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ABSTRACT
The TonB protein plays an essential role in the energy transduction system to drive
active transport across the outer membrane (OM) using the proton-motive force of
the cytoplasmic membrane of Gram-negative bacteria. The C-terminal domain
(CTD) of TonB protein is known to interact with the conserved TonB box motif of
TonB-dependent OM transporters, which likely induces structural changes in the
OM transporters. Several distinct conformations of differently dissected CTDs of
Escherichia coli TonB have been previously reported. Here we determined the
solution NMR structure of a 96-residue fragment of Pseudomonas aeruginosa TonB
(PaTonB-96). The structure shows a monomeric structure with the flexible
C-terminal region (residues 338–342), different from the NMR structure of E. coli
TonB (EcTonB-137). The extended and flexible C-terminal residues are confirmed by
15N relaxation analysis and molecular dynamics simulation. We created models
for the PaTonB-96/TonB box interaction and propose that the internal fluctuations
of PaTonB-96 makes it more accessible for the interactions with the TonB box and
possibly plays a role in disrupting the plug domain of the TonB-dependent OM
transporters.

Subjects Biochemistry, Biophysics, Microbiology
Keywords TonB, NMR, NMR structure, 15N relaxation, Molecular dynamics, BtuB, Pseudomonas
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INTRODUCTION
The periplasmic space resides between the outer membrane (OM) and cytoplasmic
membrane (CM) of Gram-negative bacteria. The OM protects Gram-negative bacteria
from environmental hazards such as antibiotics and detergents. At the same time,
Gram-negative bacteria require rare essential nutrients such as iron, vitamins that are
present in the extracellular environment at very low concentrations. Gram-negative
bacteria have evolved active acquisition systems to pass the essential nutrients through
OM and CM. Since there is no electrochemical gradient to power the active transport at the
OM and no ATP in the periplasmic space, these transporters must extract energy from
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the CM. These transporters in the OM are termed TonB-dependent transporters (TBDT)
because they presumably extract the energy from the proton-motive force (pmf) of the CM
via the trans-periplasmic protein, TonB protein (Fig. 1A). The energy transduction is
assumed to take place via the TonB complex anchored in CM and consisting of TonB,
ExbB, and ExbD proteins. ExbB and ExbD are accessory proteins anchored in the CM that
convey the pmf across the CM to TonB (Celia et al., 2016; Clarke, Tari & Vogel, 2001;
Krewulak & Vogel, 2008; Postle & Larsen, 2007).

TonB protein mediates the energy transduction from the CM to TBDTs. TonB has an
N-terminal transmembrane (TM) domain anchored in the CM (Fig. 1). The TM domain
is followed by the central region mostly consisting of Pro-Glu and Pro-Lys repeats
(Fig. 1B). Extended conformation of the central region allows the protein to span the
periplasmic space between OM and CM (Domingo Köhler et al., 2010). The C-terminal
domain (CTD) of TonB protein has a globular structure and interacts with a conserved
TonB box motif located at the N-terminus of TBDTs (Cadieux & Kadner, 1999;
Pawelek et al., 2006; Peacock et al., 2005; Shultis et al., 2006). Despite a wide variety of
models for the energy transduction mechanism by TonB, it is still unclear how TonB
protein works in the energy transduction that presumably causes the structural changes
of the plug domain in TBDTs to facilitate the transport (Celia et al., 2016; Chimento,
Kadner & Wiener, 2005; Gresock et al., 2011; Klebba, 2016; Letain & Postle, 1997;
Sverzhinsky et al., 2015; White et al., 2017). The crystal structures of the complexes with
two different outer membrane receptors from Escherichia coli BtuB and FhuA suggests
direct interactions between b-sheets in the CTD of TonB protein and the TonB box
(Shultis et al., 2006; Pawelek et al., 2006). Currently proposed models to induce the
structural changes of the plug domain include the mechanical pulling of the plug domain
via the interaction with TonB box and CTDs of TonB, which are supported by the
atomic force microscopy and molecular dynamics (MD) simulation studies suggesting that
the interaction is strong enough to remain stable during the mechanical unfolding of
the plug domain (Chimento, Kadner & Wiener, 2005; Gumbart, Wiener & Tajkhorshid,
2007; Hickman et al., 2017). Furthermore, the interaction between a highly conserved
positive charge at Arg166 of EcTonB and the negative charge of Glu56 of FhuA receptor is
proposed to be involved in the disruption of the plug domain (Pawelek et al., 2006).

Interestingly, several groups have reported distinct conformations of the differently
dissected CTD of TonB protein from E. coli solved by X-ray crystallography or NMR
spectroscopy (Fig. 1C). The crystal structures of E. coli TonB-CTD consisting of the last
85 or 77 residues were composed of an intertwined dimer conformation with three
b-strands and one a-helix (PDB codes: 1IHR and 1QXX, respectively) (Chang et al., 2001;
Koedding et al., 2004). Whereas a longer construct consisting of the last 92 residues
(EcTonB-92) was monomeric in solution, the crystal structure revealed dimerization via
b-strands in the C-terminus (PDB: 1U07) (Ködding et al., 2005). Furthermore, TonB
protein from E. coli (EcTonB-137, PDB code: 1XX3) was monomeric as observed in
solution NMR experiments (Peacock et al., 2005). CTDs of EcTonB bound to outer
membrane receptors BtuB and FhuA take a monomeric conformation (Shultis et al., 2006;
Pawelek et al., 2006). Therefore, the biological relevance of the intertwined dimers
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Figure 1 TonB-dependent energy transduction system and structures of differently dissected E. coli
TonB. (A) A schematic model of the TonB-dependent energy transduction system, which transduces the
proton motive force of the CM to TonB-dependent transporters (TBDT) via TonB. (B) Sequence
alignment presenting the full-length E. coli TonB sequence and differently dissected CTDs used for the
structure determination (labeled with PDB IDs). CTDs are highlighted in gray, and the TM region is
indicated by a bar. (C) Ribbon drawings of previously reported E. coli TonB CTD structures. The last
b-strands at the C-terminal region with the largest conformational differences among the reported
structures are colored in red. 1IHR forms intertwined dimers (Chang et al., 2001) and 1U07 forms dimers
connected via the C-terminal extended strand (Ködding et al., 2005) in crystals.

Full-size DOI: 10.7717/peerj.5412/fig-1
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found in the crystal structures of the shorter fragments of CTDs bearing the last 85 or
77 residues has not been clear (Ködding et al., 2005; Koedding et al., 2004; Postle et al.,
2010). In contrast, Electron Spin Resonance (EPR) experiments suggested that a significant
population of TonB exists as a dimer in solution while the monomeric form is bound to a
TBDT (Freed et al., 2013). The major differences among the monomeric structures of
EcTonB are observed around the residues 235–239 (highlighted in red) at the C-terminal
region (Fig. 1C). Whereas these residues in the NMR structure of EcTonB-137 fold to
an additional b-strand (b6) and forming an anti-parallel sheet with the preceding
b5-strand, the same C-terminal end is either extended or largely invisible in the crystal
structures (Fig. 1C). Intriguingly, b5-strand (residues 226–231) in EcTonB-CTD directly
interacts with TonB box of TBDTs in the crystal structures of EcTonB-CTD/TBDT
complexes (Pawelek et al., 2006; Shultis et al., 2006). The b5-strand is not accessible for the
proposed interaction in the NMR structures of EcTonB-137 (Peacock et al., 2005) due
to the additional b6-strand. Therefore, b6-strand in EcTonB-137 NMR structure has to
be exchanged with the strand in TonB box when interacting with TBDTs (Peacock et al.,
2005). In contrast, the recent solution NMR structure of the last 92 residues from
Helicobacter pyroli TonB (HpTonB-92) showed the disordered C-terminal region and the
absence of b6-strand (Ciragan et al., 2016), which is more in line with the crystal structures
of EcTonB-CTD reported previously (Ködding et al., 2005; Shultis et al., 2006;
Pawelek et al., 2006).

Here, we report the NMR structure and MD simulations of a CTD of TonB protein
from Pseudomonas aeruginosa (PaTonB-96) to investigate whether the plasticity of
the C-terminal region observed for the reported structures of EcTonB is a common feature
of TonBs across different organisms.

MATERIALS AND METHODS
NMR sample preparation
The C-terminal 96 residues of a TonB protein from P. aeruginosa (UniProt: Q51368)
was cloned from genomic DNA (ATCC-47085) as an N-terminal SUMO fusion protein,
which was previously termed PsTonB-96 (Guerrero, Ciragan & Iwaï, 2015). The construct
expresses a His-tag SUMO fusion protein that produces a 99-residue protein after the
SUMO tag removal, which we termed PaTonB-96. PaTonB-96 contains the last 96
residues of PaTonB (247–342) and three residues (SHM) at the N-terminal end from the
cloning site. The plasmid (pFGRSF15) coding the gene of PaTonB-96 was transformed
into E. coli ER2566 strain (New England Biolabs, Ipswich, MA, USA) for production
of doubly 15N, 13C-labeled samples. The transformed E. coli cells were grown overnight at
30 �C in 50 mL LB medium supplemented with 25 mg/mL kanamycin. The cells were
spun down at 900 � g for 15 min and gently re-suspended in two L pre-warmed M9
medium supplemented with 25 mg/mL kanamycin, containing 15NH4Cl and

13C6-D-
glucose as sole nitrogen and carbon sources, respectively. The cells were grown at 37 �C
until an OD600 of 0.6. Then, the temperature was lowered to 30 �C for protein expression.
The protein expression was induced with a final concentration of one mM isopropyl
b-D-1-thiogalactopyranoside (IPTG). The cells were incubated for additional 5 h before
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harvesting by centrifugation at 4,900 � g at 4 �C for 15 min. The labeled PaTonB-96
was purified following the previously published protocol (Guerrero, Ciragan & Iwaï,
2015). The purified protein was dialyzed against 20 mM sodium phosphate buffer
(pH 6.0). The protein solution of PaTonB-96 was concentrated to one mM for
NMR analysis using a centrifugal device. The final sample volume was 250 mL
containing 10% D2O.

NMR measurements
NMR measurements for the structure determination were recorded on Varian INOVA
800 MHz equipped with a cryogenically cooled five mm probe head. For the sequential
backbone assignment, a standard set of double and triple resonance NMR spectra
were recorded at 25 �C, including [1H, 15N]-HSQC, HNCO, HNCA, HNCACB,
HN(CO)CA, HN(CA)CO, and CBCA(CO)NH (Sattler, Schleucher & Griesinger, 1999).
The aliphatic side-chain assignment was carried out using [1H, 13C]-HSQC,
HCCH-COSY, ct-[1H, 13C]-HSQC, HBHA(CO)NH, H(CCCO)NH, (H)CC(CO)NH,
15N-resolved [1H, 1H]-TOCSY, and 15N-edited [1H-1H]-NOESY spectra. The assignments
for the aromatic side-chains were based on the spectra of (HB)CB(CGCD)HD, (HB)CB
(CGCDCE)HE, aromatic region ct-[1H, 13C]-HSQC and 13C-edited [1H,1H]-NOESY.
Data was acquired using VnmrJ (Varian Inc., Palo Alto, CA, USA) and data were
processed using the NMRpipe software (Delaglio et al., 1995).

NMR measurements for the backbone dynamics were recorded on a Bruker Avance
850 MHz equipped with a cryogenically cooled probe head. The longitudinal (T1) and
transverse (T2) relaxation rates and 15N{1H}-heteronuclear nuclear Overhauser effects
(NOEs) for backbone 15N atoms were determined at 25 �C using the well-established NMR
experiments (Barbato et al., 1992; Kay, Torchia & Bax, 1989). T1(

15N) and T2(
15N)

relaxation times were determined using the following delay times: 10, 50, 100, 200, 300,
500, 800, 1,000, 1,200, and 2,000 ms for T1 and 16, 64, 96, 128, 156, 196, 224, and 256 ms
for CMPG pulse train with one ms interval for T2 relaxation rates, respectively.
Relaxation times were obtained by fitting a single exponential decay to peak intensity
values: I(t) = I0 � exp (–t/T1) or I0 � exp (-t/T2), where I(t) is the peak volume at a time t.
Heteronuclear 15N{1H}-NOEs were obtained with a relaxation delay of 5 s with or
without saturation of protons. Heteronuclear 15N{1H}-NOEs (h) were determined from
the volumes of the HSQC signals using the ratio of h = I/I0. The relaxation data were
processed and analyzed using Bruker Dynamic Center (Version 2.1.8; Bruker Inc.,
Billerica, MA, USA).

Solution NMR structure determination
The sequence-specific resonance assignment was performed with standard methods using
triple resonance NMR experiments and CcpNmr Analysis software (version 2.4.1)
(Vranken et al., 2005). The chemical shift values from the sequential resonance assignment
were used together with NOE peak lists for the structure calculation with the program
CYANA 3.0 (Mumenthaler et al., 1997; Güntert & Buchner, 2015). NOE distance restraints
were obtained from 3D 15N- and 13C-edited [1H, 1H]-NOESY spectra with 80-ms mixing
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time. The conformations of prolines were checked based on CB-CG chemical shift
before the structure calculation (Schubert et al., 2002). All prolines were predicted to be in
trans conformation except P299 that was set to cis-conformation. The three-dimensional
NMR conformers were generated using CYANA 3.0, based on the automated NOESY
cross peaks assignment (Güntert, 2004; Güntert, Mumenthaler & Wüthrich, 1997).
The restrained energy minimization of the final 20 best conformers was performed
using AMBER 14 (Pearlman et al., 1995), and the structures were validated with PSVS
1.5 (Bhattacharya, Tejero & Montelione, 2007). The structural statistics are summarized
in Table 1.

MD simulation
The MD simulations were performed with Gromacs5 (Abraham et al., 2015) by using
Amber ff99SB-ILDN force field and tip4p water model (Jorgensen et al., 1983;
Lindorff-Larsen et al., 2010). The first 10 ns from total 400-ns simulation was considered to
be the equilibrium period by monitoring the protein root-mean-square-deviation,
inertia tensor eigenvalues, and rotation angles. The rest was used for the analysis since the
first 10 ns of simulation trajectories was sufficiently enough to remove the significant
fluctuations in these parameters (Ollila, Heikkinen & Iwaï, 2018). The NMR structure
determined in this work was used as the initial structure and the secondary structures
remained unchanged during the entire simulation period. The temperature was coupled to
25 �C with v-rescale thermostat (Bussi, Donadio & Parrinello, 2007), and the pressure was
isotropically set to one bar using Parrinello-Rahman barostat (Parrinello & Rahman,
1981). The time-step was two fs, Lennard-Jones interactions were cut-off at one nm,
PME (Darden, York & Pedersen, 1993; Essmann et al., 1995) was used for electrostatics,
and LINCS (Hess, 2008) was used to constrain all bond lengths. The simulation data is
available from the Zenodo repository (Ollila, 2018a).

The analysis and interpretation of 15N spin relaxation times are described in detail
elsewhere (Ollila, Heikkinen & Iwaï, 2018). Briefly, rotational correlation functions of
the backbone N–H bonds were calculated from the simulation data and the spin relaxation
times were calculated using the Redfield equations (Abragam, 1961; Kay, Torchia &
Bax, 1989; Ollila, Heikkinen & Iwaï, 2018). Before the spin relaxation time calculation,
the overestimated overall rotational diffusion in the MD simulation due to the water
model was corrected by dividing the rotational diffusion coefficients around all inertia axes
with a factor of 1.2, assuming that the protein rotates as an anisotropic rigid body.
This scaling factor was found to be capable of reproducing the 15N spin relaxation times in
good agreement with the experimental data of PaTonB-96 for tip4p water model
(Ollila, Heikkinen & Iwaï, 2018). The computer codes used for the analysis and the
related data are available (Ollila, 2018b, 2018c).

RESULTS
NMR solution structure of PaTonB-96
The protein consisting of the C-terminal 96 residues of TonB from P. aeruginosa
(PaTonB-96) was previously identified as a minimal domain that was soluble when
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Table 1 Structural statistics of the energy-minimized NMR structure of PaTonB-96.

PaTonB-96a

Completeness of resonance assignments (%)b

Backbone 98.5

Side chain, aliphatic 97.0

Side chain, aromatic 88.0

Distance restraints

Total 1,698

Intraresidue (i = j) 465

Sequential (ji-jj = 1) 483

Medium range (1 < ji-jj < 5) 198

Long range (ji-jj � 5) 552

No. of restraints per residue 17.2

No. of long-range restraints per residue 5.6

Residual restraint violations

Average no. of distance violation per structure

0.1–0.2 Å 1

>0.2 Å 0 (max. 0.14)

Average no. of dihedral angle violations per structure

>2.5� 0

Model qualityc

Rmsd backbone atoms (Å) 1.0

Rmsd heavy atoms (Å) 1.6

Rmsd bond lengths (Å) 0.014

Rmsd bond angles (�) 2.1

MolProbity Ramachandran statisticsc

Most favored regions (%) 97.4

Allowed regions (%) 2.5

Disallowed regions (%) 0.1

Global quality scores (raw/Z score)c

Verify3D 0.34/-1.93
ProsaII 0.41/-0.99
PROCHECK (ϕ–c) -0.27/-0.75
PROCHECK (all) -0.23/-1.36
MolProbity clash score 0.18/1.49

Model contents

Ordered residue ranges 247–258, 261–320, 323–338

Total no. of residues 99

BMRB accession number 34235

PDB ID code 6FIP

Notes:
a Structural statistics computed for the ensemble of the 20 deposited NMR conformers.
b Calculated from the expected number of resonances, excluding highly exchangeable protons (N-terminal, Lys, amino
and Arg guanidino groups, hydroxyls of Ser, Thr, and Tyr), carboxyl groups of Asp and Glu, and nonprotonated
aromatic carbons. Backbone atoms: HN, N, Ca, Cb, Ha, and C.’

c Calculated using PSVS version 1.5 (Bhattacharya, Tejero & Montelione, 2007).
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expressed using an E. coli expression system, while other shorter fragments were not
soluble even with several different fusion partners (Guerrero, Ciragan & Iwaï, 2015).
This fragment has 45% identity (40/88 residues) to EcTonB-92, suggesting a similar
structure to EcTonB. [1H, 15N]-HSQC spectrum of PaTonB-96 shows the well-dispersed
NMR signals for amide groups (Fig. 2), indicating a globular folded conformation. All of
the main-chain chemical shifts were assigned except for S244 and HN of H245. 95.2%
of the expected side-chains were assigned. The assigned chemical shifts were used for the
automatic analysis of NOE peaks with the CYANA to calculate the NMR structure.
Figure 3 shows the lowest energy solution NMR structure of PaTonB-96 with the
secondary structure elements and a superposition of the 20 lowest energy conformers.
The structural statistics of the 20 NMR conformers are summarized in Table 1. PaTonB-96
adopts a mixed a/b structure with the topology of babbabb. The structure consists of
a b-sheet composed of three anti-parallel b-strands (b2, b3, and b5), a b-sheet
composed of two short b-strands (b1 and b4) and two short a-helices (aI and aII).
The structural coordinates and the chemical shifts have been deposited in the Protein Data
Bank (http://www.rcsb.org/, PDB code: 6FIP) and BMRB (http://www.bmrb.wisc.edu/,
accession number: 34235).

Figure 2 Two-dimensional [1H, 15N]-HSQC spectrum of one mM PaTonB-96. The spectrum was
recorded at the 1H frequency of 800 MHz at 25 �C. The residue number and single letter code for amino
acid types indicate the assignments. Trp HNe, Gln and Asn side chain amide resonances are marked
by “sc.” Full-size DOI: 10.7717/peerj.5412/fig-2
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Comparison of the NMR structures between E. coli and P. aeruginosa
The primary and secondary structures of PaTonB-96 were compared with the structure
of EcTonB-137 (PDB: 1XX3) (Peacock et al., 2005) (Fig. 4). The length of PaTonB-96 is
similar to that of the globular part of EcTonB-137 (88 residues). Notable structural
differences are observed around the C-terminal end. The C-terminal end of EcTonB-137
forms an anti-parallel b-strand (b6) with b5-strand to constitute a b sheet. In contrast,
the C-terminal end in PaTonB-96 is unstructured and exhibits an extended flexible
conformation as also seen from the spin relaxation data (Fig. 5). The difference can be
easily explained by the shorter C-terminal end after the b5-sheet in PaTonB-96, being too
short to form an additional b-strand. The shorter C-terminal end in PaTonB-96 is
compensated by the longer loop between b4 and b5-strands with additional five residues,

β1

αΙ

β3
β5

β4

αΙΙ

αΙ

β3

β5

β2

Figure 3 NMR structures of PaTonB-96. (A) Ribbon drawings of the lowest energy conformer of the
PaTonB-96 structures showing the secondary structure elements. (B) Stereoview of an ensemble of the 20
lowest energy NMR conformers. Red and blue color are used for a-helices and b-sheets, respectively.
N and C indicate N- or C-termini, respectively. Figures are generated with PyMol (Schrodinger, 2015).

Full-size DOI: 10.7717/peerj.5412/fig-3
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compared with the structured 88-residue region of EcTonB-137. Higher mobility of this
longer loop is also confirmed by the 15N relaxation measurement and MD simulation
(Fig. 5). Interestingly, the extended and disordered conformation of the C-terminal end
in PaTonB-96 more closely resembles the crystal structures of EcTonB-92 (PDB: 1U07) or
the structures from TonB/TBDT complexes (PDB: 2GRX and 2GSK) (Fig. 1).
The interaction between b5-strand of TonB and the TonB box in TBDTs has been
proposed to be essential for the TonB-mediated energy transfer (Pawelek et al., 2006;
Shultis et al., 2006). Such interaction would be hindered by the additional b6-stand found
in EcTonB-137. Thus, our results suggest that b5-strand is more accessible for the
proposed interactions with TonB box in PaTonB-96 where the b6-strand is absent.

Structural motions in PaTonB-96
Fast dynamics (picosecond to nanosecond) of proteins has been commonly investigated by
measuring the spin relaxation times (T1, T2, and heteronuclear NOEs) of backbone
15N atoms (Jarymowycz & Stone, 2006; Van Den Bedem & Fraser, 2015). Here, we
characterize the structural dynamics of PaTonB-96 by combining T1, T2, and

A

B

Figure 4 Comparison between PaTonB-96 and EcTonB-137. (A) The sequence comparison between
PaTonB-96 and the last 90 residues of EcTonB-137 with the secondary structure elements. (B) Stereoview
of the superposition of the 20 NMR structures of PaTonB-96 (gray) and residues 151–239 of the 20 NMR
structures of EcTonB-137 (PDB: 1XX3, blue). N and C stand for the N- and C-termini, respectively.

Full-size DOI: 10.7717/peerj.5412/fig-4
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β
αΙ

αΙΙ

τ

Figure 5 MD simulation of PaTonB-96 and comparison with the experimental data. (A) The
comparison of the experimental and simulated 15N relaxation parameters and the internal motions
presented by S2 and te obtained from the MD simulation. The regions for b-sheets, aI, and aII are
highlighted in blue, purple, and orange, respectively. (B) A superposition of snapshots of the structure
from the MD simulation trajectory indicating conformational fluctuations during the MD simulation.
The residues with enhanced flexibilities are colored in yellow. The aI-helix with orientation fluctuations is
colored in purple. Rotational diffusion coefficient values obtained from the MD simulation of the
experimental spin relaxation data are, Dxx = 1.51 ± 0.01, Dyy = 1.72 ± 0.03, and Dyy = 3.79 ± 0.03
(rad2·107/s). These result in Dav = (Dxx + Dyy + Dzz)/3 = 2.3 ± 0.02 (rad2·107/s), tc = (6Dav)

–1 = 7.2 ± 0.02
(ns), A = 2Dzz-(Dyy + Dxx) = 4.4 and R = Dyy-Dxx = 0.2, where A is the axiality and R is the rhombicity.
The overlay of the trajectories was produced by vmd (Humphrey, Dalke & Schulten, 1996).

Full-size DOI: 10.7717/peerj.5412/fig-5
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heteronuclear NOEs for backbone 15N atoms and MD simulations (Ollila, Heikkinen &
Iwaï, 2018). The measured spin relaxation times for PaTonB-96 are shown together with
the MD simulation results (Fig. 5A). The good agreement with the experimental data
allows us to use the MD simulation trajectory to interpret the timescales for the overall
rotational diffusion (tc), effective correlation times for internal mobility (teff), and
order parameters (S2). The overall rotational diffusion coefficients around inertia axes
(see the caption of Fig. 5) show that PaTonB-96 has high axiality (A = 4.4), but with a
rather low rhombicity (R = 0.2) suggesting that the protein has an approximately
ellipsoidal shape. The MD simulation analysis estimates tc = 7.2 ns for the timescale of
average overall rotational diffusion. This is in line with 6.9 ns estimated from the T1/T2

values using the model-free approach (Kay, Torchia & Bax, 1989; Ollila, Heikkinen & Iwaï,
2018) as well as with the values in the literature for monomeric proteins with the similar
molecular weight (Krishnan & Cosman, 1998). We thus conclude that PaTonB-96 is
monomeric in solution as was the previously published NMR structure for EcTonB-137
(Peacock et al., 2005).

The results reveal that there are four regions with enhanced internal motions in
PaTonB-96 (Fig. 5). The regions with notable conformational fluctuations are colored in
yellow and purple in the overlaid snapshots from the MD simulation (Fig. 5). The first few
N-terminal residues exhibit low order parameters and long effective correlations times
related to the enhanced conformational fluctuations, suggesting that the N-terminal region
is already the beginning of the flexible central region of the TonB protein that connects
between TM region and CTD. TheMD simulation revealed orientational fluctuations in aI
helix (purple in Fig. 5B). This fluctuation also influenced the order parameters and
effective correlation times of the neighboring residues in the MD simulation (Fig. 5A).
However, the changes were not observed in the 15N spin relaxation analysis, presumably
because the 15N relaxation is not sensitive to the time scale of the fluctuation. Residues
320–326 in the loop between b4 and b5-strands indicate some enhanced conformational
fluctuations, which were also detectable by the 15N spin relaxation analysis and order
parameters but does not affect the effective correlation times (Fig. 5A). The last five
residues of the C-terminal end (residues 338–342) showed the enhanced conformational
fluctuations, characterized with lower order parameters, long effective correlation
times, and changes in the 15N spin relaxation rates, which are consistent with the
experimental 15N spin relaxation data. The flexible residues at the C-terminal end are
in close contact with the aI helix, indicating orientational fluctuations as described above.

Modelling of PaTonB and TonB box interactions
It is believed that TonB conveys the CM chemical potential to TBDTs by structural
changes via the interaction between CTD of TonB and TonB box, a short stretch of peptide
chain in the N-terminus of plug domain of TBDTs (Cadieux & Kadner, 1999; Pawelek
et al., 2006; Peacock et al., 2005; Shultis et al., 2006) (Fig. 1A). In the crystal structure of
EcTonB-93/BtuB complex, EcTonB orients the aI helix against the plug domain and forms
a parallel b-sheet interaction with the TonB box of BtuB (Shultis et al., 2006) (Fig. 6A).
We created a hypothetical model of a complex between PaTonB-96 and TBDT by
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Figure 6 Models for interactions between TonB and TBDTs. (A) The crystal structure of EcTonB-93
(cyan) bound to BtuB transporter (green, PDB: 2GSK). (B) A cartoon model of the complex of E. coli
BtuB transporter and PaTonB-96 (gray) created by the superposition of CTDs of the TonB proteins.
(C) Illustrations depicting the interactions between b5-strand of EcTonB-93 (cyan) or PaTonB-96 (gray)
with the TonB box of BtuB transporter from E. coli (green). The consensus TonB box sequences based on
57 sequences from UniProtKB/Swiss-Prot (PROSITE: PS00430) is shown at the top. (D) Two hypo-
thetical interaction models for PaTonB/TonB box from probable P. aeruginosa BtuB (Uniprot: Q9I473).
White circles and dotted black circles indicate exposed and buried sides of the model, respectively.

Full-size DOI: 10.7717/peerj.5412/fig-6
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superimposing PaTonB-96 to residues 153–233 of EcTonB in the crystal structure of the
complex because no structure of TBDTs from P. aeruginosa is available (Fig. 6B).
b5-strand (residues 226–231) of EcTonB-93 and TonB box of BtuB forms the parallel
b-strands, of which interactions are mostly hydrophobic (Fig. 6C). The modeled structure
of PaTonB-96/BtuB complex indeed resembles the conserved TonB box interactions
observed with the EcTonB/BtuB complex, supporting that the modeled structure is
plausible. The highly conserved Val10 in the TonB box is located next to phenylalanine in
both TonB structures (Phe230 and Phe336 in EcTonB-93 and PaTonB-96, respectively),
suggesting that this hydrophobic interaction might be critical for the TonB/TBDT
complexes (Fig. 6C).

DISCUSSION
We are interested whether the structural features found in TonB and TonB/TBDTs
complexes from E. coli are shared among other Gram-negative organisms. In the modeled
structure of PaTonB-96/EcBtuB complex, the positive charge at the beginning of b5-strand
(Lys332 in PaTonB-96) could complement the negative charge of Asp6 in the TonB
box, of which negative charge can be found in the half of the TonB box consensus
motif from various Gram-negative organisms (Fig. 6C). This might suggest that the
positive-negative charge interaction could play an important role in the specific
recognition of TonB box. However, putative BtuB sequences from P. aeruginosa do not
contain the exact consensus TonB box motif shown in Fig. 6C. Based on the observation
from the model of PaTonB-96/EcBtuB complex, we searched a potential TonB box
sequence in a putative BtuB sequence (PaBtuB) (Uniprot: Q9I473). We found a stretch of
the sequence “DQVVTATR” (residues 29–36) at the N-terminal region of the possible
plug domain region, with which PaTonB might interact, and hypothesized two interaction
models (Fig. 6D). In the model A, we assumed Val32 in the PaBtuB as the highly
conserved Val in the TonB box motif. In this model, the negative charge of Asp29 could
be located in the vicinity of Lys332 and the sequence of “VVTA” is identical to the
PaTonB-96/EcBtuB model. In the other model (model B), we considered Asp29 as the key
residue in the alignment. The highly conserved Val in the TonB box is now replaced by
Ala in this model, but the negative charge at Glu339 in PaTonB could be better
compensated by Arg36 in PaBtuB if the extended the last b-sheet of PaTonB.

It is noteworthy that similar interactions are not plausible for the solution NMR
structure of EcTonB-137 due to the steric hindrance by the presence of an additional
b6-strand. The b6-strand needs to be disrupted and exchanged to the TonB box for the
similar interaction as observed in the crystal structures of the two TonB/TBDT complexes
(Pawelek et al., 2006; Shultis et al., 2006). The solution NMR structure of PaTonB-96
elucidated in this work is accessible to the TonB box without the strand exchange, because
the disordered and extended C-terminal end does not interfere with the interaction site.
This open conformation at the C-terminus is also observed in the NMR structures of
HpTonB-92 (Ciragan et al., 2016) and TonB-like protein, HasB from Serratia marcescens
(Amorim et al., 2013). Thus it might be a more common structure among CTDs of TonB
proteins across different organisms.
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Our hypothetical model of PaTonB-96 interactions with the TonB box and crystal
structures of TonB/TBDT complexes suggests that aI–helix positions toward the plug
domain located in the TBDT barrel (Fig. 6A) (Pawelek et al., 2006; Shultis et al., 2006).
It was previously proposed that the positively charged Arg166 residue in aI–helix of
EcTonB-CTD could interact with the negatively charged Glu56 in plug domain of FhuA
receptor and disrupt its structure, thereby lowering the energy barrier required for the pore
opening (Pawelek et al., 2006). Interestingly, the MD simulation detected orientational
fluctuations of aI–helix in PaTonB-96 (Fig. 5), which also contains positively charged
Arg271. Such fluctuations might further facilitate the proposed disruption due to the
interactions between Arg271 in PaTonB and the negatively charged residues in the
plug domain of TBDTs. The flexible loop between b4 and b5 strands found in PaTonB-96
is located distantly from BtuB (Fig. 6B). Therefore, the modeled complex of PaTonB/BtuB
does not directly indicate any structural role for this flexible loop.

CONCLUSIONS
We report the solution structure of PaTonB-96, which is largely similar to the previously
reported monomeric NMR structure of EcTonB-137 (PDB code: 1XX3) (Peacock et al.,
2005) except for the C-terminal end. Whereas the C-terminal region of NMR structures of
EcTonB-137 formed an additional anti-parallel b6-strand with b5-strand, the C-terminal
end of PaTonB-96 has extended flexible conformation, which resembles the crystal
structures of TonB proteins interacting with TBDTs (Pawelek et al., 2006; Shultis et al.,
2006). The absence of the last b6 strand in PaTonB-96 structure suggests that the
b5-strand is more accessible for the interaction with TonB box than in EcTonB-137, for
which the strand exchange is required. Furthermore, the structural model suggests that
the electrostatic interactions between PaTonB-96 and TonB box might be more favorable
than for EcTonB. Based on the structural model, we identified a potential TonB box
sequence in PaBtuB. We also speculate that the orientation fluctuations observed in the
aI–helix of PaTonB-96 detected in MD simulation could lower the energy barrier of the
suggested channel opening by disrupting the plug domain structure within the TBDT
barrel when the C-terminus of TonB is bound to TonB box. The NMR structures and
PaTonB-96 could thus guide further experimental analysis to unveil the structural basis of
the mechanism of TonB-dependent energy transduction.
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