## Roads affect the spatial structure of butterfly communities in grassland patches (#24703)

First submission

#### Editor guidance

Please submit by **1 Apr 2018** for the benefit of the authors (and your \$200 publishing discount).



#### **Structure and Criteria**

Please read the 'Structure and Criteria' page for general guidance.



#### **Custom checks**

Make sure you include the custom checks shown below, in your review.



#### Raw data check

Review the raw data. Download from the materials page.



#### Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

#### **Files**

Download and review all files from the <u>materials page</u>.

- 6 Figure file(s)
- 1 Raw data file(s)
- 1 Other file(s)



#### Field study

- Have you checked the authors field study permits?
- Are the field study permits appropriate?

#### Structure your review

The review form is divided into 5 sections.

Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

#### **Editorial Criteria**

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

#### **BASIC REPORTING**

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
  Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

#### **EXPERIMENTAL DESIGN**

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

#### **VALIDITY OF THE FINDINGS**

- Impact and novelty not assessed.
  Negative/inconclusive results accepted.
  Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

# Standout reviewing tips



The best reviewers use these techniques

|  | p |
|--|---|

# Support criticisms with evidence from the text or from other sources

### Give specific suggestions on how to improve the manuscript

### Comment on language and grammar issues

### Organize by importance of the issues, and number your points

# Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

#### **Example**

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.



# Roads affect the spatial structure of butterfly communities in grassland patches

Piotr Skorka Corresp., 1, Magdalena Lenda 1, 2, Dawid Moroń 3

Corresponding Author: Piotr Skorka Email address: skorasp@gmail.com

Roads may have important negative effect on the animal dispersal rate, mortality and thus functioning of local populations. Roads verges may be also surrogate habitat for some species, mostly invertebrates. This creates a conservation dilemma around the impact of roads on invertebrates, also because the effect of roads on invertebrates is much less understood than in vertebrates. We studied the structure of butterfly and plant communities in ten grassland patches neighboring roads (~ 50-100 vehicles per hour) and ten control grassland patches located apart from major roads in southern Poland. Five 200m transects; at a road verge, 25 m apart from the verge inside the patch, inside the patch interior, 25 m from the boundary between grassland and field and at the grassland-arable field boundary were established in every grassland patch. Control grasslands bordered with a dirty road (<1 vehicle per day). Within-patch analysis for grasslands bordering with roads indicated that butterfly species richness was similar in different parts of the grassland patch. Abundance of butterflies was higher at road verges and inside the grassland patch than at the boundary with arable fields. In control meadows, there were no differences in butterfly species richness nor abundance in different parts of grassland patch. Partial redundancy analysis revealed that roads differentiate butterfly community structure within grassland patches. Road verges, habitat interior and boundary with arable field contributed the most to the species differentiation within grassland patches at roads. These effects were not found in control grassland patches where butterfly communities were more homogenously distributed in a patch. In total, the butterfly but not plant communities in grasslands at roads differed from grasslands located apart. The diversified structure of butterfly community within patches near roads was also visible in total number of species that was higher there than in control grassland patches. Plant community did not differ between two types of grassland. Also, road mortality rate was low and accounted for <5 % of butterflies occurring at the boundary between grassland and a road.

<sup>&</sup>lt;sup>1</sup> Institute of Nature Conservation,, Polish Academy of Sciences, Kraków, Poland

<sup>&</sup>lt;sup>2</sup> School of Biological Sciences, The University of Queensland, Brisbane, Australia

<sup>&</sup>lt;sup>3</sup> Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland



Nevertheless, species composition of roadkilled butterflies was well explained by butterflies community living on road verges rather than total butterfly community structure in grassland patches. These results may be explained by that (1) grasslands located at roads are less isolated from other habitats than control grasslands, (2) road verges could be dispersal corridors for butterflies and (3) that roads create a gradient of local environmental conditions that favour specific species and increase a total species richness in grasslands located at roads. This study is the first one showing that butterfly assemblages are altered by roads. However, no evidence was found for a substantial negative effect of roads on butterfly and plant species richness nor abundance.



| 1      | Roads affect the spatial structure of butterfly communities in grassland patches                            |
|--------|-------------------------------------------------------------------------------------------------------------|
| 2 3    | Piotr Skórka <sup>1</sup> , Magdalena Lenda <sup>1,2</sup> , Dawid Moroń <sup>3</sup>                       |
| 4<br>5 | <sup>1</sup> - Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120         |
| 6      | Kraków, Poland                                                                                              |
| 7      | tel: +48 12 370 35 50                                                                                       |
| 8      | e-mail: skorasp@gmail.com; pskorka@iop.krakow.pl                                                            |
| 9      |                                                                                                             |
| 0      | <sup>2</sup> - School of Biological Sciences, The University of Queensland, Brisbane, Queensland,           |
| 1      | Australia                                                                                                   |
| 2      |                                                                                                             |
| 3      | <sup>3</sup> - Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska    |
| 4      | 17, 31-016 Kraków, Poland                                                                                   |
| 5      |                                                                                                             |
| 6      | Abstract                                                                                                    |
| 7      | Roads may have important negative effect on the animal dispersal rate, mortality and thus                   |
| 8      | functioning of local populations. Roads verges may be also surrogate habitat for some species,              |
| 9      | mostly invertebrates. This creates a conservation dilemma around the impact of roads on                     |
| 20     | invertebrates, also because the effect of roads on invertebrates is much less understood than in            |
| 21     | vertebrates. We studied the structure of butterfly and plant communities in ten grassland patches           |
| 22     | neighboring roads ( $\sim 50\text{-}100$ vehicles per hour) and ten control grassland patches located apart |
| 23     | from major roads in southern Poland. Five 200-m transects: at a road verge, 25 m apart from the             |
| 24     | verge inside the patch, inside the patch interior, 25 m from the boundary between grassland and             |
| 25     | field and at the grassland-arable field boundary were established in every grassland patch.                 |
| 26     | Control grasslands bordered with a field road (<1 vehicle per day).                                         |
| 27     | Within-patch analysis for grasslands bordering with roads indicated that butterfly species                  |
| 28     | richness was similar in different parts of the grassland patch. However, abundance of butterflies           |
| 29     | was higher at road verges and inside the grassland patch than at the boundary with arable fields.           |
| 30     | In control meadows there were no differences in butterfly species richness nor abundance in                 |
| 31     | different parts of grassland patch. Partial redundancy analysis revealed that roads differentiate           |
| 32     | butterfly community structure within grassland patches. Road verges, habitat interior and                   |





| 33 | boundary with arable field contributed the most to the species differentiation within grassland      |
|----|------------------------------------------------------------------------------------------------------|
| 34 | patches at roads. These effects were not found in control grassland patches where butterfly          |
| 35 | communities were more homogenously distributed in a patch. In total, the butterfly but not plant     |
| 36 | communities in grasslands at roads differed from control grasslands located apart. The               |
| 37 | diversified structure of butterfly community within patches near roads was also visible in total     |
| 38 | (pooled) number of species that was higher there than in control grassland patches. Plant            |
| 39 | community did not differ between two types of grassland. Also, road mortality rate was low and       |
| 40 | accounted for <5 % of butterflies occurring at the boundary between grassland and a road.            |
| 41 | Nevertheless, species composition of roadkilled butterflies was well explained by butterflies        |
| 42 | community living on road verges rather than total butterfly community structure in grassland         |
| 43 | patches. These results may be explained by that (1) grasslands located at roads are less isolated    |
| 44 | from other habitats than control grasslands, (2) road verges could be dispersal corridors for        |
| 45 | butterflies and (3) that roads create a gradient of local environmental conditions that favour       |
| 46 | specific species and increase a total species richness in grasslands located at roads. This study is |
| 47 | the first one showing that butterfly assemblages are altered by roads. However, no evidence was      |
| 48 | found for a negative effect of roads on butterfly and plant species richness nor abundance.          |
| 49 |                                                                                                      |
| 50 | Key words: Road mortality, assemblage, ordination, mitigation, verges, butterfly, plant              |
| 51 |                                                                                                      |
| 52 | Introduction                                                                                         |
| 53 |                                                                                                      |
| 54 | Roads can exert severe impacts upon the animal populations (Benítez-López, Alkemade &                |
| 55 | Verweij, 2010; Matos et. al., 2017), either through direct road mortality (collisions with cars), or |
| 56 | through habitat fragmentation and barrier effects increasing isolation of populations (Trombulak     |
| 57 | & Frissell, 2000; Forman et al., 2003; Tanner & Perry, 2007; Schuster, Römer & Germain,              |
| 58 | 2013). So far, most studies focused on the estimates of road mortality since millions of             |
| 59 | individuals from a wide range of taxonomic groups are being killed every year (Coelho, Kindel        |
| 60 | & Coelho, 2008; Grilo, Bissonette & Santos-Reis, 2009; Brzeziński, Eliava & Żmihorski, 2012).        |
| 61 | However, roads also change nearby environment via increasing influx of salt, pollutants and          |
| 62 | changes in microlimate or water regime (Forman, 2000; Forman et al., 2003; Jackson & Jobàggy,        |
| 63 | 2005; Green, Machin & Cresser 2006). These changes are especially well exhibited in changes in       |



64 plant communities near roads compared to more distant habitats (Lee. Davies & Power, 2012): 65 Neher, Asmussen & Lovell, 2013). Many herbivores are dependent on specific plants (Stam et al. 66 2013). Among insects butterflies are directly dependent on several plant species during different parts of their life. Butterfly larvae usually have specific host-plants species/groups while adults 67 68 often use specific plant species as the nectar sources (Munguira, Garcia–Barros & Cano, 2009). 69 In a result, there is often observed strong correlation between butterfly and plant species richness 70 (Skórka et al., 2007; Kitahara, Yumoto & Kobayashi, 2009; Chmura, Adamski & Denisiuk 71 2013). It may thus be expected that all alterations to plant communities by creation or existence 72 of roads should be indirectly visible also in butterfly community structure as well as total species 73 richness and abundance. However, road may also change insect community in a different 74 manner. Road verges, which are linear grassy structures accompanying roads, are regarded as a 75 good surrogate habitat for plants and may act as their dispersal corridors (Tikka et al., 2001; 76 Kalwij, Milton & McGeoch, 2008). This suggests that grassland patches neighboring roads 77 should have higher species richness and abundance of butterflies. This possibly positive effect 78 may be, of course, diminished by road mortality which can be high in butterflies (Skórka et al., 79 2015; Baxter-Gilbert et al., 2015). Therefore, complexity of direct and indirect possible effects 80 road can exert on butterflies make these insects especially interesting subject to study in order to 81 understand impact of roads on insects at the community level. This is important for effective 82 mitigation measures to minimize impacts of existing and future roads on insect populations – a 83 subject which is rarely studied despite insects are among the most abundant roadkills (Baxter-84 Gilbert et al., 2015; Munoz, Torres & Gonzalez-Megias, 2015). 85 In this paper we analyze the effect of road proximity on plant and butterfly communities 86 and we try to disentangle the questions: (1) whether roads change butterfly communities, (2) how 87 plant community and road alone contribute individually to alteration of butterflies communities 88 at roads, (3) whether butterfly community is correlated with road mortality. 89 90 Study area and methods 91 92 The choice of research areas. 93 The study was conducted in the vicinity of Krakow, Proszowice and Tarnow (southern Poland). 94 We selected 10 meadows adjacent to roads with large traffic (national and provincial roads  $\sim 50$  -



95 100 vehicles per hour, one lane in each direction), and 10 reference (control) meadows apart (at 96 least 200 m) from major roads with access via field field road (<1 vehicle per day). 97 Each meadow was similar in size (7.8-13.5 hectares) and similar type (wet grassland *Molinietialia* ) and surrounding landscape. In every grassland patch at a road we established 5 98 99 transects 200 long where butterflies and plants were surveyed. Transects were chosen so that ran 100 along a straight line, without shrubs and trees. The first transect was located at the verge (the 101 border between the meadow and the road. The second and third transect was located 25 from the 102 edge of the road and inside the patch interior. The fourth transect ran 25 meters from the border 103 between meadows and arable field. The fifth transect ran on the border between grassland and 104 eropland. Purpose of this design was to create additional control that enabled separation of the 105 sole effect of a road from the impact of a border itself. Changes in habitat conditions (soil, 106 vegetation) apply to most areas to a distance of about 50 meters from the edge of the road 107 (Forman & Alexander, 1998). 108 In case of control grassland patches the design of transects was identical as grassland at 109 major roads. In all control meadows there were field roads that allowed farmers to reach the area. 110 However, they were grassy and the number of vehicles was less than one per day. 111 112 Butterfly and plant surveys 113 Butterflies were counted on transects during twelve surveys from mid April to mid-114 September in about 10-14 day intervals in 2013. Each transect was 5 m wide, the observer was 115 moving in the center line of the transect. Transect method, is the standard and most commonly 116 used method to study the population of butterflies (Pollard & Yates, 1993). Observations were carried out during good weather (minimum temperature 17 °C, wind up to 3° in Beaufort, cloudy 117 118 to 25%). 119 During each visit we also collected roadkilled butterflies at the 200 m part of the road 120 neighbouring with studied meadows (both at major roads and field roads, but we did not find any 121 dead butterfly at the latter). The transect was adjacent to the transect located at road verge where 122 living butterflies were counted. Plants were surveyed in one 4×10m rectangle plot located in the middle of each transect. 123 124 Survey was performed at the beginning of July. During the survey, we noted the coverage of each plant species. 125

| 126            |                                                                                                       |
|----------------|-------------------------------------------------------------------------------------------------------|
| 127            | Statistical analysis                                                                                  |
| 128            | Within-habitat comparison of butterfly and plant communities                                          |
| 129            | Lused generalized linear mixed model (GLMM) with the negative binomial error structure and            |
| 130            | log-link function to test differences in butterfly and plant species richness, butterfly abundance    |
| 131            | and eover of plants between transect locations in different parts of the grassland patches. Patch     |
| 132            | identity was assigned as a random effect. Analyses were conducted separately for grassland            |
| 133            | patches located at roads and control ones. To find out which levels of the categorical factor were    |
| 134            | statistically different we used paired contrast analysis.                                             |
| 135            | We used partial canonical correspondence analysis (partial CCA) to test if plant species              |
| 136            | composition and cover differs between transect locations in different parts of the grassland          |
| 137            | patches. We assigned patch identity as a supplementary variables that effect was to remove. Plant     |
| 138            | covers were square-root transformed before analysis. We used 1000 Monte Carlo permutation to          |
| 139            | test statistical significance of ordination axes and to find out which transect location (categorical |
| <del>140</del> | variable) contributed significantly to the differentiation of plant communities. The partial CCA      |
| 141            | was calculated separately for grassland patches located at roads and apart.                           |
| 142            | In case of butterfly we used partial redundancy analysis (partial RDA) to test if butterfly           |
| 143            | species composition and abundances differed between transect locations in different parts of the      |
| 144            | grassland patches. We used this method instead of partial CCA because the longest ordination          |
| 145            | axis in detrended canonical correspondence analysis (DCCA) was short (1.4) so linear method           |
| 146            | was preferred (Jongman, ter Braak & van Tongeren, 1987). In other details the analysis was the        |
| 147            | same as in plants.                                                                                    |
| 148            |                                                                                                       |
| 149            | Between habitat comparisons of butterfly and plant communities                                        |
| 150            |                                                                                                       |
| 151            | We used generalized linear model (GLM) with negative binomial error structure and log-link            |
| 152            | function to test differences in butterfly and plant species richness, butterfly abundance and plant   |
| 153            | cover between two grassland types: located at roads and these located apart from road. In plants      |
| <del>154</del> | we calculated mean cover for every plant species across five transect locations within a grassland    |
| <del>155</del> | patch. In case of butterflies we calculated sum of the individuals from five transect located         |
| 156            | within a grassland patch to get proxy of total population sizes (Rosin et al., 2012; Skórka et al.,   |



2013a). In addition, we also used individual-based rarefaction technique (Heck, van Belle & Simberloff, 1975) to test the differences in butterfly species number between grassland types taking sampling effort into the account. This analysis calculate expected number of species based on number of individuals sampled. We did not perform analysis for plants since we do not count individuals as it is difficult to assess what is an individual in plants.

We used partial RDA to test if butterfly species composition and abundances differs between transect locations in different parts of the grassland patches. Grassland type (grassland at road and located apart) was an explanatory variable. We also included covariates that effect was removed: transect location within a patch and plant richness and cover. In addition to partial RDA We performed variance partitioning to test what is relative contribution of (1) grassland type (presence of neighbouring road or its absence), (2) plant data and (3) their joint effect to differentiation of the butterfly community structure. Plant data were represented by the first principal component (PCA1) from number species and total cover of plants.

Moreover, we performed partial RDA using butterfly data summed across transects for every grassland patch. However, results were the same. These summed data were used in co-correspondence analysis (Co-CA) (Braak ter & Schaffers, 2004) to reveal if butterfly species composition and abundance can be explained by plant community structure. In this analysis we used butterfly data summed and plant data averaged across the entire grassland patch, respectively, because currently this methods does not allow for effective removal of covariate data (Braak ter & Schaffers, 2004).

In case of plants we used partial canonical correspondence analysis (partial CCA) to test if plant species composition and mean cover differs between grassland located at roads and apart. We assigned transect location as a supplementary variables that effect was to remove. Plant covers were square-root transformed before analysis. We used 1000 Monte Carlo permutation to test statistical significance of ordination axes and to find out if two grassland types contribute significantly to differentiation of plant communities.

Testing the relation between communities of living and roadkilled butterflies

We used Co-Ca to test the relation between the butterfly community living in the grassland patch at roads and species composition of roadkilled butterflies. Two Co-Ca analyses were performed.



188 First we related total abundances of particular species recorded in all locations within grassland 189 patch to see if road mortality is associated with the butterfly community across entire grassland 190 patch. Secondly, we related abundances of species recorded on road verges to species composition and abundances of roadkilled butterflies. Given these two analyses we could infer if 191 192 impact of road mortality is grassland-wide or spatially limited to the grassland part close to road. In addition to Co-Ca we used correlation analysis to seek for link between total species richness 193 194 and abundance of living butterflies and species richness and abundance of roadkilled ones. 195 Again, two sets of correlation analysis were performed: (1) for living butterflies summed across 196 entire grassland patch and (2) for butterflies living on road verges only. 197 All GLMMs, GLM and correlation analyses were performed in SPSS 21 software. All 198 partial CCA, partial RDA and Co-Ca analyses were performed in Canoco 5.0 software. 199 200 201 Results 202 203 204 Within-habitat variation in butterfly communities 205 206 In grassland patches located at roads there were no differences in butterfly species richness (GLMM, F4,45 = 1.394, P = 0.251, Figure 1). However, mean abundance of butterflies varied 207 depending on location of within the patch (GLMM, F4,45 = 3.440, P = 0.015, Figure 1). Contrast 208 209 analysis revealed that abundance was statistically higher inside habitat patch and 25 m from road 210 verges than at the boundary with field boundary (Figure 1). 211 Partial redundancy ordination showed that location of transect explained 18.4-% variation in butterfly species composition in patches at roads (Figure 2). Ordination axes were statistically 212 213 significant (F = 2.0, P = 0.0005). First ordination axis separated butterfly communities near 214 patch boundaries from communities inside the habitat patch (Figure 2). Second ordination axis 215 separated mostly butterfly communities near field boundaries from the communities at road verges (Figure 2). Accordingly, tests indicated that transects located inside habitat patch (F = 3.0, 216 P = 0.0005), at road verges (F = 2.3, P = 0.01) and at field boundary (F = 2.0, P = 0.0167) 217



| 218 | contributed significantly to differentiation of butterfly communities within grassland patches at         |
|-----|-----------------------------------------------------------------------------------------------------------|
| 219 | roads (Figure 2).                                                                                         |
| 220 |                                                                                                           |
| 221 | In grassland patches located apart from roads there were no differences in butterfly                      |
| 222 | species richness (GLMM, F4,45 = 0.142, P = 0.966, Figure 2) nor in mean abundance (GLMM                   |
| 223 | F4,45 = 1.476, $P = 0.225$ , Figure 2) in different parts of the patch.                                   |
| 224 | First two axes of partial redundancy ordination showed that location of transect within the               |
| 225 | patches explained 11.7 % variation in butterfly species composition in control grasslands.                |
| 226 | (Figure 2). Ordination axes were statistically significant (test of all axes, $F = 1.5$ , $P = 0.0345$ ). |
| 227 | First ordination axis separated butterfly communities transects located 25 m from field boundary.         |
| 228 | and it was statistically significant ( $F = 2.6$ , $P = 0.04$ ).                                          |
| 229 |                                                                                                           |
| 230 | Within-habitat variation in plant communities                                                             |
| 231 |                                                                                                           |
| 232 | In grassland patches located at roads there were no differences in plant species richness (GLMM,          |
| 233 | F4,45 = 2.359, P = 0.068, Figure S1 in Supplementary information). However, mean plant                    |
| 234 | species cover varied depending on location of within the patch (GLMM, F4,45 = 3.190, P =                  |
| 235 | 0.022, Figure S1 in Supplementary information). Contrast analysis revealed that cover was                 |
| 236 | statistically higher at road verges than in any other parts of the grassland patch but not inside the     |
| 237 | patch interior (Figure S1 in Supplementary information).                                                  |
| 238 | First two axes of partial canonical correspondence ordination explained 10.1-% variation                  |
| 239 | in plant species composition (pseudo $F = 1.4$ , $P = 0.0005$ ) and location of transect within the       |
| 240 | patch explained 13.7% of this variation (Figure S2 in Supplementary information). First                   |
| 241 | ordination axis separated plant communities located in proximity of a road from plant                     |
| 242 | communities inside the habitat patch (Figure S2 in Supplementary information). Second                     |
| 243 | ordination axis separated plant community at field boundary and 25 m from road verge from                 |
| 244 | plants recorded in other transects within grassland patches (Figure S2 in Supplementary)                  |
| 245 | information). Test of variables indicated that only transects located at road verges (F = 2.6, P =        |
| 246 | 0.0025) and 25 m from road verges (F = 1.5, P = $0.0187$ ) contributed significantly to                   |
| 247 | differentiation of plant communities within grassland patches at roads.                                   |
| 248 |                                                                                                           |



| 249 | In grassland patches located apart from roads there were no differences in plant species                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 250 | richness (GLMM, F4,45 = 0.274, P = 0.893, Figure S1 in Supplementary information) and mean                               |
| 251 | plant species cover between transect locations (GLMM F4,45 = 0.483, P = 0.748, Figure S1 in                              |
| 252 | Supplementary information).                                                                                              |
| 253 | First two axes of partial canonical correspondence ordination explained 5.9 % variation in                               |
| 254 | plant species composition in control grasslands. Location of transect within the patch explained                         |
| 255 | 9.7% of this variation (Figure S2 in Supplementary information). However, none ordination axis                           |
| 256 | was statistically significant (test of all axes, $F = 1.0$ , $P = 0.6217$ ) and transect location within the             |
| 257 | grassland patch was non-significant.                                                                                     |
| 258 |                                                                                                                          |
| 259 | Between-habitat comparison of butterfly communities                                                                      |
| 260 |                                                                                                                          |
| 261 | In total, there was statistically more butterfly species in grassland patches at roads than in                           |
| 262 | grassland patches located far from roads (GLM F1, 18 = 5.545, P = 0.034, Figure 3a) after                                |
| 263 | controlling for plant richness and cover (PCA1plant; F $1$ , $17 = 1.327$ , $P = 0.265$ ). There was no                  |
| 264 | differences in mean butterfly abundance (GLM F1,17 = 0.133, P = 0.720, Figure 3b) between                                |
| 265 | two grassland types but abundance was possibly positively correlated with plant species and                              |
| 266 | cover (PCA1plant; GLM F1,17 = $4.397$ , P = $0.051$ ). Also, rarefaction analysis revealed that                          |
| 267 | estimated number of species was higher in grassland patches located at roads than in control                             |
| 268 | grasslands (Figure 5).                                                                                                   |
| 269 | Co-correspondence analysis indicated that plant community (total interia = 7.162) does                                   |
| 270 | not explain butterfly species composition (total interia = 0.91): two CoCA axes explained 28 %                           |
| 271 | variation in butterfly community composition, however test of first ordination axis was                                  |
| 272 | statistically non-significant (lambda = $0.0093$ , P = $0.128$ ) nor test on both ordination axes (trace                 |
| 273 | = $0.067$ , P = $0.238$ ). Species richness of butterflies correlated with plant species richness (r =                   |
| 274 | 0.234, $P = 0.0189$ , $n = data$ from all 100 transects) but not plant cover ( $r = 0.171$ , $P = 0.0898$ , $n = 0.0189$ |
| 275 | 100). The same was true for butterfly abundance which correlated with plants species richness (r                         |
| 276 | = 0.347, $P = 0.0004$ , $n = 100$ ) but not with their cover ( $r = 0.075$ , $P = 0.456$ , $n = 100$ ).                  |
| 277 | Partial redundancy analysis showed that butterflies significantly differed between                                       |
| 278 | grasslands located at roads and $\frac{\text{apart}}{\text{c}}$ (F = 6.1, P = 0.0005, Figure 4). The two grassland types |
| 279 | accounted for 15.4 % in species composition (Figure 4). Moreover, hierarchical partitioning                              |



280 showed that 61 % (F = 5.8, P = 0.0005) of this variation was explained by grassland type (location), 37 % (F = 1.6, P = 0.001) by plant data (first principal component calculated from 281 282 species richness and abundance), and 2 % by joint effect (F = 2.2, P = 0.0005). 283 284 Between-habitat comparison of plant communities 285 286 There were no differences in total plant species richness (GLM F1, 18 = 2.985, P = 0.101, Figure 287 3c) nor in mean abundance (GLM F1.18 = 2.340, P = 0.144, Figure 3d) in grassland patches 288 located at roads and apart. 289 Despite there was visible slight species separation in ordination plot (Figure 4) the partial 290 canonical correspondence analysis revealed that plant communities did not differ (F = 0.8, P = 291 0.801) between grasslands located at roads and apart. 292 293 294 Butterfly community and road mortality 295 296 Altogether we recorded 6922 butterflies in grasslands at roads and 154 (2.2%) butterflies had 297 been found dead at road. Co-correspondence analysis showed that total community composition of alive butterflies (total interia = 0.1598) account for 47.4 % species composition of butterflies 298 found road-killed (total interia = 1.0197). However, first ordination axis was statistically non-299 significant (lambda = 0.0147, P = 0.0839) nor was both ordination two axes (trace = 0.0478, P = 300 301 0.305). We did not find any significant correlation between number of roadkilled butterflies and 302 number of butterflies living in a grassland patches neighbouring with roads (r = 0.185, P = 0.608, 303 n = 10; Figure S3 in Supplementary information). 304 However, in another co-correspondence analysis we found that 48.3 % of variation 305 species composition of roadkilled butterflies (total interia = 2.737) was explained by species composition of butterflies living on road verges (n = 1444 individuals, total interia = 0.676, 306 307 Figure S4 in Supplementary information). First ordination axis was statistically significant (lambda = 0.0636, P = 0.0260) in this analysis. Also, there was statistically significant 308 correlation (r = 0.685, P = 0.029, n = 10) between number of roadkilled butterflies and number of 309 butterflies living on verges of grassland patches neighbouring with roads (Figure 6). 310

| 311 |                                                                                                      |
|-----|------------------------------------------------------------------------------------------------------|
| 312 |                                                                                                      |
| 313 | Discussion                                                                                           |
| 314 |                                                                                                      |
| 315 | Roads had subtle effect on butterfly communities. Contrary to general perception grassland           |
| 316 | patches neighbouring roads had higher butterfly richness compared to meadows located farer           |
| 317 | from roads. This pattern was consistent after accounting for sampling effort (number of sampled      |
| 318 | individuals) as indicated by rarefaction analysis. This important findings may be indication that    |
| 319 | roads may (1) have no direct negative impact on butterfly populations and (2) road verges that       |
| 320 | connect different grassland patches located next to roads may be dispersal corridors.                |
| 321 | Many studies found roads had negative impact on animals (review in: Munoz, Torres &                  |
| 322 | Gonzalez-Megias, 2015). The influx of pollution may change soil properties and thus conditions       |
| 323 | for plants that are food resources for adult butterflies and their larva (Munguira, Garcia-Barros    |
| 324 | & Cano, 2009; Munguira & Thomas, 1992) and road traffic may affect population size (Baxter-          |
| 325 | Gilbert et al., 2015; Munoz, Torres & Gonzalez-Megias, 2015). Studied grasslands were located        |
| 326 | at roads that had relatively high traffic. Despite this high traffic level the butterfly communities |
| 327 | were not altered negatively. In earlier works it was stated that road verges are often good habitat  |
| 328 | for butterflies (Ries, Debinski & Wieland, 2001; Wynhoff et al., 2011; Skórka et al., 2013a).        |
| 329 | Specific conditions at verges may cause that some butterfly of conservation concern may survive      |
| 330 | in road verges in intensive agricultural landscapes (Wynhoff et al., 2011). In our study verges      |
| 331 | were integral part of a meadow patch. However, butterfly species composition and abundances          |
| 332 | were different there compared to that inside habitat patch and at boundary with arable field.        |
| 333 | Thus, presence of roads probably creates environmental gradient within a grassland patch that        |
| 334 | may be preferred by different species that in summary enhances species richness in entire            |
| 335 | grassland patch at roads. This possible gradient may be related to higher plant cover at verges or   |
| 336 | other factors (soil chemistry, microclimate etc.) that were not investigated in this study. The      |
| 337 | presence of gradient of conditions may increase available niches and boost species diversity         |
| 338 | (Amarasekare, 2003; Nord & Forslund, 2015).                                                          |
| 339 | Another explanation of the increased number of species in grasslands at roads is that they           |
| 340 | could be less isolated than control grasslands. Control grasslands were surrounded by arable         |
| 341 | fields and it was demonstrated that arable land is usually an inhospitable matrix increasing         |
|     |                                                                                                      |



| isolation (Luoto et al., 2003; Lenda & Skórka, 2010; Ockinger et al. 2012). As opposed to                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| control grasslands, patches located next to roads were connected with other grasslands via road                                                                                                                                                                                             |
| verges. These marginal-habitats may thus improve species turnover among grasslands located at                                                                                                                                                                                               |
| roads or even be a species pool both for butterflies enhancing patch colonization after some                                                                                                                                                                                                |
| disturbances connected with grassland management (Tikka et al., 2001; Moroń et al., 2017).                                                                                                                                                                                                  |
| We believe that the positive effect of roads on butterfly diversity would be probably even                                                                                                                                                                                                  |
| stronger if road mortality was reduced. However, road mortality was probably negligible in our                                                                                                                                                                                              |
| study. It accounted for less than 5-% of all butterflies recorded in meadow patches at roads. Even                                                                                                                                                                                          |
| if we assume imperfect detection of road killed butterflies (Skórka, 2016) it is still low level.                                                                                                                                                                                           |
| Among roadkilled butterflies dominated species being the most common on a verges and we                                                                                                                                                                                                     |
| showed that actually only individuals occurring in grassland part confined to close proximity of a                                                                                                                                                                                          |
| road are really prone to collisions with cars. It would be desirable to test the effect of roads with                                                                                                                                                                                       |
| higher traffic level (e.g. highways) than in this study. This topic should be addressed in further                                                                                                                                                                                          |
| study. However, roads with average and low traffic are the most densely distributed in Polish                                                                                                                                                                                               |
| landscapes and possibly have the most spatially widespread environmental impact (Kotlarek,                                                                                                                                                                                                  |
| 2007; Skórka et al., 2015).                                                                                                                                                                                                                                                                 |
| Interestingly, both studied boundaries – with road and arable field – had different species                                                                                                                                                                                                 |
| composition and were dominated by different butterfly species as indicated by redundancy                                                                                                                                                                                                    |
| analysis. This suggest that type of habitat patch boundary has important effect on species                                                                                                                                                                                                  |
| composition in the patch (Skórka et al., 2013b). It is noteworthy that in our study, the edge effect                                                                                                                                                                                        |
| was visible in term of species composition rather that total species abundance and richness.                                                                                                                                                                                                |
| Earlier theoretical and empirical works indicated that different species respond in various way                                                                                                                                                                                             |
| (in terms of spatial pattern of abundance) to habitat boundaries. This may be a result of different                                                                                                                                                                                         |
| boundary and matrix types (road and arable field), and also different permeability of these land                                                                                                                                                                                            |
| covers (Skórka et al., 2013b). In reference eontrol-meadows, the species composition at                                                                                                                                                                                                     |
| (                                                                                                                                                                                                                                                                                           |
| boundary with field road was similar to the species composition at the boundary with arable                                                                                                                                                                                                 |
| •                                                                                                                                                                                                                                                                                           |
| boundary with field road was similar to the species composition at the boundary with arable                                                                                                                                                                                                 |
| boundary with field road was similar to the species composition at the boundary with arable field. Field roads are very different from asphalt roads. They are narrow, mostly covered by grass                                                                                              |
| boundary with field road was similar to the species composition at the boundary with arable field. Field roads are very different from asphalt roads. They are narrow, mostly covered by grass and often managed in the same way as neighbouring grassland. Thus, it is possible that field |
|                                                                                                                                                                                                                                                                                             |





| 373                                                                       | Polyommatus coridon and very mobile common species such as Isoria lathonia and Papilio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 374                                                                       | machaon. Intrestingly, road verges had high abundances of species of conservation concern as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 375                                                                       | Phengaris nausithous. This species is especially known for surviving at road verges in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 376                                                                       | intensively managed agricultural landscapes (Wynhoff et al., 2011). This may be also results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 377                                                                       | from the fact that road verges enhance dispersal of ants (DeMers, 1993) and be good habitat for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del>378</del>                                                            | them (Itzhak, 2008; Wynhoff et al., 2011). Ants are hosts for larvae for these small blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 379                                                                       | butterflies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 380                                                                       | Interestingly plant species richness and composition were not affected by roads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 381                                                                       | However, plant cover was very similar to the pattern found in abunance of butterflies. Butterflies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 382                                                                       | are herbivores and many of them depend on specific plants during different life stages (Kitahara,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 383                                                                       | Yumoto & Kobayashi, 2008). Our co-correspondence analysis also confirmed strong dependency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 384                                                                       | of butterfly species composition on plants. However, the effect of roads on butterfly community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 385                                                                       | remained after controlling the effects of plants and this indicates that roads modify insect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 386                                                                       | herbivore community composition also in different manner. As it was mentioned above this may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 387                                                                       | be a direct effect of road mortality, alteration in species behaviour near roads and changes in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 388                                                                       | microclimate conditions at roads (Jackson & Jobàggy 2005; Green, Machin & Cresser; Skórka et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 389                                                                       | al. 2013b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 389<br>390                                                                | al. 2013b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                           | al. 2013b). Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 390                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 390<br>391                                                                | Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 390<br>391<br>392                                                         | Conclusions  Results suggest that proximity of a road has specific spatial effect on butterfly communities but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul><li>390</li><li>391</li><li>392</li><li>393</li></ul>                 | Conclusions  Results suggest that proximity of a road has specific spatial effect on butterfly communities but little on plants. Butterfly communities were more spatially diversified within a patch and species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul><li>390</li><li>391</li><li>392</li><li>393</li><li>394</li></ul>     | Conclusions  Results suggest that proximity of a road has specific spatial effect on butterfly communities but little on plants. Butterfly communities were more spatially diversified within a patch and species rich in grasslands located next to roads. Moreover, butterfly diversity was higher in grasslands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 390<br>391<br>392<br>393<br>394<br>395                                    | Conclusions  Results suggest that proximity of a road has specific spatial effect on butterfly communities but little on plants. Butterfly communities were more spatially diversified within a patch and species rich in grasslands located next to roads. Moreover, butterfly diversity was higher in grasslands neighboring with roads than in grassland far from roads. This suggests that grasslands located at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 390<br>391<br>392<br>393<br>394<br>395<br>396                             | Conclusions  Results suggest that proximity of a road has specific spatial effect on butterfly communities but little on plants. Butterfly communities were more spatially diversified within a patch and species rich in grasslands located next to roads. Moreover, butterfly diversity was higher in grasslands neighboring with roads than in grassland far from roads. This suggests that grasslands located at roads with moderate traffic may be at least as good habitat for butterflies as these meadows                                                                                                                                                                                                                                                                                                                                                                                              |
| 390<br>391<br>392<br>393<br>394<br>395<br>396<br>397                      | Conclusions  Results suggest that proximity of a road has specific spatial effect on butterfly communities but little on plants. Butterfly communities were more spatially diversified within a patch and species rich in grasslands located next to roads. Moreover, butterfly diversity was higher in grasslands neighboring with roads than in grassland far from roads. This suggests that grasslands located at roads with moderate traffic may be at least as good habitat for butterflies as these meadows located apart. The road mortality was not very high and possibly affected predominantly                                                                                                                                                                                                                                                                                                      |
| 390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398               | Conclusions  Results suggest that proximity of a road has specific spatial effect on butterfly communities but little on plants (Butterfly communities were more spatially diversified within a patch and species rich in grasslands located next to roads. Moreover, butterfly diversity was higher in grasslands neighboring with roads than in grassland far from roads. This suggests that grasslands located at roads with moderate traffic may be at least as good habitat for butterflies as these meadows located apart. The road mortality was not very high and possibly affected predominantly individuals living on grassland edges at roads indicating that not entire patch is equally affected                                                                                                                                                                                                  |
| 390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399        | Conclusions  Results suggest that proximity of a road has specific spatial effect on butterfly communities but little on plants. Butterfly communities were more spatially diversified within a patch and species rich in grasslands located next to roads. Moreover, butterfly diversity was higher in grasslands neighboring with roads than in grassland far from roads. This suggests that grasslands located at roads with moderate traffic may be at least as good habitat for butterflies as these meadows located apart. The road mortality was not very high and possibly affected predominantly individuals living on grassland edges at roads indicating that not entire patch is equally affected by a road. It is thus crucial to appropriately manage these parts of grassland patches located next                                                                                              |
| 390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400 | Conclusions Results suggest that proximity of a road has specific spatial effect on butterfly communities but little on plants. Butterfly communities were more spatially diversified within a patch and species rich in grasslands located next to roads. Moreover, butterfly diversity was higher in grasslands neighboring with roads than in grassland far from roads. This suggests that grasslands located at roads with moderate traffic may be at least as good habitat for butterflies as these meadows located apart. The road mortality was not very high and possibly affected predominantly individuals living on grassland edges at roads indicating that not entire patch is equally affected by a road. It is thus crucial to appropriately manage these parts of grassland patches located next to roads. It would enhance road verge as dispersal corridor and habitat and would reduce road |

| 404 |                                                                                                 |
|-----|-------------------------------------------------------------------------------------------------|
| 405 | Data Availability                                                                               |
| 406 | The following information was supplied regarding data availability: The raw data is provided as |
| 407 | a Supplemental File 2.                                                                          |
| 408 |                                                                                                 |
| 409 | References:                                                                                     |
| 410 | Amarasekare P. 2003. Competitive coexistence in spatially structured environments: A synthesis. |
| 411 | Ecology Letters 6, 1109–1122                                                                    |
| 412 | Baxter-Gilbert JH, Riley JL, Neufeld CJH, Litzgus JD, Lesbarrères D. 2015. Road mortality       |
| 413 | potentially responsible for billions of pollinating insect deaths annually. Journal of Insect   |
| 414 | Conservation 19:1029-1035                                                                       |
| 415 | Benítez-López A, Alkemade R, Verweij P. 2010. The impacts of roads and other infrastructure     |
| 416 | on mammal and bird populations: A meta-analysis. Biological Conservation 143:1307-1316          |
| 417 | Brzeziński M, Eliava G, Żmihorski M. 2012. Road mortality of pond-breeding amphibians           |
| 418 | during spring migrations in the Mazurian Lakeland, NE Poland. European Journal of Wildlife      |
| 419 | Research 58:685-693                                                                             |
| 420 | Braak ter CJF, Schaffers AP. 2004. Co-Correspondence analysis: A new ordination method to       |
| 421 | relate two community compositions. Ecology 85:834-846                                           |
| 422 | Chmura D, Adamski P, Denisiuk Z. 2013. How do plant communities and flower visitors relate?     |
| 423 | A case study of semi-natural xerothermic grasslands. Acta Societatis Botanicorum Poloniae       |
| 424 | 82:99-105                                                                                       |
| 425 | Coelho IP, Kindel A, Coelho AVP. 2008. Roadkills of vertebrate species on two highways          |
| 426 | through the Atlantic Forest Biosphere Reserve, southern Brazil. European Journal of Wildlife    |
| 427 | Research 54:689-699                                                                             |
| 428 | DeMers MN. 1993. Roadside ditches as corridors for range expansion of the western harvester     |
| 429 | ant (Pogonomyrmex ccidentalis Cresson). Landscape Ecology 8:93-102                              |
| 430 | Green SM, Machin R, Cresser MS. 2006. Effect of long-term changes in soil chemistry induced     |
| 431 | by road salt applications on N-transformations in roadside solids. Environmental Pollution      |
| 432 | 152:20-31                                                                                       |
| 433 | Grilo C, Bissonette JA, Santos-Reis M. 2009. Spatial-temporal patterns in Mediterranean         |
| 434 | carnivore road casualties: Consequences for mitigation. Biological Conservation 142:301-313     |



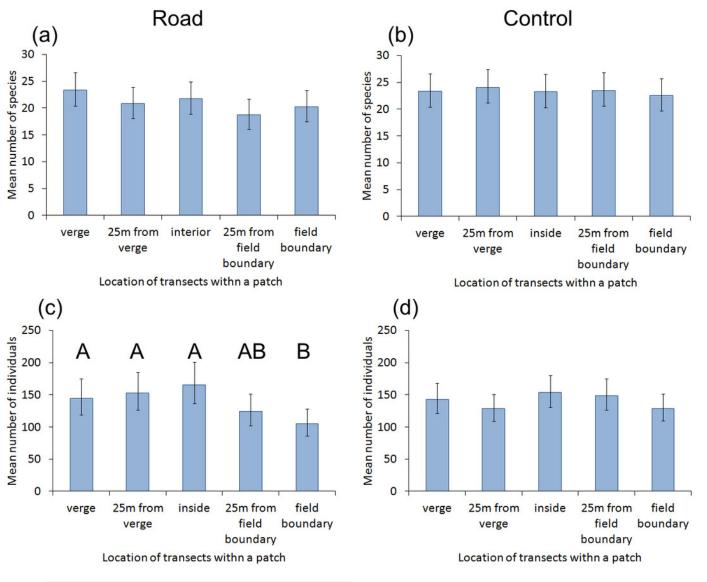
- Forman RTT. 2000. Estimate of the area affected ecologically by the road system in the United
- 436 States. Conservation Biology 14:31-35
- 437 Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD, Dale VH, Fahrig L,
- France R, Goldman CR, Heanue K, Jones JA, Swanson FJ, Turrentine T, Winter TC. 2003.
- Road Ecology: Science and Solutions. Washington, Covelo, London: Island Press.
- Heck KL, Jr., van Belle G, Simberloff D. 1975. Explicit calculation of the rarefaction diversity
- measurement and the determination of sufficient sample size. Ecology 56:1459-1461
- 442 Itzhak MJJ. 2008. Seed harvester and scavenger ants along roadsides in Northern Israel. Zoology
- 443 in the Middle East 44:75-82
- Jackson RB, Jobàggy EG. 2005. From icy roads to salty streams. Proceedings of the National
- 445 Academy of Sciences 102:14487-14488
- Jongman RHG, ter Braak CJF, van Tongeren OFR. 1987. Data Analysis in Community and
- Landscape Ecology. Pudoc, Wageningen, The Netherlands.
- 448 Kalwij J, Milton SJ, McGeoch MA. 2008. Road verges as invasion corridors? A spatial
- hierarchical test in an arid ecosystem. Landscape Ecology 23:439-451
- 450 Kitahara M, Yumoto M, Kobayashi T. 2008. Relationship of butterfly diversity with nectar plant
- species richness in and around the Aokigahara primary woodland of Mount Fuji, central Japan.
- 452 Biodiversity and Conservation 17:2713-2734
- 453 Kotlarek Z. 2007. National Plan for the Road-Network Development 2007–2013.
- 454 http://www.gddkia.gov.pl
- 455 Lee MA, Davies L, Power SA. 2012. Effects of roads on adjacent plant community composition
- and ecosystem function: an example from three calcareous ecosystems. Environmental
- 457 Pollution 163:273-280
- Luoto M, Rekolainen S, Aakkula J, Pykälä J. 2003. Loss of plant species richness and habitat
- connectivity in grasslands associated with agricultural change in Finland. AMBIO 32:447-452
- 460 Matos C, Petrovan S, Ward AI, Wheeler P. 2017. Facilitating permeability of landscapes
- impacted by roads for protected amphibians: patterns of movement for the great crested newt.
- 462 PeerJ 5:e2922
- 463 Moroń D, Skórka P, Lenda M, Celary W, Tryjanowski P. 2017. Railway lines affect spatial
- 464 turnover of pollinator communities in an agricultural landscape. Diversity and Distributions
- 465 23:190-197



- 466 Munguira ML, Garcia–Barros E, Cano JM. 2009. Butterfly herbivory and larval ecology. In:
- Ecology of butterflies in Europe: 43–45 (Settele J, Shreeve T, Konvicka M, Van Dyck H, Eds.).
- 468 Cambridge University Press, Cambridge.
- Munguira ML, Thomas JA. 1992. Use of road verges by butterfly and burnet populations, and
- 470 the effect of roads on adult dispersal and mortality. Journal of Applied Ecology 29:316-329
- 471 Munoz PT, Torres FP, Gonzalez-Megias A. 2015. Effect of roads on insects: a review.
- 472 Biodiversity and Conservation 24:659-682
- Neher DA, Asmussen D, Lovell ST. 2013. Roads in northern hardwood forests affect adjacent
- plant communities and soil chemistry in proportion to the maintained roadside area. Science of
- the Total Environment 449:320-327
- Nord M, Forslund P. 2015. Environmental Gradients Explain Species Richness and Community
- 477 Composition of Coastal Breeding Birds in the Baltic Sea. PLoS ONE 10(2), e0118455
- Öckinger E, Bergman KO, Franzen M, Kadlec T, Krauss J, Kuussaari M, Pöyry J, Smith HG,
- Steffan-Dewenter I, Bommarco R. 2012. The landscape matrix modifies the effect of habitat
- fragmentation in grassland butterflies. Landscape Ecology 27:121-131
- 481 Ries L, Debinski DM, Wieland ML. 2001. Conservation value of roadside prairie restoration to
- butterfly communities. Conservation Biology 15:401-411
- 483 Rosin Z, Myczko L, Skorka P, Lenda M, Moroń D, Sparks TH, Tryjanowski P. 2012. Butterfly
- responses to environmental factors in fragmented calcareous grasslands. Journal of Insect
- 485 Conservation 16:321-329
- 486 Schuster R, Römer H, Germain RR. 2013. Using multi-scale distribution and movement effects
- along a montane highway to identify optimal crossing locations for a large-bodied mammal
- 488 community. PeerJ 1:e189 https://doi.org/10.7717/peerj.189
- 489 Skórka P, Lenda M, Moroń D, Kalarus K, Tryjanowski P. 2013 a. Factors affecting road
- 490 mortality and the suitability of road verges for butterflies. Biological Conservation 159:148-157
- 491 Skorka P, Nowicki P, Lenda M, Witek M, Sliwinska EB, Settele J, Woyciechowski M. 2013 b.
- 492 Different flight behaviour of the endangered Scarce Large Blue butterfly Phengaris teleius
- 493 (Lepidoptera: Lycaenidae) within and outside its habitat patches. Landscape Ecology 28:533-
- 494 546





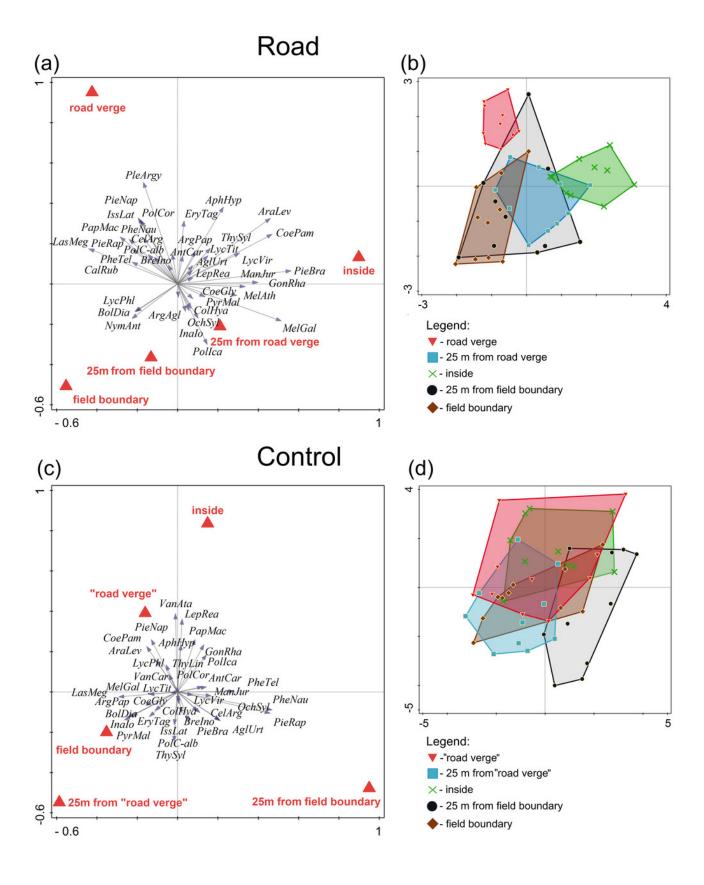

| 195        | Skórka P, Lenda M, Moroń D, Martyka R, Tryjanowski P, Sutherland WJ. 2015. Biodiversity                |
|------------|--------------------------------------------------------------------------------------------------------|
| 196        | collision blackspots in Poland: separation causality from stochasticity in roadkills of butterflies    |
| 197        | Biological Conservation 187:154-163                                                                    |
| 198        | Spooner PG, Smallbone L. 2009. Effects of road age on the structure of roadsied vegetation in          |
| 199        | south-eastern Australia. Agriculture, Ecosystems & Environment 129:57-64                               |
| 500        | Stam JM, Kroes A, Li Y, Gols R, van Loon JJ, Poelman EH, Dicke M. 2013. Plant interactions             |
| 501        | with multiple insect herbivores: from community to genes. Annual Review in Plant Biology               |
| 502        | 65:689-713                                                                                             |
| 503        | Tanner D, Perry J. 2007. Road effects on abundance and fitness of Galápagos lava lizards               |
| 504        | (Microlophus albemarlensis). Journal of Environmental Management 85:270-278                            |
| 505        | Tikka PM, Högmander H, Koski PS. 2001. Road and railway verges serve as dispersal corridors            |
| 506        | for grassland plants. Landscape Ecology 16:659-666                                                     |
| 507        | Trombulak SC, Frissell C. 2000. Review of ecological effects of roads on terrestrial and aquatic       |
| 508        | communities. Conservation Biology 14:18-30                                                             |
| 509        | Wobeser G, Wobeser A. 1992. Carcass disappearance and estimation of mortality in a simulated           |
| 510        | die-off of small birds. Journal of Wildlife Diseases 28:548-554                                        |
| 511        | Wynhoff I, Gestel R, van Swaay C, Langevelde F. 2011. Not only the butterflies: Managing ants          |
| 512        | on road verges to benefit <i>Phengaris</i> (Maculinea) butterflies. Journal of Insect Conservation     |
| 513        | 15:189-206                                                                                             |
| 514        |                                                                                                        |
| 515<br>516 |                                                                                                        |
| 517        |                                                                                                        |
| 518        |                                                                                                        |
| 519<br>520 |                                                                                                        |
| 521        | Figure captions                                                                                        |
| 522        |                                                                                                        |
| 523        | <b>Figure 1.</b> The impact of transect location on mean number of species (a,b) and individuals (c,d) |
| 524        | within grassland patches bordering with road (a,c) and apart from roads (b, d). Whiskers are 95        |
| 525        | % confidence intervals. The only statistically significant difference were found for abundance of      |
| 526        | butterflies at roads (c): levels not connected by the same capital letter denote statistically         |
| 527        | significant differences.                                                                               |
| 528        |                                                                                                        |



| 529 | Figure 2. Ordination of butterfly species in partial redundancy analysis in different parts of the      |
|-----|---------------------------------------------------------------------------------------------------------|
| 530 | grassland patches bordering with roads (a, b) and apart from a road (c, d). Explanation: road           |
| 531 | verge - transect on a road verge, 25m from road verge - transect located inside meadow patch 25         |
| 532 | m from a road verge, inside - transect located inside the grassland patch, 25m from field               |
| 533 | boundary - transect located inside meadow patch 25 m from a border between the patch and                |
| 534 | arable field, field boundary – transect located at the border between the habitat patch and arable      |
| 535 | field. In case of control grasslands (grassland located apart from a road) "road verge" was a           |
| 536 | transect located along a field road used by farmers. Species abbreviations are first letters of the     |
| 537 | genus and species names.                                                                                |
| 538 |                                                                                                         |
| 539 | Figure 3. The impact of grassland location on the mean number of butterfly species (a) and              |
| 540 | individuals (c), and plant number of species (c) and cover (d) within grassland patches bordering       |
| 541 | with road and apart from roads. Whiskers are 95 % confidence intervals. Explanation: * -                |
| 542 | statistically significant difference at $P < 0.05$ .                                                    |
| 543 |                                                                                                         |
| 544 | <b>Figure 4.</b> Ordination of butterfly (a, b) and plant (c, d) species in grassland patches bordering |
| 545 | with roads and apart from roads. Redundancy (butterflies) and partial canonical correspondence          |
| 546 | (plants)analyses were used for ordination of species after removing the effects of transect             |
| 547 | location within a patch (see Figure 2). Explanations: Road – grassland patches bordering with           |
| 548 | roads, Control – grassland patches located apart from roads. Species abbreviations are first letters    |
| 549 | of the genus and species names.                                                                         |
| 550 |                                                                                                         |
| 551 | <b>Figure 5</b> . Rarefaction depicting the estimated number of species as the function of number of    |
| 552 | sampled individuals. Whiskers are 95% confidence intervals.                                             |
| 553 |                                                                                                         |
| 554 | Figure 6. Correlation between number of butterflies living on road verges and number of                 |
| 555 | roadkilled butterflies.                                                                                 |
|     |                                                                                                         |

The impact of transect location within a grassland patch on the number of butterfly species and individuals

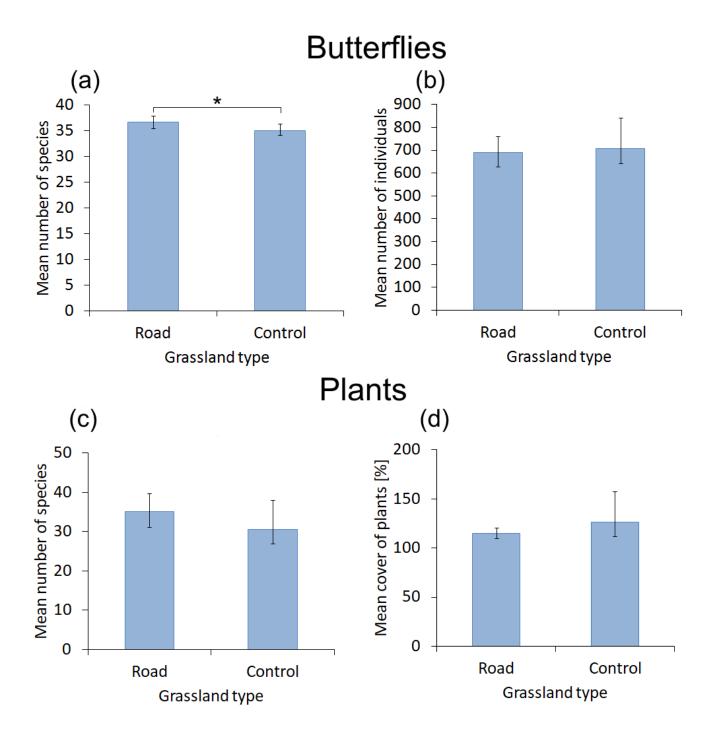
The impact of transect location on mean number of butterfly species (a,b) and individuals (c,d) within grassland patches bordering with road (a,c) and apart from roads (b, d). Whiskers are 95 % confidence intervals. The only statistically significant difference were found for abundance of butterflies at roads (c): levels not connected by the same capital letter denote statistically significant differences.






Differentiation of butterfly species in different parts of the grassland patches bordering with roads and apart from a road

Ordination of butterfly species in partial redundancy analysis in different parts of the grassland patches bordering with roads (a, b) and apart from a road (c, d). Explanation: road verge – transect on a road verge, 25m from road verge - transect located inside meadow patch 25 m from a road verge, inside – transect located inside the grassland patch, 25m from field boundary – transect located inside meadow patch 25 m from a border between the patch and arable field, field boundary – transect located at the border between the habitat patch and arable field. In case of control grasslands (grassland located apart from a road) "road verge" was a transect located along a field road used by farmers. Species abbreviations are first letters of the genus and species names.

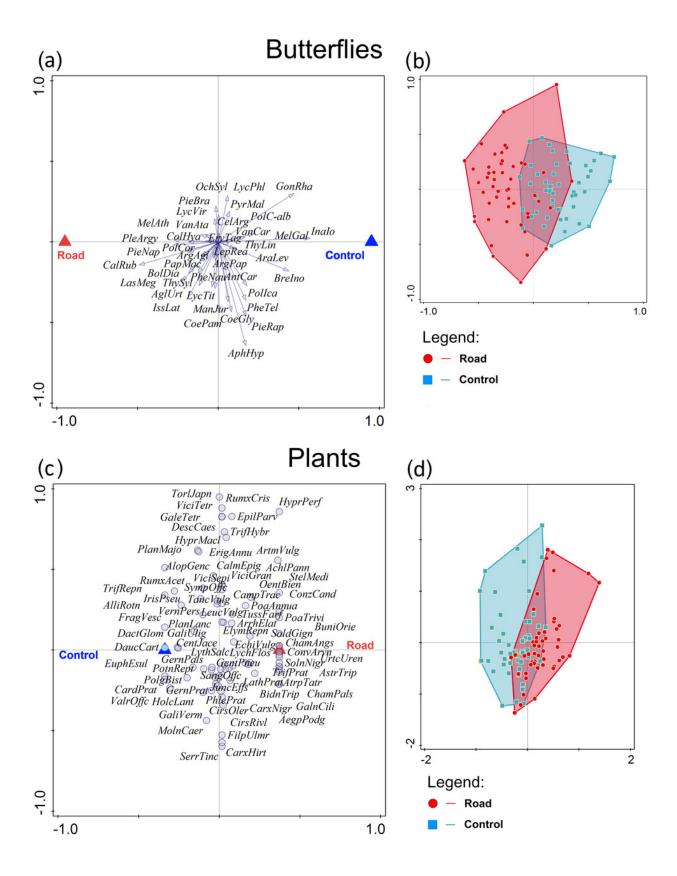




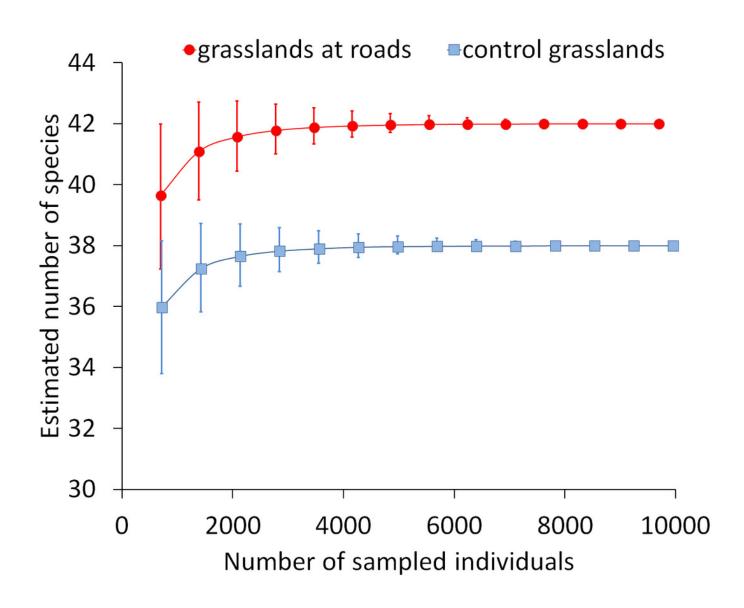



The impact of grassland location within a grassland patch on the number of butterfly species and individuals

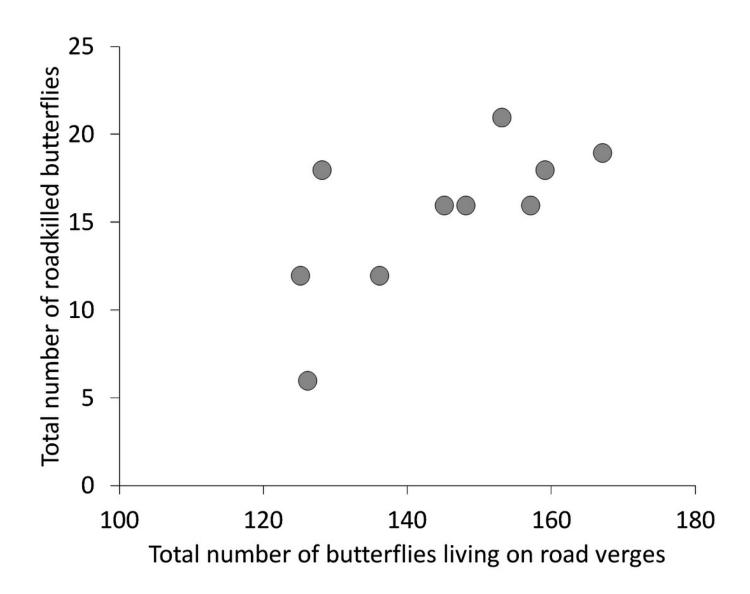
The impact of grassland location on the mean number of butterfly species (a) and individuals (c), and plant number of species (c) and cover (d) within grassland patches bordering with road and apart from roads. Whiskers are 95 % confidence intervals. Explanation: \* - statistically significant difference at P < 0.05.







Differentiation of butterfly and plant species composition in grassland patches bordering with roads and apart from roads

Ordination of butterfly (a, b) and plant (c, d) species in grassland patches bordering with roads and apart from roads. Redundancy (butterflies) and partial canonical correspondence (plants)analyses were used for ordination of species after removing the effects of transect location within a patch (see Figure 2). Explanations: Road – grassland patches bordering with roads, Control – grassland patches located apart from roads. Species abbreviations are first letters of the genus and species names.






Rarefaction depicting the estimated number of species as the function of number of sampled individuals. Whiskers are 95% confidence intervals.



Correlation between number of butterflies living on road verges and number of roadkilled butterflies

