999).

RESULTS
FCM on simulated data
The 1-cluster dataset
Clustering the 1-cluster dataset (copt = 1) showed how compactness and separation
measures behave when data cannot be clustered any further. In this context of high
redundancy, it is expected to observe: (i) high similar or identical centroids V, (ii)
degrees of membership U near to the fuzziest value 1/c , and (iii) comparable fuzzy
cardinality across clusters. As illustrated in Fig. 1A, the fuzzy compactness FC decreased
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Figure 1 Illustration of the behaviour of different measures of compactness and separation. FCM on
the one-cluster (A) and the n-cluster (B) dataset. The number of clusters varied between 2 and 19. See full
definition of the different measures in the ‘Methods’.

Full-size DOI: 10.7717/peerj.5416/fig-1

monotonically with c (i.e., FC = 1/c) whereas fuzzy separation FS increased linearly with
c-1 (i.e., FS= (c−1)/2), suggesting a high fuzzy overlap FO between clusters. Likewise, as
expected, the fuzzy compactness πm,1 and separation Km showed monotonic dependency
with cm−1 and c1−m respectively, suggesting that the product πm,1 ·Km remained constant
(independent from c) when data were classified into pure fuzzy clusters. Interestingly,
measures of separation based on centroids V (e.g., Vdmin, Vdmax, S) and distances D (e.g.,
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IDintra and IDinter ) were independent from c, suggesting highly similar (i.e., identical)
centroids V.

The n-cluster dataset
Clustering the n-cluster dataset (i.e., copt towards n) tested the robustness of the different
measures of compactness and separation when data is patternless with high dispersion.
Compactness coefficients showed similar behaviour as above when clustering the 1-cluster
dataset, except for J 1 and SSmeasures. Interestingly, separationmeasures based on centroids
V and distances D showed more complex dependencies with c (Fig. 1B) as compared to
the 1-cluster case (Fig. 1A), in particular when using the two new coefficients IDintra and
IDinter .

What emerged from above is that Km, IDintra, IDinter , and J 1 behaved differently on
1-cluster and n-clusters datasets, which is highly desirable when clustering fMRI data that
have complex structure. These results motivated the rationale of including them in the
computation of the new CVnew index (as defined in Eq. (27)).

CV indices on data with known numbers of clusters
The differentmeasures of compactness and separation are shown in Fig. 2A for the 7-clusters
data set. Several measures showed different values over the number of clusters as compared
to the clustering of the 1-cluster and n-cluster datasets. For instance, the coefficient J 1
decreased in the interval c = 2 to c = 7, consistent with the fact that data can be clustered
further (as seen for the n-cluster data); then it reached a plateau for higher number of
classes, consistent with the fact that the data cannot be segregated any further (as the case of
the 1-cluster data). The limit between the two behaviours was indeed at the true number of
clusters (c = 7). This observation is valid for the other measures of compactness (e.g., FC,
πm,1, IDintra) and separation (e.g., FS, IDinter , S, Km). When the data became noisy, some
measures were less sensitive to the structure of the data (i.e., the presence of seven clusters).
As illustrated in Fig. 2B, fuzzy separation FS and compactness πm,1 showed comparable
behaviour as in the clustering of the n-cluster dataset, which reflects the influence of
noisy distant points (low within-cluster compactness and between-cluster separation).
Interestingly, in addition to Vdmin, quantities IDintra, Km and J 1 were more robust to noise
and showed high discriminability with an optimal value around the expected number of
classes (Fig. 2B). This observation further motivated their inclusion in the definition of the
new CV index.

Figure 3 illustrates all CV indices for the 3-cluster, 7-cluster, and 11-cluster datasets with
lownoise level (σ = 1). All CV indices indicated the best c-partition for the expected number
of clusters (maximum value for CVZLE , CVGV , CVPBM , CVWY , CVBWS, CVnew ; minimum
value for CVRLR and CVKP). Note that the new index CVnew is highly discriminative in
pointing to the optimal c-partition. When the data became noisy (σ = 4), all CV indices,
except CVBWS and CVnew , failed to indicate the optimal c-partition (Fig. 4). However, for
data with higher copt (e.g., copt> 9), only the new index CVnew identified the true number
of clusters, albeit with lower discriminability (e.g., compare Figs. 3B to 4B).

An ad hoc analysis was conducted to monitor the behaviour of CVnew over different
degrees of fuzziness m (m varying between 1.2 and 2.5), for a similar rationale see
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Figure 2 Illustration of the behaviour of different measures of compactness and separation at differ-
ent noise levels. The behaviour of different measures of compactness and separation during FCM of the 7-
cluster dataset with low (A, σ = 1) and high (B, σ = 4) noise levels. See full definition of the different mea-
sures in the ‘Methods’.

Full-size DOI: 10.7717/peerj.5416/fig-2

(Schwämmle & Jensen, 2010). This analysis showed that CVnew correctly identified the
true number of clusters copt in almost all simulated datasets for m ∈ [1.2, 2.5], except for
datasets with both high noise level (σ = 4) and high number of true clusters (copt > 9)
where CVnew failed to identify copt when m ≥ 2 (i.e., CVnew underestimated copt at higher
m values including the popular value of m =2). This ad hoc analysis confirmed the initial
choice of m = 1.5.
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Figure 3 Plots of the CV indices for the simulated data at low noise level. Plots of the CV indices for the
simulated 3-cluster (A), 7-cluster (B) and 11-cluster (C) datasets with low noise level (σ = 1), when num-
ber of clusters increased from 2 to 19. All CV indices successfully indicated the expected number of clus-
ters (copt= 3 in a, copt= 7 in b and copt= 11 in c). See full definition of these indices in the ‘Methods’.

Full-size DOI: 10.7717/peerj.5416/fig-3

FCM real fMRI data
As expected, the number of iterations for the convergence of the FCM algorithm varied
across the 10 different initialisations. However, for a given c value and across the ten runs,
the obtained c-partitions were very similar and the function Jm (Eq. (1)) reached the same
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Figure 4 Plots of the CV indices for the simulated data at high noise level. Plots of the CV indices for
the simulated 3-cluster (A), 7-cluster (B) and 11-cluster (C) datasets with high noise levels (σ = 4), when
the number of clusters increased from 2 to 19. Only the new CV index identified the correct 11-partition
at this level of noise.

Full-size DOI: 10.7717/peerj.5416/fig-4

minimum value (except for c values between 12 and 15 where one initialisation reached a
different minimal Jm value compared to the other nine initialisations).

Identified clusters
Figure 5 plots the different coefficients and CV indices against the number of expected
clusters c varying from 2 to 39. Measures such as IDinter , and Vdmin showed an interesting
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Figure 5 Illustration of the results using real fMRI data. (A) Different measures of compactness and
separation and (B) the different CV indices. The number of clusters varied from 2 and 39.

Full-size DOI: 10.7717/peerj.5416/fig-5

pattern when c increased, with high and decreasing values for small number of clusters
(c < 10) and low and fixed values when c increased (a comparable behaviour was also seen
for FC). This mirrored their behaviour during the clustering of the 1-cluster and n-cluster
datasets. The change in the nature of the dependency occurred around c = 13, indicating
the maximum c value that ensured different centroidsV . For a number of expected clusters
bigger than 13, the c-partition contained a few redundant classes (identical centroids V ).
However, for c < 13 clusters, although the obtained classes were compact (e.g., high FC
values), the separation between clusters was not optimal (see for instance Vdmax, S, and
Km). More specifically, the fuzzy separation measures S and Km showed optimal values
for higher numbers of expected clusters at c larger than 17 clusters. At this range, the
c-partition contained at least three similar centroids.

Figure 5B illustrates the dependency of different CV indices with c. SomeCV indices (e.g.,
CVRLR and CVKP) showed optimal values for low c values (maximal fuzzy compactness),
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whereas other CV indices (e.g., CVZLE , CVBWS, CVGV , and CVPBM ) showed optimal
values at an intermediate number of expected clusters (i.e., maximal fuzzy separation).
Interestingly, the new index CVnew went through different phases (i.e., different plateaus),
depending on the weight of fuzzy separation and compactness (a change of behaviour
visible at c = 15). The new index CVnew reached its maximum value at c = 24 clusters,
ensuring a good compromise between separation and compactness of the c-partition of
this real fMRI dataset.

The results of the morphological granulometry at U > 0.5 are illustrated in Fig. 6. As
expected, the size of very large regions tend to decrease with the number of expected
clusters, as large regions were subdivided further into smaller regions at higher c values.
Interestingly, for each c-partition, the total number of single-voxel regions over all clusters
was less than 0.04% of n (Fig. 6). Given the spatial smoothness of the fMRI data, there was
no cluster containing exclusively single-voxel regions.

Figure 7 illustrates all obtained clusters for c-partitions with low fuzzy separation
(c = 8), without redundant clusters (c = 13), at high fuzzy separation (c = 18), and at
the optimal c value that maximised CVnew (c = 24). Identified voxels within the auditory
cortex (i.e., voxels of interest) are shown in the first axial slice of each c-partition. Voxels
in the auditory cortex were grouped with those in the occipital lobe at small c values
(c = 8), but they became clearly segregated at larger c values (e.g., c = 18 and c = 24).
Interestingly, identified voxels within the auditory cortex in the c-partition with 24 clusters
were remarkably similar to those identified with model-based SPM methods (e.g., SPM
map at p< 0.05 FWE-corrected, Fig. 8). Last but not least, the centroid of the relevant
cluster with activations in auditory regions (Cluster ‘‘1’’ of the 24-partitions in Fig. 7) was
strongly correlated with the experimental block design (r = 0.7, p< 0.001).

DISCUSSION
Using both simulated and real fMRI data, this study explored the usefulness of CV indices
in identifying the best c-partition with FCM. This study also examined the behaviour
of different compactness and separation measures, defined here as building blocks of the
different CV indices. The optimal number of clusters varied with different CV indices, given
that measures of compactness and separation were influenced by different features of the
fMRI data (e.g., the expected high number of clusters, noise, and the amount of artefacts).
A new CV index (CVnew) was introduced here and it showed relatively good robustness
when clustering noisy data with high number of classes. Our study also highlighted the
importance of analysing different measures of separation and compactness in order to get
a better understating of the complex structure of the data.

The typical low signal-to-noise ratio in fMRI might be the most challenging issue
that can hinder the success of clustering techniques. Here, simulated data were based
on Gaussian-like noise distributions, and the success of different CV indices depended
on the level of noise in the data. Our findings are in line with previous studies that
compared several CV indices on different simulated datasets and found that CV indices
may fail to indicate the true number of clusters in noisy data that have high number of
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Figure 6 FCM results at different c values. (A) Regions’ sizes (in number of voxels) for each crisp c-
partition (at an arbitrary threshold of U > 0.5). Each dot (diamond shape) represents the size of one re-
gion in any cluster of the c-partition (c varying between 2 and 39). A base 10 logarithmic scale is used for
the y-axis. (B) Total number of single-voxel regions for each c-partition. For the winning FCM partition
(c = 24 with CVnew), there was less than 4 single-voxel regions per cluster on average. Total number of
voxels n= 227,716; voxel size= eight mm3.

Full-size DOI: 10.7717/peerj.5416/fig-6

classes (Suleman, 2017; Wang & Zhang, 2007; Zhou et al., 2014). It might be the case their
effectiveness might even be lesser given the complex nature of noise in MRI images with
significant correlations between voxels (Gudbjartsson & Patz, 1995; Parrish et al., 2000). To
ensure better data input to FCM, it is thus recommended to use different pre-processing
techniques that can reduce the impact of noise and improve data quality (Caballero-Gaudes
& Reynolds, in press). The usefulness of such techniques with FCM on fMRI data warrants
further studies.

Perhaps more importantly, the results stressed the importance of reading the behaviour
of different separation and compactness measures, defined here as building blocks of CV
indices, in order to depict an accurate description of the fMRI data (cf. Fig. 5). This is
because it is most likely that there are different meaningful c-partitions depending on the
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Figure 7 FCM results at different c values (A: c = 8, B: c = 13, C: c = 18 and D: c = 24). Each obtained
cluster (a 3D image) of each c-partition is illustrated by its most representative axial slice, with U values
varying from 0.1 to 1.0. Cluster label is shown at the top-left corner of each axial slice (in white) and the
MNI-z coordinate is indicated in black. For illustration purposes, the cluster that contained the expected
activated voxels within the auditory cortex is labelled as Cluster ‘1’. The scatter plot (E) illustrates the cor-
relations between the centroids of the 24-partition and the experimental block design (y-axis) against the
fuzzy cardinality (cf. Eq. (6)) of each cluster (x-axis). Only one cluster showed significant correlation (p<
0.001) with the experimental design (r = 0.7). The fuzzy cardinality was divided by the total number of
voxels, which would approximately reflect the ‘proportion’ of voxels contained in each cluster (average
proportion around 4% (=1/ c)). Using the spatial location of the clustered voxels, one can potentially in-
terpret the results of the FCM 24-partition (D). For example, Cluster 1 is showing auditory activations
(cluster of interest) that highly correlated with the experimental block design (r = 0.7); Clusters 2–4 illus-
trate voxels in the visual system; Clusters 5–8 illustrate cerebellar and subcortical regions; Clusters 9–10 il-
lustrate different medial parts of the default mode network; Clusters 11–12 contain voxels in ventral brain
regions that are prone to MR signal loss; Clusters 13 and 14 are dominated by motion artefacts; Cluster 15
mainly shows CSF voxels; Clusters 19–24 contain white matter voxels. L, left hemisphere; R, right hemi-
sphere.

Full-size DOI: 10.7717/peerj.5416/fig-7
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Figure 8 SPM’s results. SPM results illustrated with the function ‘montage’ of SPM12, with axial slices
varying between MNI-z=−16 mm to MNI-z=+36 mm. (A) Results at a very liberal threshold of p <
0.05 uncorrected, (B) at p< 0.05 FWE-corrected. L, left hemisphere; R, right hemisphere.

Full-size DOI: 10.7717/peerj.5416/fig-8

scale at which the different clusters (i.e., brain networks) are segregated. Accordingly, it
is not always useful to bias the analysis towards one elusive single c-partition, but rather
appreciate that fMRI data might encompass different plausible patterns or networks at
different spatio-temporal scales (Orban et al., 2015). Put another way, users need to relax
the assumption that copt must be unique, and look instead for complementary explanations
of the data at different copt values. For instance, using fuzzy clustering on resting-state fMRI
data, Lee and colleagues (Lee et al., 2012) identified two optimal c-partitions with seven
and eleven clusters that minimised a cluster dispersion measure (used as a CV index).
Interestingly, the c-partition with 11 clusters further subdivided some of the clusters
identified in the c-partition with seven clusters (Lee et al., 2012), most probably due to the
known hierarchical organization of the brain networks. Our results of the clustering of real
fMRI data also showed similar trends with clusters being further segregated with increasing
number of expected clusters (e.g., compare clusters with c = 8 to clusters with c = 18 in
Fig. 7).

Previous work suggested that, when CV indices fail to agree on the true number of
clusters for high-dimensional datasets, a combination of different indices into a single
index should be considered (Sheng et al., 2005; Zhou et al., 2014). Specifically, by using
a weighted sum of several normalized CV indices, it has been shown that this weighted
sum can improve the confidence of clustering solutions. Ultimately, this approach aims to
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force an agreement between CV indices so that one optimal single c-partition is selected.
However, this approach may not be applicable to all contexts because: (i) the number
and types of CV indices to be combined are arbitrary, (ii) there is no objective procedure
to set optimal weights, and previous empirical work showed that such weights are data-
dependent (Zhou et al., 2014), (iii) the weighted sum does not properly deal with redundant
information, given that CV indices are likely to share similar compactness or separation
measures, (iv) the relationships of some CV indices with the number of expected clusters
can take any arbitrary shape (e.g., Fig. 5B), hence linear combinations may not be suitable,
and (v) this approach implicitly assumes that there must be one unique ‘true’ explanation
of the data. Here I argue that summation of different CV indices might not be useful for
fMRI data clustering, because it ignores the possibility that different plausible explanations
(different c-partitions) exist for the same data. Differences between CV indices should not
be overlooked because they tend to highlight different existing features in the data.

The existence of different plausible explanations (c-partitions) of the same fMRI data can
be further illustrated when examining the different compactness and separation measures
used in the definition of the new CV index. More specifically, as illustrated in Fig. 5B,
CVnew went through three different phases: (i) low values for c < 15, (ii) a plateau with
high optimal values for 15< c < 28, and (iii) another plateau for c > 28. The three phases
indicated different segregated data structures depending on the predominance of either
compactness or separation measures (Fig. 5A). For example, high fuzzy separation with
well-isolated clusters was only achieved at c > 15, as reflected in the behaviour of Km

and IDintra; however, when c increased the c-partitions became less compact (see FC),
with higher fuzzy overlap and over-classification when c increased beyond 28 clusters (see
IDinter ). Given the expected small proportion of task-related activations in the auditory
cortex, a segregation of relevant auditory voxels was only achieved with c > 15 clusters,
for a similar rationale see (Chuang et al., 1999). In sum, looking at different compactness
and separation measures, in addition to CVnew index, can provide a richer representation
of the clustering results so that users can select the most useful c-partition among many
potential possibilities.

Other methodological issues warrant further investigations. For instance, it might be
interesting to test these CV indices with other varieties of FCMalgorithms that incorporated
spatial constraints during the minimisation of the objective function Jm (e.g., Ahmed et
al., 2002; Liew, Leung & Lau, 2000), which can take into account the inherent spatial
dependencies between neighbouring voxels (e.g., dependencies inflated by the spatial
resampling and smoothing in fMRI). This would for instance penalise implausible solutions
(c-partitions) with isolated voxels (e.g., Fig. 6). In addition, if outlier voxels existed in a
dataset, this would artificially yield optimal CV values for c-partitions with a small
number of clusters. In this context, it is useful to combine these CV indices with robust
clustering techniques (for a review see Dave & Krishnapuram, 1997), adaptive distance
measures (Tang et al., 2015), or other modified fuzzy clustering algorithms (e.g., Dik et al.,
2014; Kao & Huang, 2013; Keller, 2000; Seghier, Friston & Price, 2007). Another challenging
issue is to give meaning to the different identified clusters. Typically, users have to set
objective criteria to distinguish relevant clusters from noise or artefact-driven clusters.
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For instance, for task-related fMRI data, clusters of interest are expected to have centroids
similar (highly correlated) to the paradigm (Chuang et al., 1999; Fadili et al., 2000; Goutte
et al., 1999; Jahanian, Soltanian-Zadeh & Hossein-Zadeh, 2005), as illustrated in Fig. 7. For
task-free fMRI data, irrelevant clusters should be discarded, including clusters that are less
consistent across sessions (Levin & Uftring, 2001) or when they include irrelevant brain
voxels (e.g., in the white matter, ventricles, cerebrospinal fluid, arteries) (Ma et al., 2011).

Although FCM can provide useful data-driven explanations, deciding which clustering
method is best for fMRI data remains an open question (Derntl & Plant, 2016). Typically,
selecting a specific clustering algorithm entails a trade-off between different criteria (e.g.,
accuracy versus stability Thirion et al., 2014), with different methods may yield different
clustering solutions. Many previous fMRI studies for instance have compared FCM against
other data-driven methods, but findings varied considerably across studies, probably due
to differences in fMRI data features in particular in terms of contrast-to-noise ratio and
the level of physiological noise (Baumgartner et al., 2000; Dimitriadou et al., 2004; Lange et
al., 2006;Wismuller et al., 2004). One popular data-driven method in the current literature
is independent component analysis (ICA). ICA allows the detection of unexpected brain
responses to stimuli, dissociation of functional networks and can be used as a powerful
denoising tool (Stone, 2002). Previous work (Meyer-Baese, Wismueller & Lange, 2004;
Smolders et al., 2007) have shown that FCM may outperform ICA when analyzing task-
related fMRI data with good contrast-to-noise ratio. Nonetheless, it is fair to say that
any comparison between ICA and FCM is an empirical question that is contingent on
the nature of the fMRI data, the exact parametrization of FCM (Schwämmle & Jensen,
2010), the type of ICA algorithm, and the number of independent components (McKeown,
Hansen & Sejnowsk, 2003).

CONCLUSIONS
Unsupervised FCMwith different CV indices is a useful tool for analysing model-free fMRI
datasets, an alternative to the widely used independent component analysis methods. It
is recommended to combine different CV indices in order to draw a complete picture of
the structure of the data. The assumption here is that different CV indices may point to
different optimal c-partitions, given the heterogeneous behaviour of many measures of
compactness and separation. Rather than discarding discrepancies between CV indices,
such discrepancies should be appreciated because they reflect the hierarchical organization
of brain networks. This was clearly visible for instance when analysing the different phases
of the plot of the new CV index against the number of clusters. Overall, the existence of
different c-partitions for the same fMRI data should not be overlooked in future clustering
studies.
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